
Appendix: Supplementary material -336

Rethinking Deep Neural Network Ownership Verification:337

Embedding Passports to Defeat Ambiguity Attacks338

A Invertibility of DNN ownership verification schemes339

Proposition 1 (Invertible process). For a DNN ownership verification scheme V as in Definition 1,340

if the fidelity process F () is independent of either the signature s or trigger set T, then there always341

exists an invertible process I() i.e. the scheme is invertible VI = (E,F, V, I 6= ;)).342

Proof. for a trained network N[Ŵ,T, s] with signature s and/or trigger set T embedded, the invert343

process I() can be constructed with the following steps:344

1. maintain the optimal weights Ŵ unchanged;345

2. minimize the detection error (see III in Definition (1) in the main paper):346

i) forge the feature-based watermarks s
0 = {P0

,B
0} by minimizing the distance347

{P0
,B

0} = argmin
P,B

Df (fe(Ŵ,P),B). Remark: attackers have to take B
0 6= B,348

and in case that the watermark signature B is unknown, attackers may assign random349

signature B
0, whose the probability of collision B

0 = B is then exponentially low.350

ii) forge the trigger set T
0 = {X0

T
,y

0
T
} by minimizing the (cross-entropy) loss351

{X0
T
,y

0
T
} = arg min

XT ,yT

Lc

�
f(Ŵ,XT ),yT

�
between the prediction and the target352

labels.353

3. fidelity evaluation is fulfilled since it is independent to both the forged signatures and trigger354

set, thus remain unchanged.355

Remark: during the minimization of detection error, there is no need of training data which is not356

used in step 2 at all;357

Remark: during the minimization of detection error, the computational cost is minor since the358

dimensionality of the optimization parameters i.e. {P0
,B

0} or X0
T
,y

0
T

is order of magnitude smaller,359

as compared to the number of DNN weights Ŵ.360

Proposition 2 (Non-invertible process). A DNN ownership verification scheme V as in Definition 1361

is non-invertible, if362

I) the fidelity process outcome F
�
N[W,T, s],Dt,Mt, ✏f

�
depends either on the presented sig-363

nature s or trigger set T,364

II) with forged passport st 6= se, the DNN performance M(N[W, se],Dt, st) in (4) is deteriorated365

such that the discrepancy is larger than a threshold i.e. |Mse �Mse | > ✏f .366

Proof. Since using forged passports the DNN model performance is significantly deteriorated such367

that |MPe �MPe | > ✏f , it immediately follows, from the definition of invertible verification368

schemes, that the scheme in question is non-invertible.369
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B Ambiguity attacks on conventional DNN watermarking methods370

This section illustrates experiment results related to the ambiguity attacks on existing watermark-371

ing methods, in particular, the feature-based [1] and the trigger-set based method [2]. We thank372

both authors for making the source codes publicly available at https://github.com/yu4u/373

dnn-watermark [1], and https://github.com/adiyoss/WatermarkNN [2].374

B.1 Ambiguity attacks on feature-based method [1]375

In this experiment, we first train a DNN model embedded with watermarks as described in [1], then376

we conduct the ambiguity attacks as follows.377

The loss function adopted in [1] uses the following binary cross entropy for the embedding regularizer:378

ER(W ) = �
TX

j=1

(bj log(yj) + (1� bj) log(1� yj)), (6)

in which yj = �(
P

i
Xjiwi) is the extracted feature with �(·) is the sigmoid function. In order to379

forge watermark X for a given signature bj , we first freeze the weights wi of the watermarked DNN380

model, and minimize the loss (Eq. 6) with respect to the new binary signatures b0
j
.381

(a) Distribution of Xji. (b) Histogram of
P

i Xjiwi. (c) Xji with fine-tuning.

Figure 6: Distributions of Xji and extracted features.

Figure 6a illustrates the distributions of fake watermarks Xji together with the real watermarks,382

which are hardly distinguishable from each other. In terms of the extracted features
P

i
Xjiwi, their383

distributions are different from the original watermarks, but it is impossible to tell the difference after384

thresholding for the purpose of ownership verification. Also, Figure 6c illustrates that the distribution385

of Xji is not much affected by the fine-tuning process which aims to modify the DNN weights for386

transfer learning purposes (see Table 3).387

Following [1], we detect watermarks by comparing the extracted binary strings w.r.t. the designated388

one by measuring the successful detection rate. As summarized in Table 3, all the fake watermarks of389

size (256-bit) are successfully detected. We also fine-tune the DNN model by adjusting the network390

weights at all layers for new classification tasks (i.e. Caltech-101 and CIFAR100), where fake391

watermarks are still detectable with 100% detection rate demonstrating robustness against fine-tuning392

too.393

Detection rate (feature-based)

Transfer Learning Task Real watermark Fake watermark

CIFAR10 (90.97%) –> CIFAR100 (64.25%) 100% - 100% 100% - 100%
CIFAR10 (90.97%) –> Caltech-101 (74.08%) 100% - 100% 100% - 100%

Table 3: Detection rate of embedded watermarks, before and after fine-tuning. In-bracket values
indicate average test accuracies of the original task and the transfer-learning task as in [1]

.

Note that since wi are fixed, we do not need to include the original (cross-entropy) loss measured394

with the training images, which is a constant during the optimization. This simplicity allows the395

forging of Xji converge very rapidly. The overall optimization took about 50 iterations in 50 seconds,396

which merely constitutes a minor fraction (2.5%) of the training time for the original task.397
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B.2 Ambiguity attacks on trigger-set based method [2]398

In this experiment, we first follow [2] to train the DNN model with trigger set images embedded as399

watermarks, and then we conduct the ambiguity attacks as follows.400

In order to construct the adversarial trigger set images by minimizing the cross-entropy loss between401

the predicted labels and the target labels, we adopt a simple approach which adds trainable noise402

components to randomly selected base images using the following steps:403

1. Randomly select a set of N base images Tb as shown in Figure 7a;404

2. Make random noisy patterns of the same size Tn as trainable parameters;405

3. Use the summed components XT = Tb + ⌘Tn as the trigger set images, in which ⌘ = 0.04406

to make the noise component invisible;407

4. Randomly assign trigger set labels yT ;408

5. Minimize the cross-entropy cost Lc

�
f(Ŵ,XT ),yT

�
w.r.t. the trainable parameter Tn.409

Remark: DNN parameters Ŵ are fixed during the optimization, and thus, the original410

training data is not needed.411

(a) base image Tb

(b) noise component Tn

(c) optimized XT

Figure 7: Sample of the new trigger set images

Figure 8: Distribution of the real Tb and fake XT trigger set

Figure 7c illustrates the final optimized XT . where all of them are correctly classified as the assigned412

labels i.e. yT . Visually, these forged trigger set images (Figure 7c) are hardly distinguishable from the413

original ones (Figure 7a). In terms of histogram distributions, they are indistinguishable too (Figure414
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Detection rate (trigger-set)

Transfer Learning Task Real watermark Fake watermark

CIFAR10 (91.03%) –> CIFAR100 (65.20%) 100% - 25.0% 100% - 27.8%
CIFAR10 (91.03%) –> Caltech-101 (75.06%) 100% - 43.6 % 100% - 46.8%

Table 4: Detection rate of watermarks, before and after fine-tuning. In-bracket values indicate average
test accuracy of the corresponding tasks from the DNN model that adopted watermark technique
from [2]

8). As shown in Table 4, both the trigger set and forged images are 100% correctly labeled with415

assigned adversarial labels. This indistinguishable situation casts doubt on ownership verification by416

trigger set images alone.417

After fine-tuned to other classification tasks, however, the classification accuracies of both trigger set418

and forged images deteriorated drastically yet the detection rate of forged images is slightly better419

than that of the original trigger set images. We ascribed this improvement to the ambiguity attack420

procedures outlined above.421

In terms of the computational cost, the overall optimization takes about 100 epochs of fake trigger set422

in 100 seconds, which merely constitutes a minor fraction (5%) of the training time for the original423

task.424
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C Embedding passports into DNN models425

This section illustrates the empirical study of passport-embedded networks, with focuses on con-426

vergence and effectiveness of passport layers as well as its robustness against both modifications427

(i.e. fine-tuning & pruning) and ambiguity attacks. Please see Section 3.1 in the main paper for428

description.429

C.1 General performances430

Modulated performance: the gist of embedding digital passports is to design and train DNN models431

in a way such that, the network performances of the original task will be significantly deteriorated432

due to forged signatures. As shown in Figure 9, for both AlexNet and ResNet trained for CIFAR10433

& CIFAR100 classification tasks, there are significant performance margins ranging from 3% up to434

80% depending on the presence of either valid or fake passports — DNN model presented with valid435

passports demonstrated almost identical accuracies as that of the original network (over 90%), while436

the same DNN model presented with fake passports achieved about 10% classification rates which is437

merely equivalent to a random guessing.438

Regardless whether the fake passports are either randomly picked up (fake1, Appendix C.3.3)439

or reverse-engineered (fake2, Appendix C.3.4), the modulated DNN model performances play440

indispensable roles in distinguishing valid passports from the forged ones and defeating potential441

ambiguity attacks. For instance, one may set the threshold ✏f in Definition 1 of the main paper as 3%442

and 20%, respectively, for AlexNet and ResNet respectively. By this fidelity evaluation process, any443

potential ambiguity attacks are then effectively defeated.444

Convergence: the introduction of the proposed passport layers (Figure 2a in the main paper) does445

not hinder the convergence of DNN learning process. As shown in Figure 10, we observe that the test446

accuracies converge in synchronization with the network weights, and computed linear transformation447

parameters � and � which all stagnate in the later learning phase when the learning rate is reduced448

from 0.01 to 0.0001 (see Appendix F for hyper-parameter settings).449

Public and hidden DNN parameters
3450

By introducing the passport layers, we essentially separate the DNN parameters into two types: the451

public convolution layer parameters W and the hidden passport layer scale factor � and bias terms452

� (see Eq. (4) in the main paper). The learning of each of these parameter types are different too.453

On one hand, the distribution of the convolution layer weights seems identical to that of the original454

DNN without passport layers (Figure 11a). However, we must emphasize that information about the455

passports are embedded into weights W in the sense that following constraints are enforced once the456

learning is done:457

Avg(Wl

p
⇤Pl

�
) = c

l

�
, Avg(Wl

p
⇤Pl

�
) = c

l

�
, (7)

where c
l
�
, c

l

�
are two constants of converged parameters �l

,�
l.458

On the other hand, the distribution of the hidden parameters are affected by the adoption of sign459

loss (Eq. 5). Clearly the scale factors are enforced to take either positive or negative values far460

from zero (Figure 11b). We also observe that the sign of scale factors remain rather persistent461

against various adversarial attacks (Appendix C.3). An additional benefit of enforcing non-zero462

magnitudes of scale factors is to ensure the non-zero channel outputs and slightly improve the463

performances. Correspondingly the distribution of bias terms becomes more balanced with the sign464

loss regularization (Eq. 5) included, whereas the original bias terms are mainly negative valued465

(Figure 11c).466

C.2 Training and inference time of a passport DNN model467

Table 5 shows the training and inference time of each scheme on AlexNet and ResNet, respectively us-468

ing one NVIDIA Titan V. In both of the DNN architectures, the inference time of the baseline, scheme469

V2, scheme V3 are almost the same as to the execution time because all of them didn’t use passport470

to calculate � and �. However, scheme V1 is slightly slower (about 10%) compared to the baseline471

because of the extra computational cost of � and � calculation from the passport. Training time of472

3In this work, traditional hidden layer parameters are considered as public parameters.
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(a) AlexNet. Left: CIFAR10, right: CIFAR100.

(b) ResNet. Left: CIFAR10, right: CIFAR100.

Figure 9: DNN model performances with valid passports and two different types of fake passports i.e.
random attack is fake1 (Appendix C.3.3) and ambiguity attack is fake2 (Appendix C.3.4). Accuracies
of each DNN architecture are averaged over 5 runs, where each trained model is tested against 50
fake1 and 5 fake2 passports. Accuracies with valid passports and original DNN (wo. passport) are
too close to separate in histograms.

CIFAR10
T I

AlexNet Baseline 8.445 0.834
AlexNet V1 10.745 0.912
AlexNet V2 19.010 0.830
AlexNet V3 21.372 0.881

CIFAR10
T I

ResNet baseline 31.09 1.71
ResNet V1 36.67 1.94
ResNet V2 67.21 1.87
ResNet V3 70.69 1.88

Table 5: Training (T) and Inference (I) time of each scheme on AlexNet (left) and ResNet (right)
using one NVIDIA Titan V. The values are in seconds/epoch.

scheme V1, scheme V2 and scheme V3 are slower than the baseline about 18%(ResNet)/27%(AlexNet),473

116%(ResNet)/125% and 127%(ResNet)/153%, respectively. Scheme V2 and scheme V3 are slower474

about 2x than scheme V1 due to the multi task training scheme.475

C.3 More experiments of the proposed method against various attacks476

C.3.1. - Robustness against fine-tuning477

In this experiment, we repeatedly trained each model five times with designated scale factor signs478

embedded into both AlexNet and ResNet networks. Passport signatures are then detected at 100%479

detection rates for all three ownership verification schemes introduced in Section 3.3 in the main paper480
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(a) Test accuracies (b) Weights update

(c) Scale factors (d) Bias terms

Figure 10: (a) Convergences of test accuracies, (b) weight updates, (c) scale factors, and (d) bias
terms of first 10 channels in Conv4 of AlexNet. x-axis: training epochs; y-axis: see captions of
subfigures.

(a) Weight distribution (b) Scale factor distribution (c) Bias term distribution

Figure 11: Comparison of the distributions of (a) network weights, (b) scale factors, and (c) bias
terms between the original and passport DNN (Conv4 of AlexNet)

and Appendix E. Table 2 (in the main paper) shows that even after fine-tuning for other classification481

tasks (e.g. from CIFAR10! Caltech-101), the 100% detection rates of embedded passports are still482

maintained.483

Note that a detected passport signature is claimed only if all binary bits are exactly matched. We484

ascribe this superior robustness to the stringent controlling nature of scale factors — in the case485

that a scale factor value is reduced to near zero, the channel output will be virtually zero. Thus, its486

gradient will vanish and lose momentum to move towards to the opposite sign. Empirically there is487

no evidence observed otherwise4.488

4A rigorous proof of this argument is under investigation and will be reported elsewhere.
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Trigger Set Detection To CIFAR10 To CIFAR100 To Caltech-101
AlexNet CIFAR10 100% - 24.67% 57.67%
AlexNet CIFAR100 100% 36.00% - 78.67%
ResNet CIFAR10 100% - 12.50% 13.67%
ResNet CIFAR100 100% 6.33% - 4.67%

Table 6: Detection rate of the trigger set images (before and after fine-tuning) used in scheme V3 to
complement passport-based verifications.

Figure 12: AlexNet: It can be seen that the performance deteriorates with randomly flipped scale
factor signs. Left to right: flip one layer, two layers and three layers, respectively. Top row is
CIFAR10 and bottom row is CIFAR100 dataset.

Table 6 shows the trigger set image detection rate before and after fine-tuning. Note that passports489

are not used in this case, therefore, the detection rate of the trigger set labels deteriorated drastically490

after fine-tuning. Nevertheless, trigger set images can still be used in scheme V3 to complement the491

white-box passport-based verification approach.492

C.3.2. - Robustness against pruning493

In this experiment, we test the passport-embedded DNN models against a certain percentage of494

the trained DNN weights being pruned. This type of weight pruning strategy has been adopted for495

network compression, which manage to maintain the original network performances even though the496

pruning percentage are high. For instance, an AlexNet network trained with CIFAR10 can be pruned497

up to almost 60% of its weights without significantly scarifying its performance.498

Figure 4 (in the main article) shows that, the embedding of passport signatures in the sign of scale499

factors are rather persistent against pruning of the network weights. For instance, for CIFAR10500

classification, a passport signature detection accuracy near 100% is maintained at the pruning501

percentage around 60%, and detection rate remains at 70% accuracy even though 90% of the network502

weights are pruned.503

C.3.3. - Robustness against random attacks504

The following experiments aim to disclose the dependence of the original task performances with505

respect to the crucial parameter scale factors, and specifically, its positive/negative signs.506

In the first experiment, for the passport-embedded DNN models, we simulate random attacks by507

flipping the signs of certain randomly selected scale factors and then measure the performance. It508

turns out that the final performance are sensitive to the change of signs — majority of the DNN model509

performances drop significantly as long as more than (at least) 50% of scale factors have flipped signs510

as shown in Figures 12 and 13, respectively. The deteriorated performances are more pronounced511

when the passports are embedded in either all the three convolution layers (3-4-5) in AlexNet (right-512

most column in Figure 12) or the last blocks in ResNet (Figure 13), whose performances drop to513

about 10% and 1% respectively.514
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Figure 13: ResNet: It can be seen that the performance deteriorates with randomly flipped scale
factor signs. Left is CIFAR10 and right is CIFAR100 dataset.

(a) CIFAR10 (left: AlexNet; right: ResNet)

(b) CIFAR100 (left: AlexNet; right: ResNet)

Figure 14: Performance of (a) CIFAR10 and (b) CIFAR100 when adversaries try to forge a new
signature by a certain % of dissimilarity with the original signature.

The simulation results summarized in Figures 12 and 13 are in accordance to the results illustrates515

in Figure 9, which shows that the performance of passport-embedded DNNs under the attack of516

randomly assigned passport signatures. The poor performances measured for both AlexNet and517

ResNet on CIFAR10/CIFAR100 tasks are in the range of [10%, 30%] and [1%, 3%] respectively.518

C.3.4. - Robustness against ambiguity attacks519

In this experiment, we further assume the adversaries have the access to original training data and thus520

are able to maximize the original task performance by reverse-engineering scale factors (i.e. flipping521

the sign (+/-) of the scale factor). The trained AlexNet/ResNet are used for this experiment, and it522

turns out the best performance the adversary can achieve is no more than 84%/70% for CIFAR10 and523

40%/38% for CIFAR100 classifications respectively (see Figure 14).524

In summary, extensive empirical studies show that it is impossible for adversaries to maintain the525

original DNN model performances by using fake passports, regardless of the fake passports are either526

randomly generated or reverse-engineered with the use of original training datasets. This passport527
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dependent performances play an indispensable role in designing secure ownership verification528

schemes that are illustrated in Section 3.3 in the main paper.529

C.3.5. - Sign of scale factors � to encode signature s530

Learned Parameters Signature s

Scale factor � sign (+/-) ASCII code Character

-0.1113 -1

116 t

0.2344 1
0.2494 1
0.4885 1
-0.1021 -1
0.3889 1
-0.1225 -1
-0.3401 -1
-0.1705 -1

104 h

0.3338 1
0.1884 1
-0.1215 -1
0.1620 1
-0.1754 -1
-0.2698 -1
-0.1958 -1
-0.1007 -1

105 i

0.3923 1
0.4288 1
-0.1125 -1
0.4355 1
-0.1524 -1
-0.1073 -1
0.1922 1
-0.1999 -1

115 s

0.2710 1
0.1599 1
0.2496 1
-0.1345 -1
-0.1907 -1
0.2326 1
0.1967 1

Learned Parameters Signature s

Scale factor � sign (+/-) ASCII code Character

-0.1657 -1

105 i

0.1665 1
0.4633 1
-0.2668 -1
0.3830 1
-0.1789 -1
-0.1077 -1
0.1585 1
-0.2257 -1

115 s

0.2916 1
0.2169 1
0.1862 1
-0.1146 -1
-0.1512 -1
0.2288 1
0.3064 1

Table 7: Sample of the learned scale factor � and respective signs (+/-) from the 48 out of 256
channels from Conv5 AlexNet when we embed signature s = {this} and {is}.

In this section, we show how the sign (+/-) of scale factor � can be used to encode a signature s such531

as ASCII code. Table 7 shows an example of the learned scale factors and its respective sign when532

we embed a signature s = {this is an example signature} into the Conv5 of AlexNet by using533

sign loss (Eq. 5). Note that the maximum size of an embedded signature is depending on the number534

of the channels in a DNN model. For instance, in this paper, the Conv5 of AlexNet as shown in Table535

10 has 256 channels, so the maximum signature capacity can be embedded is 256bits.536

For ownership verification, the embedded signature s can be revealed by decoding the learned sign of537

scale factors. For example, in Table 7, every 8bits of the scale factor sign is decoded into ASCII code538

as follow:539

1. {-1,1,1,1,-1,1,-1,-1}! 116! t540

2. {-1,1,1,-1,1,-1,-1,-1}! 104! h541

3. {-1,1,1,-1,1,-1,-1,-1}! 105! i542

4. {-1,1,1,1,-1,-1,1,1}! 115! s543

544

4. {-1,1,1,-1,1,-1,-1,1}! 105! i545

3. {-1,1,1,1,-1,-1,1,1}! 115! s546

Note that, in this proposed method, similar character (e.g. {i} and {s}) appears in different position547

of a string will have different scale factors.548
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Signature s Accuracy (%)
AlexNet (baseline) - 91.12

this is an example signature 90.89
AlexNet thhs iB an xxxpxX| sigjature 82.83

qpCA2JO
Ec� R�o¸ ⇤ 1ay 11.44

Table 8: A comparison of the accuracy of AlexNet in CIFAR10 classification task when a correct
(top), partially correct (middle) or totally wrong (bottom) signature is used.

Table 8 shows a comparison result when a correct signature, partial correct signature or total wrong549

signature is used in CIFAR10 classification task with AlexNet. It is shown that when a correct550

signature is used (i.e this is an example signature), the classification accuracy reached 90.89%, while551

for a partial correct signature, the performance is dropped to 82.23%, and a totally wrong signature552

will obtain a meaningless accuracy (11.44%). Based on the threshold ✏f = 3% for AlexNet and by553

the fidelity evaluation process, any potential ambiguity attacks (even with partially correct signature)554

are effectively defeated.555
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D Methods to generate passports556

(a) (b) (c)

Figure 15: Example of different types of passports: (a) random patterns, (b) fixed image and (c)
random shuffled.

Figure 15 illustrates three different types of passports which have been investigated in our work:557

a) random patterns, whose elements are independently randomly generated according to the558

uniform distribution between [-1, 1].559

b) one selected image is fed through a trained DNN model with the same architecture, and560

the corresponding feature maps are collected. Then the selected image is used at the input561

layer and the corresponding feature maps are used at other layers as passports. We refer to562

passports generated as such the fixed image passport.563

c) a set of N selected images are fed to a trained DNN model with the same architecture, and564

N corresponding feature maps are collected at each layer. Among the N options, only565

one is randomly selected as the passport at each layer. Specifically, for a set of N images566

being applied to a DNN model with L layers, there are altogether NL possible combinations567

of passports that can be generated. We refer to passports generated as such the randomly568

shuffled passports.569

Since randomly shuffled passports allow strong protection and flexibility in the passport generation570

and distribution, we adopt this passport generation method for all the experiments reported in this571

paper. Specifically, 20 images are selected and fed to both AlexNet and ResNet that are used in572

our experiments. Passports at those corresponding convolution layers are then collected as possible573

passports. Some example of the features maps selected as the passports at different layers are574

illustrated in Figure 16.575

Figure 16: Randomly shuffled passports in a 5-layered passport AlexNet. From left to right: Conv1 to
Conv5 layers where the 4 passports in Conv2 to Conv5 corresponding to the first 4 channel of each
layer.

21



E Ownership verification schemes V1,V2, and V3576

E.1 Overview577

Taking advantages of the proposed passport embedding method, we design three ownership verifica-578

tion schemes which are summarized in Figure 3 of Section 3.3 in the main paper. Their respective579

merits and demerits, in terms of computational complexity, ease to use and protection strengths etc.580

are summarized in Table 9.581

Passport

used

Trigger set
used for

verification

Weights
needed for
verification

Multi-task

Learning
E M for F V

V1

⇢
Yes , inf. ,
Yes , verif. No Yes No N[W, se]

⇢
Mse , if st = se,

Mse , otherwise. V (N[W, se])

V2

⇢
No , inf. ,
Yes , verif. No Yes Yes

⇢
N[W], inf. ,

N[W, se], verif.

8
<

:

Mse , inf. ,
Mse , if st = se,

Mse , otherwise.

⇢
Not needed , inf. ,
V (N[W, se]), verif.

V3

⇢
No , inf. ,
Yes , verif. Yes

⇢
No , verif.T ,

Yes , verif.P Yes
⇢

N[W], inf. ,
N[W,T, se], verif.

8
<

:

Mse , inf. ,
Mse , if st = se,

Mse , otherwise.

( Not needed, inf. ,
V (N[W,Te]), verif.T
V (N[W, se]), verif.P

Table 9: A comparison of the features of the three passport-based ownership verification schemes
depicted in Section 3.3 of the main paper. See Definition (1) for process E,F, V and Eq. (4) in the
main paper for the DNN model performances M . Notations: "inf." is network inference; "verif" is
ownership verification; "verif.P" is verification by passport (white-box); "verif.T" is by trigger set
samples (black-box).

E.2 Algorithms582

Pseudo-code of the three verification schemes are illustrated in this section. For reproducibility of583

this work, we will make publicly available all source codes as well as the training / test datasets that584

are used in this paper, together with the camera-ready of the submission should the manuscript be585

accepted.586

Algorithm 1 Forward pass of a passport layer using scheme V1

1: procedure FORWARD V1(Xc, Wp, P� , P�)
2: �  Avg(Wp ⇤ P�)
3: �  Avg(Wp ⇤ P�)
4: Xp  Wp ⇤Xc

5: Yp  � ⇤O(Xp) + � . O is a linear transformation such as BatchNorm
6: return Yp

Algorithm 2 Forward pass of a passport layer using scheme V2 and V3

1: procedure FORWARD V23(Xc, Wp, P� , P� , �publ �publ, idx)
2: if idx = 0 then

3: Xp  Wp ⇤Xc

4: Yp  �publ ⇤O(Xp) + �publ . �publ and �publ is a public parameter
5: return Yp

6: else

7: return FORWARD V1(Xc, Wp, P� , P�)

Using Algorithm 4, we can extract a binarized version of signature s where positive � is 1 and587

negative � is 0 from model Mp. We can then decode s into desired format such as ASCII code.588

Finally, we can claim ownership of the model Mp.589
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Algorithm 3 Sign Loss

1: procedure SIGN LOSS(Bl, W l
p
, P l

�
, �0)

2: �
l  Avg(W ⇤

p
P

l
�
)

3: loss max(�0 � �
l ⇤Bl

, 0) . �0 is a positive constant, equals 0.1 as by default
4: return loss

Algorithm 4 Signature detection
1: procedure SIGNATURE DETECTION(Wp, P�)
2: �  Avg(Wp ⇤ P�)
3: signature sign(�)
4: convert signature into binary
5: decode binarized signature into desired format e.g. ascii
6: match decoded signature with target signature

E.3 Multi-task learning with private passports and/or trigger set images590

The multi-task learning algorithms used for embedding passports in schemes V2 and V3 are summa-591

rized in Algorithm 6 which is similar to Algorithm 5.592

It must be noted that the practical choice of formula (Eq. 2) is inspired by the well-known Batch593

Normalization (BN) layer which essentially applies the channel-wise linear transformation to the594

inputs5. Nevertheless BN is not applicable to multi-task learning tasks because of its dependency on595

running average of batch-wise training samples. When BN is used for multi-task learning, the test596

accuracy is significantly reduced even though the training accuracy seems optimized. We therefore597

adopted group normalization (GN) in the baseline DNN model for schemes V2 and V3 reported in598

Table 26.599

Algorithm 5 Training step for scheme V1

1: initialize a passport model Ms with desired number of passport layers, Npass

2: initialize passport keys P in Ms

3: encode desired signature s into binary to be embedded into signs of �p of all passport layers
4: for number of training iterations do

5: sample minibatch of m samples X {X(1), · · · , X(m)} and targets Y {Y (1), · · · , Y (m)}
6: if enable backdoor then

7: sample t samples of T and backdoor targets YT . t = 2, default by [2]
8: concatenate X with T , Y with YT

9: compute cross-entropy loss Lc using X and Y

10: for l in Npass do

11: compute sign loss Rl using s
l and �

l
p

12: R 
PNpass

l
R

l

13: compute combined loss L using Lc and R

14: backpropagate using L and update Mp

5Sergey Ioffe, Christian Szegedy, “Batch Normalization: Accelerating Deep Network Training by Reducing
Internal Covariate Shift”, ICML2015, pp. 448-456.

6Yuxin Wu, Kaiming He, “Group Normalization”, ECCV2018, pp. 3-19.
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Algorithm 6 Training step for scheme V2 and V3

1: initialize a passport model Ms with desired number of passport layers, Npass

2: if enable trigger set then . for scheme V3

3: initialize trigger sets T
4: initialize passport keys P in Ms using T

5: else

6: initialize passport keys P in Ms

7: encode desired signature s into binary to be embedded into signs of �p of all passport layers
8: for number of training iterations do

9: sample minibatch of m samples X {X(1), ..., X(m)} and targets Y {Y (1), ..., Y (m)}
10: if enable backdoor then

11: sample t samples of T and backdoor targets YT . t = 2, default by [2]
12: concatenate X with T , Y with YT

13: for idx in 0 1 do

14: if idx = 0 then

15: compute cross-entropy loss Lc using X , Y and �publ

16: else

17: compute cross-entropy loss Lc using X and Y

18: for l in Npass do

19: compute sign loss Rl using s
l and �

l
p

20: R 
PNpass

l
R

l

21: compute combined loss L using Lc and R

22: backpropagate using L and update Mp
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F Experiment settings for reproducibility600

F.1 DNN Architecture601

Table 10 is the detailed architecture for both AlexNet and ResNet that employed in all the experiments.602

For both AlexNet and ResNet, we used ReLU as activation functions.603

layer name output size weight shape padding
Conv1 32 ⇥ 32 64 ⇥ 3 ⇥ 5 ⇥ 5 2

MaxPool2d 16 ⇥ 16 2 ⇥ 2
Conv2 16 ⇥ 16 192 ⇥ 64 ⇥ 5 ⇥ 5 2

Maxpool2d 8 ⇥ 8 2 ⇥ 2
Conv3 8 ⇥ 8 384 ⇥ 192 ⇥ 3 ⇥ 3 1
Conv4 8 ⇥ 8 256 ⇥ 384 ⇥ 3 ⇥ 3 1
Conv5 8 ⇥ 8 256 ⇥ 256 ⇥ 3 ⇥ 3 1

MaxPool2d 4 ⇥ 4 2 ⇥ 2
Linear 10 10 ⇥ 4096

layer name output size weight shape padding
Conv1 32 ⇥ 32 64 ⇥ 3 ⇥ 3 ⇥ 3 1

Conv2_x 32 ⇥ 32

64⇥ 64⇥ 3⇥ 3
64⇥ 64⇥ 3⇥ 3

�
⇥ 2 1

Conv3_x 16 ⇥ 16

128⇥ 128⇥ 3⇥ 3
128⇥ 128⇥ 3⇥ 3

�
⇥ 2 1

Conv4_x 8 ⇥ 8

256⇥ 256⇥ 3⇥ 3
256⇥ 256⇥ 3⇥ 3

�
⇥ 2 1

Conv5_x 4 ⇥ 4

512⇥ 512⇥ 3⇥ 3
512⇥ 512⇥ 3⇥ 3

�
⇥ 2 1

Average pool 1 ⇥ 1 4 ⇥ 4
Linear 10 10 ⇥ 512

Table 10: (Left:) Modified AlexNet architecture. (Right): Modified ResNet architecture

F.2 Training Parameters in the DNN models604

Table 11 shows the hyperparameters used in the AlexNet and ResNet in all the experiments, unless605

stated wise.606

Hyper-parameter AlexNet ResNet
Optimization method SGD SGD
Momentum 0.9 0.9
Learning rate 0.01, 0.001, 0.0001† 0.01, 0.001, 0.0001†
Batch size 64 64
Epochs 200 200
Learning rate decay 0.001 at epoch 100 and 0.0001 at epoch 150 0.001 at epoch 100 and 0.0001 at epoch 150
Weight Initialization [15] [15]
Passport Layers Conv3,4,5 Conv5_x

Table 11: Training parameters for AlexNet and ResNet, respectively († the learning rate is scheduled
as 0.01, 0.001 and 0.0001 between epochs [1-100], [101-150] and [151-200] respectively).
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