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1. What ensures the absolute sizes of both groups are not very small. The absolute size of a group is a function of2

both arrival and retention rates. If one assumes non-zero arrival at each time as the paper does, then size will not3

diminish regardless of retention. In particular, if group representation is maintained over time, then θk(t) = θk,∀t and4

the group size converges to βk

1−πk(θk)
. The only way for this to be small is if both arrival βk and retention πk(θk) are5

near-0. If we allow arrival to be a function of, say model accuracy (Sec 3.4), then arrival indeed may diminish; in this6

case ensuring representation (as shown in Sec 3.4) can simultaneously help prevent zero arrival.7

2. Is the case of EqLos special regarding the experimental results? No, it is not. It works because the user retention8

is assumed to be driven by model accuracy in our experiments. As illustrated in Fig. 8(a) in Appendix K.3, if user9

retention is driven by TPR/FNR (e.g., loan application), EqOpt would be the proper fairness notion.10

3. Pros & cons, feasibility & applicability of our framework. Since human decision making is inherently a sequential11

(and non-memoryless) process, we feel our framework of examining fairness in such a sequential framework is12

appropriate for real-world settings. The main limitation of such an approach is that it requires sufficiently accurate13

models capturing the underlying dynamics (what drives the adoption/abandonment of ML algorithms, etc), which is not14

always available. We believe there is value in performing long-term experiments to better understand such dynamics.15

4. Can this framework illustrate when positive scenarios can be achieved. In a sense the current model captures16

positive feedback, for the majority group: better model performance leads to population growth. Case 2 in Sec 3.3 may17

be viewed as another positive instance: a group can work to change their distribution in light of perceived bias in the18

algorithm (and if they manage to break the condition stated therein then they may retain representation).19

5. Improving readability: We will adjust figures, add forward references, fix typos, and discuss intuition/comparisons.20

Reviewer 2:21

1. Applicability to more general settings. Our results indeed apply more generally to non-classification problems and/or22

multi-dimensional features. Thm 1 states that the representation disparity worsens as long as the monotonicity condition23

(MC) holds; no requirement is imposed on dimensionality or objective function or dynamics. The 1D classification24

problem is one such case satisfying MC (Thm 3). However, it can be shown rigorously that under certain conditions25

for πk(θk) = νk(Ok(θk)) for some decreasing νk(·), Thm 3 holds when feature vector X ∈ Rd and the underlying26

problem can be other supervised (e.g., regression) and unsupervised learning. We will be happy to add this result.27

2. Experiments with non-synthetic data. We trained binary classifiers over Adult dataset by
minimizing empirical loss where features are individual info (sex, race, nationality, etc.) and
labels their annual income (≥ $50k or < $50k). Since the dataset does not reflect dynamics,
we assume it follows (2) with πk(θk) = ν(Lk(θk)). We examine the monotonic conver-
gence of representation disparity under Simple, EqOpt (equalized false positive/negative
cost(FPC/FNC)) and EqLos, and consider cases where Ga, Gb are distinguished by sex,
race and nationality. These results (shown on the right) are consistent with the paper. 0 10 20 30 40
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3. Clarifications (i) Goal of Thm 2 is not to find population ratios but to find one-shot solutions given population ratios;29

their relation is in Eqn. (3). (ii) Y ∈ {0, 1} is label with distribution Pr(Y = j|K = k) = gjk,t and y is its realization.30

4. Distinction from (Hashimoto et al., 2018) [6]. Worsening of representation disparity is observed via simulation in31

[6] without using fairness (θa = θb), and a min-max fair is used to address this. We show the introduction of (any type32

of) fairness does not necessarily solve this problem and do so using formal analysis. Other differences include the fact33

we consider the case when feature distributions are reshaped by the decisions (Sec 3.3) and [6] does not.34

Reviewer 3:35

1. Experiment with proposed fairness constraint selection.
∆ = εβa

βb
-fair set found with method in Sec 3.4 (left plot):

each curve represents a sample path under different ε where
(θa(t), θb(t)) is from a small randomly selected subset of
∆-fair set ∀t (to model the situation where perfect fairness
is not feasible) and βa

βb
= 1. We observe that fairness is

always violated at beginning in lower plot. This is because
the fairness set is found based on stable fixed points, which
only concerns fairness in the long run.
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2. Visualization of decisions shaping feature distribution in Sec 3.3. The right plot above illustrates how distributions37

would change from t to t+ 1, when G1
k (resp. G0

k) experiences the higher (resp. lower) loss at t than t− 1.38


