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Abstract

Smooth, non-convex optimization problems on Riemannian manifolds occur in ma-
chine learning as a result of orthonormality, rank or positivity constraints. First- and
second-order necessary optimality conditions state that the Riemannian gradient
must be zero, and the Riemannian Hessian must be positive semidefinite. General-
izing Jin et al.’s recent work on perturbed gradient descent (PGD) for optimization
on linear spaces [How to Escape Saddle Points Efficiently (2017) [17], Stochastic
Gradient Descent Escapes Saddle Points Efficiently (2019) [18]], we propose a
version of perturbed Riemannian gradient descent (PRGD) to show that necessary
optimality conditions can be met approximately with high probability, without
evaluating the Hessian. Specifically, for an arbitrary Riemannian manifoldM of
dimension d, a sufficiently smooth (possibly non-convex) objective function f , and
under weak conditions on the retraction chosen to move on the manifold, with high
probability, our version of PRGD produces a point with gradient smaller than ε
and Hessian within

√
ε of being positive semidefinite in O((log d)4/ε2) gradient

queries. This matches the complexity of PGD in the Euclidean case. Crucially, the
dependence on dimension is low. This matters for large-scale applications includ-
ing PCA and low-rank matrix completion, which both admit natural formulations
on manifolds. The key technical idea is to generalize PRGD with a distinction
between two types of gradient steps: “steps on the manifold” and “perturbed steps
in a tangent space of the manifold.” Ultimately, this distinction makes it possible
to extend Jin et al.’s analysis seamlessly.

1 Introduction

Machine learning has stimulated interest in obtaining global convergence rates in non-convex opti-
mization. Consider a possibly non-convex objective function f : Rd → R. We want to solve

min
x∈Rd

f(x). (1)

This is hard in general. Instead, we usually settle for approximate first-order critical (or stationary)
points where the gradient is small, or second-order critical (or stationary) points where the gradient is
small and the Hessian is nearly positive semidefinite.

One of the simplest algorithms for solving (1) is gradient descent (GD): given x0, iterate

xt+1 = xt − η∇f(xt). (2)

It is well known that if ∇f is Lipschitz continuous, with appropriate step-size η, GD converges to
first-order critical points. However, it may take exponential time to reach an approximate second-
order critical point, thus, to escape saddle points [14]. There is an increasing amount of evidence that
saddle points are a serious obstacle to the practical success of local optimization algorithms such as
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GD [25, 16]. This calls for algorithms which provably escape saddle points efficiently. We focus on
methods which only have access to f and ∇f (but not ∇2f ) through a black-box model.

Several methods add noise to GD iterates in order to escape saddle points faster, under the assumption
that f has L-Lipschitz continuous gradient and ρ-Lipschitz continuous Hessian. In this setting, an
ε-second-order critical point is a point x satisfying ‖∇f(x)‖ ≤ ε and∇2f(x) � −√ρεI . Under the
strict saddle assumption, with ε small enough, such points are near (local) minimizers [16, 17].

In 2015, Ge et al. [16] gave a variant of stochastic gradient descent (SGD) which adds isotropic noise
to iterates, showing it produces an ε-second-order critical point with high probability inO(poly(d)/ε4)
stochastic gradient queries. In 2017, Jin et al. [17] presented a variant of GD, perturbed gradient
descent (PGD), which reduces this complexity to O((log d)4/ε2) full gradient queries. Recently, Jin
et al. [18] simplified their own analysis of PGD, and extended it to stochastic gradient descent.

Jin et al.’s PGD [18, Alg. 4] works as follows: If the gradient is large at iterate xt, ‖∇f(xt)‖ > ε,
then perform a gradient descent step: xt+1 = xt − η∇f(xt). If the gradient is small at iterate xt,
‖∇f(xt)‖ ≤ ε, perturb xt by ηξ, with ξ sampled uniformly from a ball of fixed radius centered at
zero. Starting from this new point xt + ηξ, perform T gradient descent steps, arriving at iterate
xt+T . From here, repeat this procedure starting at xt+T . Crucially, Jin et al. [18] show that, if xt is
not an ε-second-order critical point, then the function decreases enough from xt to xt+T with high
probability, leading to an escape.

In this paper we generalize PGD to optimization problems on manifolds, i.e., problems of the form

min
x∈M

f(x) (3)

whereM is an arbitrary Riemannian manifold and f : M → R is sufficiently smooth [3]. Opti-
mization on manifolds notably occurs in machine learning (e.g., PCA [35], low-rank matrix comple-
tion [12]), computer vision (e.g., [32]) and signal processing (e.g., [2])—see [4] for more. See [29]
and [26] for examples of the strict saddle property on manifolds.

Given x ∈M, the (Riemannian) gradient of f at x, grad f(x), is a vector in the tangent space at x,
TxM. To perform gradient descent on a manifold, we need a way to move on the manifold along the
direction of the gradient at x. This is provided by a retraction Retrx: a smooth map from TxM to
M. Riemannian gradient descent (RGD) performs steps onM of the form

xt+1 = Retrxt(−ηgrad f(xt)). (4)

For Euclidean space,M = Rd, the standard retraction is Retrx(s) = x+s, in which case (4) reduces
to (2). For the sphere embedded in Euclidean space,M = Sd ⊂ Rd+1, a natural retraction is given
by metric projection to the sphere: Retrx(s) = (x+ s)/ ‖x+ s‖.

For x ∈ M, define the pullback f̂x = f ◦ Retrx : TxM → R, conveniently defined on a linear
space. If Retr is nice enough (details below), the Riemannian gradient and Hessian of f at x equal
the (classical) gradient and Hessian of f̂x at the origin of TxM. Since TxM is a vector space, if
we perform GD on f̂x, we can almost directly apply Jin et al.’s analysis [18]. This motivates the
two-phase structure of our perturbed Riemannian gradient descent (PRGD), listed as Algorithm 1.

Our PRGD is a variant of RGD (4) and a generalization of PGD. It works as follows: If the gradient is
large at iterate xt ∈ M, ‖grad f(xt)‖ > ε, perform an RGD step: xt+1 = Retrxt(−ηgrad f(xt)).
We call this a “step on the manifold.” If the gradient at iterate xt is small, ‖grad f(xt)‖ ≤ ε,
then perturb in the tangent space TxtM. After this perturbation, execute at most T gradient
descent steps on the pullback f̂xt , in the tangent space. We call these “tangent space steps.” We
denote this sequence of T tangent space steps by {sj}j≥0. This sequence of steps is performed by
TANGENTSPACESTEPS: a deterministic, vector-space procedure—see Algorithm 1.

By distinguishing between gradient descent steps on the manifold and those in a tangent space, we
can apply Jin et al.’s analysis almost directly [18], allowing us to prove PRGD reaches an ε-second-
order critical point onM in O((log d)4/ε2) gradient queries. Regarding regularity of f , we require
its pullbacks to satisfy Lipschitz-type conditions, as advocated in [11, 7]. The analysis is far less
technical than if one runs all steps on the manifold. We expect that this two-phase approach may prove
useful for the generalization of other algorithms and analyses from the Euclidean to the Riemannian
realm.
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Recently, Sun and Fazel [30] provided the first generalization of PGD to certain manifolds with a
polylogarithmic complexity in the dimension, improving earlier results by Ge et al. [16, App. B]
which had a polynomial complexity. Both of these works focus on submanifolds of a Euclidean space,
with the algorithm in [30] depending on the equality constraints chosen to describe this submanifold.

At the same time as the present paper, Sun et al. [31] improved their analysis to cover any complete
Riemannian manifold with bounded sectional curvature. In contrast to ours, their algorithm executes
all steps on the manifold. Their analysis requires the retraction to be the Riemannian exponential map
(i.e., geodesics). Our regularity assumptions are similar but different: while we assume Lipschitz-type
conditions on the pullbacks in small balls around the origins of tangent spaces, Sun et al. make
Lipschitz assumptions on the cost function directly, using parallel transport and Riemannian distance.
As a result, curvature appears in their results. We make no explicit assumptions onM regarding
curvature or completeness, though these may be implicit in our regularity assumptions: see Section 4.

Algorithm 1 PRGD(x0, η, r,T , ε, T, b)

1: t← 0
2: while t ≤ T do
3: if ‖grad f(xt)‖ > ε then
4: xt+1 ← TANGENTSPACESTEPS(xt, 0, η, b, 1) . Riemannian gradient descent step
5: t← t+ 1
6: else
7: ξ ∼ Uniform(Bxt,r(0)) . perturb
8: s0 = ηξ
9: xt+T ← TANGENTSPACESTEPS(xt, s0, η, b,T ) . perform T steps in TxtM

10: t← t+ T
11: end if
12: end while
13:
14: procedure TANGENTSPACESTEPS(x, s0, η, b,T )
15: for j = 0, 1, . . . ,T − 1 do
16: sj+1 ← sj − η∇f̂x(sj)
17: if ‖sj+1‖ ≥ b then . if the iterate leaves the interior of the ball Bx,b(0)

18: sT ← sj − αη∇f̂x(sj), where α ∈ (0, 1] and
∥∥∥sj − αη∇f̂x(sj)

∥∥∥ = b.
19: break
20: end if
21: end for
22: return Retrx(sT )
23: end procedure

1.1 Main result

Here we state our result informally. Formal results are stated in subsequent sections.
Theorem 1.1 (Informal). LetM be a Riemannian manifold of dimension d equipped with a retraction
Retr. Assume f : M→ R is twice continuously differentiable, and furthermore:

A1. f is lower bounded.

A2. The gradients of the pullbacks f ◦ Retrx uniformly satisfy a Lipschitz-type condition.

A3. The Hessians of the pullbacks f ◦ Retrx uniformly satisfy a Lipschitz-type condition.

A4. The retraction Retr uniformly satisfies a second-order condition.

Then, setting T = O((log d)4/ε2), PRGD visits several points with gradient smaller than ε and, with
high probability, at least two-thirds of those points are ε-second-order critical (Definition 3.1).

PRGD uses O((log d)4/ε2) gradient queries, and crucially no Hessian queries. The algorithm
requires knowledge of the Lipschitz constants defined below, which makes this a mostly theoretical
algorithm—but see Appendix D for explicit constants in the case of PCA.
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1.2 Other related work

Algorithms which efficiently escape saddle points can be classified into two families: first-order and
second-order methods. First-order methods only use function value and gradient information. SGD
and PGD are first-order methods. Second-order methods also access Hessian information. Newton’s
method, trust regions [24, 11] and adaptive cubic regularization [23, 7, 34] are second-order methods.

As noted above, Ge et al. [16] and Jin et al. [17] escape saddle points (in Euclidean space) by
exploiting noise in iterations. There has also been similar work for normalized gradient descent [20].
Expanding on [17], Jin et al. [19] give an accelerated PGD algorithm (PAGD) which reaches an
ε-second-order critical point of a non-convex function f with high probability in O((log d)6/ε7/4)
iterations. In [18], Jin et al. show that a stochastic version of PGD reaches an ε-second-order
critical point in O(d/ε4) stochastic gradient queries; only O(poly(log d)/ε4) queries are needed if
the stochastic gradients are well behaved. For an analysis of PGD under convex constraints, see [22].

There is another line of research, inspired by Langevin dynamics, in which judiciously scaled
Gaussian noise is added at every iteration. We note that although this differs from the first incarnation
of PGD in [17], this resembles a simplified version of PGD in [18]. Sang and Liu [27] develop
an algorithm (adaptive stochastic gradient Langevin dynamics, ASGLD), which provably reaches
an ε-second-order critical point in O(log d/ε4) with high probability. With full gradients, AGSLD
reaches an ε-second-order critical point in O(log d/ε2) queries with high probability.

One might hope that the noise inherent in vanilla SGD would help it escape saddle points without
noise injection. Daneshmand et al. [13] propose the correlated negative curvature assumption (CNC),
under which they prove that SGD reaches an ε-second-order critical point in O(ε−5) queries with
high probability. They also show that, under the CNC assumption, a variant of GD (in which iterates
are perturbed only by SGD steps) efficiently escapes saddle points. Importantly, these guarantees are
completely dimension-free.

A first-order method can include approximations of the Hessian (e.g., with a difference of gradients).
For example, Allen-Zhu’s Natasha 2 algorithm [8] uses first-order information (function value and
stochastic gradients) to search for directions of negative curvature of the Hessian. Natasha 2 reaches
an ε-second-order critical point in O(ε−13/4) iterations.

Many classical optimization algorithms have been generalized to optimization on manifolds, including
gradient descent, Newton’s method, trust regions and adaptive cubic regularization [15, 3, 1, 6, 11,
7, 9, 34]. Bonnabel [10] extends stochastic gradient descent to Riemannian manifolds and proves
that Riemannian SGD converges to critical points of the cost function. Zhang et al. [33] and Sato et
al. [28] both use variance reduction to speed up SGD on Riemannian manifolds.

2 Preliminaries: Optimization on manifolds

We review the key definitions and tools for optimization on manifolds. For more information,
see [3]. LetM be a d-dimensional Riemannian manifold: a real, smooth d-manifold equipped with a
Riemannian metric. We associate with each x ∈M a d-dimensional real vector space TxM, called
the tangent space at x. For embedded submanifolds of Rn, we often visualize the tangent space as
being tangent to the manifold at x. The Riemannian metric defines an inner product 〈·, ·〉x on the
tangent space TxM, with associated norm ‖·‖x. We denote these by 〈·, ·〉 and ‖·‖ when x is clear
from context. A vector in the tangent space is a tangent vector. The set of pairs (x, sx) for x ∈
M, sx ∈ TxM is called the tangent bundle TM. Define Bx,r(s) = {ṡ ∈ TxM : ‖ṡ− s‖x ≤ r}:
the closed ball of radius r centered at s ∈ TxM. We occasionally denote Bx,r(s) by Br(s) when x
is clear from context. Let Uniform(Bx,r(s)) denote the uniform distribution over the ball Bx,r(s).

The Riemannian gradient gradf(x) of a differentiable function f at x ∈ M is the unique vector
in TxM satisfying Df(x)[s] = 〈grad f(x), s〉x ∀s ∈ TxM, where Df(x)[s] is the directional
derivative of f at x along s. The Riemannian metric gives rise to a well-defined notion of derivative of
vector fields called the Riemannian (or Levi–Civita) connection∇. The Hessian of f is the derivative
of the gradient vector field: Hessf(x)[u] = ∇ugradf(x). The Hessian describes how the gradient
changes. Hessf(x) is a symmetric linear operator on TxM. If the manifold is a Euclidean space,
M = Rd, with the standard metric 〈x, y〉 = xT y, the Riemannian gradient gradf and Hessian
Hessf coincide with the standard gradient∇f and Hessian∇2f (mind the overloaded notation∇).
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As discussed in Section 1, the retraction is a mapping which allows us to move along the manifold
from a point x in the direction of a tangent vector s ∈ TxM. Formally:

Definition 2.1 (Retraction, from [3]). A retraction on a manifoldM is a smooth mapping Retr from
the tangent bundle TM toM satisfying properties 1 and 2 below. Let Retrx : TxM→M denote
the restriction of Retr to TxM.

1. Retrx(0x) = x, where 0x is the zero vector in TxM.

2. The differential of Retrx at 0x, DRetrx(0x), is the identity map.

(Our algorithm and theory only require Retr to be defined in balls of a fixed radius around the
origins of tangent spaces.) Recall these special retractions, which are good to keep in mind for
intuition: onM = Rd, we typically use Retrx(s) = x+ s, and on the unit sphere we typically use
Retrx(s) = (x+ s)/ ‖x+ s‖.
For x inM, define the pullback of f from the manifold to the tangent space by

f̂x = f ◦ Retrx : TxM→ R.

This is a real function on a vector space. Furthermore, for x ∈M and s ∈ TxM, let

Tx,s = DRetrx(s) : TxM→ TRetrx(s)M

denote the differential of Retrx at s (a linear operator). The gradient and Hessian of the pullback
admit the following nice expressions in terms of those of f , and the retraction.

Lemma 2.2 (Lemma 5.2 of [7]). For f : M → R twice continuously differentiable, x ∈ M and
s ∈ TxM, with T ∗x,s denoting the adjoint of Tx,s,

∇f̂x(s) = T ∗x,sgrad f(Retrx(s)), ∇2f̂x(s) = T ∗x,sHess f(Retrx(s))Tx,s +Ws, (5)

where Ws is a symmetric linear operator on TxM defined through polarization by

〈Ws[ṡ], ṡ〉 = 〈grad f(Retrx(s)), γ′′(0)〉 , (6)

with γ′′(0) ∈ TRetrx(s)M the intrinsic acceleration onM of γ(t) = Retrx(s+ tṡ) at t = 0.

The velocity of a curve γ : R→M is dγ
dt = γ′(t). The intrinsic acceleration γ′′ of γ is the covariant

derivative (induced by the Levi–Civita connection) of the velocity of γ: γ′′ = D
dtγ
′. WhenM is a

Riemannian submanifold of Rn, γ′′(t) does not necessarily coincide with d2γ
dt2 : in this case, γ′′(t) is

the orthogonal projection of d
2γ
dt2 onto Tγ(t)M.

3 PRGD efficiently escapes saddle points

We now precisely state the assumptions, the main result, and some important parts of the proof of the
main result, including the main obstacles faced in generalizing PGD to manifolds. A full proof of all
results is provided in the appendix.

3.1 Assumptions

The first assumption, namely, that f is lower bounded, ensures that there are points on the manifold
where the gradient is arbitrarily small.

Assumption 1. f is lower bounded: f(x) ≥ f∗ for all x ∈M.

Generalizing from the Euclidean case, we assume Lipschitz-type conditions on the gradients and
Hessians of the pullbacks f̂x = f ◦ Retrx. For the special case ofM = Rd and Retrx(s) = x+ s,
these assumptions hold if the gradient ∇f(·) and Hessian ∇2f(·) are each Lipschitz continuous,
as in [18, A1] (with the same constants). The Lipschitz-type assumptions below are similar to
assumption A2 of [7]. Notice that these assumptions involve both the cost function and the retraction:
this dependency is further discussed in [11, 7] for a similar setting.
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Assumption 2. There exist b1 > 0 and L > 0 such that ∀x ∈M and ∀s ∈ TxM with ‖s‖ ≤ b1,∥∥∥∇f̂x(s)−∇f̂x(0)
∥∥∥ ≤ L ‖s‖ .

Assumption 3. There exist b2 > 0 and ρ > 0 such that ∀x ∈M and ∀s ∈ TxM with ‖s‖ ≤ b2,∥∥∥∇2f̂x(s)−∇2f̂x(0)
∥∥∥ ≤ ρ ‖s‖ ,

where on the left-hand side we use the operator norm.

More precisely, we only need these assumptions to hold at the iterates x0, x1, . . . Let b = min{b1, b2}
(to reduce the number of parameters in Algorithm 1). The next assumption requires the chosen
retraction to be well behaved, in the sense that the (intrinsic) acceleration of curves γx,s on the
manifold, defined below, must remain bounded—compare with Lemma 2.2.
Assumption 4. There exists β ≥ 0 such that, for all x ∈M and s ∈ TxM satisfying ‖s‖ = 1, the
curve γx,s(t) = Retrx(ts) has initial acceleration bounded by β:

∥∥γ′′x,s(0)
∥∥ ≤ β.

If Assumption 4 holds with β = 0, Retr is said to be second order [3, p107]. Second-order
retractions include the so-called exponential map and the standard retractions on Rd and the unit
sphere mentioned earlier—see [5] for a large class of such retractions on relevant manifolds.
Definition 3.1. A point x ∈M is an ε-second-order critical point of the twice-differentiable function
f : M→ R satisfying Assumption 3 if

‖grad f(x)‖ ≤ ε, and λmin(Hess f(x)) ≥ −√ρε, (7)

where λmin(H) denotes the smallest eigenvalue of the symmetric operator H .

For compact manifolds, all of these assumptions hold (all proofs are in the appendix):
Lemma 3.2. LetM be a compact Riemannian manifold equipped with a retraction Retr. Assume
f : M → R is three times continuously differentiable. Pick an arbitrary b > 0. Then, there exist
f∗, L > 0, ρ > 0 and β ≥ 0 such that Assumptions 1, 2, 3 and 4 are satisfied.

3.2 Main results

Recall that PRGD (Algorithm 1) works as follows. If ‖grad f(xt)‖ > ε, perform a Riemannian
gradient descent step, xt+1 = Retrxt(−ηgrad f(xt)). If ‖grad f(xt)‖ ≤ ε, then perturb, i.e.,
sample ξ ∼ Uniform(Bxt,r(0)) and let s0 = ηξ. After this perturbation, remain in the tangent space
TxtM and do (at most) T gradient descent steps on the pullback f̂xt , starting from s0. We denote
this sequence of T tangent space steps by {sj}j≥0. This sequence of gradient descent steps is
performed by TANGENTSPACESTEPS: a deterministic procedure in the (linear) tangent space.

One difficulty with this approach is that, under our assumptions, for some x = xt,∇f̂x may not be
Lipschitz continuous in all of TxM. However, it is easy to show that∇f̂x is Lipschitz continuous
in the ball of radius b by compactness, uniformly in x. This is why we limit our algorithm to
these balls. If the sequence of iterates {sj}j≥0 escapes the ball Bx,b(0) ⊂ TxM for some sj ,
TANGENTSPACESTEPS returns the point between sj−1 and sj on the boundary of that ball.

Following [18], we use a set of carefully balanced parameters. Parameters ε and δ are user defined.
The claim in Theorem 3.4 below holds with probability at least 1 − δ. Assumption 1 provides
parameter f∗. Assumptions 2 and 3 provide parameters L, ρ and b = min{b1, b2}. As announced,
the latter two assumptions further ensure Lipschitz continuity of the gradients of the pullbacks in
balls of the tangent spaces, uniformly: this defines the parameter `, as prescribed below.
Lemma 3.3. Under Assumptions 2 and 3, there exists ` ∈ [L,L+ ρb] such that, for all x ∈M, the
gradient of the pullback,∇f̂x, is `-Lipschitz continuous in the ball Bx,b(0).

Then, choose χ > 1/4 (preferably small) such that

χ ≥ 4 log2

(
231

`2
√
d(f(x0)− f∗)
δ
√
ρε5/2

)
, (8)
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and set algorithm parameters

η =
1

`
, r =

ε

400χ3
, T =

`χ
√
ρε
, (9)

where χ is such that T is an integer. We also use this notation in the proofs:

F =
1

50χ3

√
ε3

ρ
, L =

1

4χ

√
ε

ρ
. (10)

Theorem 3.4. Assume f satisfies Assumptions 1, 2 and 3. For any x0 ∈ M, with 0 < ε ≤ b2ρ,
L ≥ √ρε, ε3/2 ≤ 3

√
ρ (f(x0)− f∗) and δ ∈ (0, 1), choose η, r,T as in (9). Then, setting

T = 8 max

{
T

3
,

(f(x0)− f∗)T
F

,
f(x0)− f∗

ηε2

}
= O

(
`(f(x0)− f∗)

ε2
(log d)4

)
, (11)

PRGD(x0, η, r,T , ε, T, b) visits at least two iterates xt ∈ M satisfying ‖grad f(xt)‖ ≤ ε. With
probability at least 1− δ, at least two-thirds of those iterates satisfy

‖grad f(xt)‖ ≤ ε and λmin(∇2f̂xt(0)) ≥ −√ρε.

The algorithm uses at most T + T ≤ 2T gradient queries (and no function or Hessian queries).

By Assumption 4 and Lemma 2.2,∇2f̂xt(0) is close to Hess f(xt), which allows us to conclude:

Corollary 3.5. Assume f satisfies Assumptions 1, 2, 3 and 4. For an arbitrary x0 ∈ M, with
0 < ε ≤ min{ρ/β2, b2ρ}, L ≥ √ρε, ε3/2 ≤ 3

√
ρ (f(x0)− f∗) and δ ∈ (0, 1), choose η, r,T as

in (9). Then, setting T as in (11), PRGD(x0, η, r,T , ε, T, b) visits at least two iterates xt ∈ M
satisfying ‖grad f(xt)‖ ≤ ε. With probability at least 1− δ, at least two-thirds of those iterates are
(4ε)-second-order points. If β = 0 (that is, the retraction is second order), then the same claim holds
for ε-second-order points instead of 4ε. The algorithm uses at most T + T ≤ 2T gradient queries.

AssumeM = Rd with standard inner product and standard retraction Retrx(s) = x+ s. As in [18],
assume f : Rd → R is lower bounded,∇f is L-Lipschitz in Rd, and∇2f is ρ-Lipschitz in Rd. Then,
Assumptions 1, 2 and 3 hold with b = +∞. Furthermore, Assumption 4 holds with β = 0 so that
∇2f̂x(0) = Hess f(x) = ∇2f(x) (Lemma 2.2). For all x ∈ M, ∇f̂x(s) has Lipschitz constant
` = L since f̂x(s) = f(x + s). Therefore, using b = +∞, ` = L and choosing η, r,T as in (9),
PRGD reduces to PGD, and Theorem 3.4 recovers the result of Jin et al. [18]: this confirms that the
present result is a bona fide generalization.

For the important special case of compact manifolds, Lemmas 3.2 and 3.3 yield:

Corollary 3.6. AssumeM is a compact Riemannian manifold equipped with a retraction Retr, and
f : M→ R is three times continuously differentiable. Pick an arbitrary b > 0. Then, Assumptions 1,
2, 3, 4 hold for some L > 0, ρ > 0, β ≥ 0, so that Corollary 3.5 applies with some ` ∈ [L,L+ ρb].

Remark 3.7. PRGD, like PGD (Algorithm 4 in [18]), does not specify which iterate is an ε-second-
order critical point. However, it is straightforward to include a termination condition in PRGD
which halts the algorithm and returns a suspected ε-second-order critical point. Indeed, Jin et al.
include such a termination condition in their original PGD algorithm [17], which here would go
as follows: After performing a perturbation and T (tangent space) steps in TxtM, return xt if
f̂xt(sT ) − f̂xt(0) > −fthres, i.e., the function value does not decrease enough. The termination
condition requires a threshold fthres which is balanced like the other parameters of PRGD in (9).

3.3 Main proof ideas

Theorem 3.4 follows from the following two lemmas which we prove in the appendix. These lemmas
state that, in each round of the while-loop in PRGD, if xt is not at an ε-second-order critical point,
PRGD makes progress, that is, decreases the cost function value (the first lemma is deterministic, the
second one is probabilistic). Yet, the value of f on the iterates can only decrease so much because
f is bounded below by f∗. Therefore, the probability that PRGD does not visit an ε-second-order
critical point is low.
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Lemma 3.8. Under Assumptions 2 and 3, set η = 1/` for some ` ≥ L. If x ∈ M satisfies
‖grad f(x)‖ > ε with ε ≤ b2ρ and L ≥ √ρε, then,

f(TANGENTSPACESTEPS(x, 0, η, b, 1))− f(x) ≤ −ηε2/2.

Lemma 3.9. Under Assumptions 2 and 3, let x ∈ M satisfy both ‖grad f(x)‖ ≤ ε and
λmin(∇2f̂x(0)) ≤ −√ρε with ε ≤ b2ρ and L ≥ √ρε. Set η, r,T ,F as in (9) and (10). Let
s0 = ηξ with ξ ∼ Uniform(Bx,r(0)). Then,

P
[
f(TANGENTSPACESTEPS(x, s0, η, b,T ))− f(x) ≤ −F/2

]
≥ 1− `

√
d

√
ρε

210−χ/2.

Lemma 3.8 states that we are guaranteed to make progress if the gradient is large. This follows from
the sufficient decrease of RGD steps. Lemma 3.9 states that, with perturbation, GD on the pullback
escapes a saddle point with high probability. Lemma 3.9 is analogous to Lemma 11 in [18].

Let Xstuck be the set of tangent vectors s0 in Bx,ηr(0) for which GD on the pullback starting from s0
does not escape the saddle point, i.e., the function value does not decrease enough after T iterations.
Following Jin et al.’s analysis [18], we bound the width of this “stuck region” (in the direction of the
eigenvector e1 associated with the minimum eigenvalue of the Hessian of the pullback, ∇2f̂x(0)).
Like Jin et al., we do this with a coupling argument, showing that given two GD sequences with
starting points sufficiently far apart, one of these sequences must escape. This is formalized in
Lemma C.4 of the appendix. A crucial observation to prove Lemma C.4 is that, if the function value
of GD iterates does not decrease much, then these iterates must be localized; this is formalized in
Lemma C.3 of the appendix, which Jin et al. call “improve or localize.”

We stress that the stuck region concept, coupling argument, improve or local paradigm, and details of
the analysis are due to Jin et al. [18]: our main contribution is to show a clean way to generalize the
algorithm to manifolds in such a way that the analysis extends with little friction. We believe that the
general idea of separating iterations between the manifold and the tangent spaces to achieve different
objectives may prove useful to generalize other algorithms as well.

4 About the role of curvature of the manifold

As pointed out in the introduction, concurrently with our work, Sun et al. [31] have proposed another
generalization of PGD to manifolds. Their algorithm executes all steps on the manifold directly (as
opposed to our own, which makes certain steps in the tangent spaces), and moves around the manifold
using the exponential map. To carry out their analysis, Sun et al. assume f is regular in the following
way. The Riemannian gradient is Lipschitz continuous in a Riemannian sense, namely,

∀x, y ∈M, ‖grad f(y)− Γyxgrad f(x)‖ ≤ Ldist(x, y),

where Γyx : TxM→ TyM denotes parallel transport from x to y along any minimizing geodesic,
and dist is the Riemannian distance. These notions are well defined if M is a connected, com-
plete manifold. Similarly, they assume the Riemannian Hessian of f is Lipschitz continuous in a
Riemannian sense:

∀x, y ∈M, ‖Hess f(y)− Γyx ◦Hess f(x) ◦ Γxy‖ ≤ ρdist(x, y),

in the operator norm. Using (and improving) sophisticated inequalities from Riemannian geometry,
they map the perturbed sequences back to tangent spaces for analysis, where they run an adapted
version of Jin et al.’s argument. In so doing, it appears to be crucial to use the exponential map, owing
to its favorable interplay with parallel transport along geodesics and Riemannian distance, providing
a good fit with the regularity conditions above.

As they map sequences back from the manifold to a common tangent space through the inverse of
the exponential map, the Riemannian curvature of the manifold comes into play. Consequently, they
assumeM has bounded sectional curvature (both from below and from above), and these bounds on
curvature come up in their final complexity result: constants degrade if the manifold is more curved.

Since Riemannian curvature does not occur in our own complexity result for PRGD, it is legitimate
to ask: is curvature supposed to occur? If so, it must be hidden in our analysis, for example in the
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regularity assumptions we make, which are expressed in terms of pullbacks rather than with parallel
transports. And indeed, in several attempts to deduce our own assumptions from those of Sun et
al., invariably, we had to degrade L and ρ as a function of curvature—minding that these are only
bounds. On the other hand, under the assumptions of Sun et al., one can deduce that the regularity
assumptions required in [11, 7] for the analysis of Riemannian gradient descent, trust regions and
adaptive regularization by cubics hold with the exponential map, leading to curvature-free complexity
bounds for all three algorithms. Thus, it is not clear that curvature should occur.

We believe this poses an interesting question regarding the complexity of optimization on manifolds:
to what extent should it be influenced by curvature of the manifold? We intend to study this.

5 Perspectives

To perform PGD (Algorithm 4 of [18]), one must know the step size η, perturbation radius r and the
number of steps T to perform after perturbation. These parameters are carefully balanced, and their
values depend on the smoothness parameters L and ρ. In most situations, we do not know L or ρ
(though see Appendix D for PCA). An algorithm which does not require knowledge of L or ρ but
still has the same guarantees as PGD would be useful. However, that certain regularity parameters
must be known seems inevitable, in particular for the Hessian’s ρ. Indeed, the main theorems make
statements about the spectrum of the Hessian, yet the algorithm is not allowed to query the Hessian.

GD equipped with a backtracking line-search method achieves an ε-first-order critical point in
O(ε−2) gradient queries without knowledge of the Lipschitz constant L. At each iterate xt of GD,
backtracking line-search essentially uses function and gradient queries to estimate the gradient
Lipschitz parameter near xt. Perhaps PGD can perform some kind of line-search to locally estimate
L and ρ. We note that if ρ is known and we use line-search-type methods to estimate L, there are still
difficulties applying Jin et al.’s coupling argument.

Jin et al. [18] develop a stochastic version of PGD known as PSGD. Instead of perturbing when the
gradient is small and performing T GD steps, PSGD simply performs a stochastic gradient step
and perturbation at each step. Distinguishing between manifold steps and tangent space steps, we
suspect it is possible to develop a Riemannian version of perturbed stochastic gradient descent which
achieves an ε-second-order critical point in O(d/ε4) stochastic gradient queries, like PSGD. This
Riemannian version performs a certain number of steps in the tangent space, like PRGD.

More broadly, we anticipate that it should be possible to extend several classical optimization methods
from the Euclidean case to the Riemannian case through this approach of running many steps in
a given tangent space before retracting. This ought to be particularly beneficial for algorithms
whose computations or analysis rely intimately on linear structures, such as for coordinate descent
algorithms, certain parallelized schemes, and possibly also accelerated schemes. In preparing the
final version of this paper, we found that this idea is also the subject of another paper at NeurIPS
2019, where it is called dynamic trivialization [21].
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Appendices
A Proof that assumptions hold for compact manifolds

Proof of Lemma 3.2. SinceM is compact and f is continuous, f is lower bounded by some f∗.

Recall f̂x(s) = f ◦ Retrx(s). Define φ, ψ : TM→ R using operator norms by

φ(x, s) =
∥∥∥∇2f̂x(s)

∥∥∥ =
∥∥∇2

s(f ◦ Retr(x, s))
∥∥ ,

ψ(x, s) =
∥∥∥∇3f̂x(s)

∥∥∥ =
∥∥∇3

s(f ◦ Retr(x, s))
∥∥ .

Since f is three times continuously differentiable and Retr is smooth, φ and ψ are each continuous
on the tangent bundle TM. The set

Sb = {(x, s) : x ∈M, s ∈ TxM with ‖s‖ ≤ b}

is a compact subset of the tangent bundle TM sinceM is compact. Thus, we may define

L = max
(x,s)∈Sb

φ(x, s), and ρ = max
(x,s)∈Sb

ψ(x, s),

so that
∥∥∥∇2f̂x(s)

∥∥∥ ≤ L and
∥∥∥∇3f̂x(s)

∥∥∥ ≤ ρ for all x ∈M and s ∈ Bx,b(0). From here, it is clear
that Assumptions 2 and 3 are satisfied, for we can just integrate as in eq. (13) below.

Using the notation from Assumption 4, the map υ : TM → R given by υ(x, s) =
∥∥γ′′x,s(0)

∥∥ is
continuous since Retr is smooth. The set

Vb = {(x, s) : x ∈M, s ∈ TxM with ‖s‖ = 1}

is also compact in TM. Hence, β = max(x,s)∈Vb υ(x, s) is a valid choice.

B Proofs for the main results

The proof follows that of Jin et al. [18] closely, reusing many of their key lemmas: we repeat some
here for convenience, while highlighting the specificities of the manifold case. We consider it a
contribution of this paper that, as a result of our distinction between manifold and tangent space steps,
there is limited extra friction, despite the significantly extended generality. In this section and the
next, all parameters are chosen as in (9) and (10).

We assume ε ≤ b2ρ. We also assume L ≥ √ρε because otherwise we can reach a point satisfying
‖grad f(x)‖ ≤ ε and λmin(∇2f̂x(0)) ≥ −√ρε simply using RGD. Indeed, RGD always finds
a point x ∈ M satisfying ‖grad f(x)‖ ≤ ε, and Assumption 2 implies ‖∇2f̂x(0)‖ ≤ L so that
λmin(∇2f̂x(0)) ≥ −L. Thus, if L <

√
ρε, every point x ∈M satisfies λmin(∇2f̂x(0)) ≥ −√ρε.

We want to prove Theorem 3.4. This theorem follows from the following two lemmas (repeated
from Lemmas 3.8 and 3.9 for convenience), which we prove in Appendix C below. Lemma B.1 is
deterministic: it is a statement about the cost decrease produced by a single Riemannian gradient
step, with bounded step size. Lemma B.2 is probabilistic, and is analogous to Lemma 11 in [18].
Lemma B.1. Under Assumptions 2 and 3, set η = 1/` for some ` ≥ L. If x ∈ M satisfies
‖grad f(x)‖ > ε with ε ≤ b2ρ and L ≥ √ρε, then,

f(TANGENTSPACESTEPS(x, 0, η, b, 1))− f(x) ≤ −ηε2/2.

Lemma B.2. Under Assumptions 2 and 3, let x ∈ M satisfy both ‖grad f(x)‖ ≤ ε and
λmin(∇2f̂x(0)) ≤ −√ρε with ε ≤ b2ρ and L ≥ √ρε. Set η, r,T ,F as in (9) and (10). Let
s0 = ηξ with ξ ∼ Uniform(Bx,r(0)). Then,

P
[
f(TANGENTSPACESTEPS(x, s0, η, b,T ))− f(x) ≤ −F/2

]
≥ 1− `

√
d

√
ρε

210−χ/2.
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Proof of Theorem 3.4. This proof is similar to Jin et al.’s proof of Theorem 9 in [18].

Recall that we set

T = 8 max

{
T

3
,

(f(x0)− f∗)T
F

,
f(x0)− f∗

ηε2

}
. (12)

PRGD performs two types of steps: (1) if ‖grad f(xt)‖ > ε, an RGD step on the manifold, and (2) if
‖grad f(xt)‖ ≤ ε, a perturbation in the tangent space followed by GD steps in the tangent space.

There are at most T/4 iterates xt ∈ M satisfying ‖grad f(xt)‖ > ε (i.e., iterates where an RGD
step is performed), for otherwise Lemma B.1 and the definition of T (12) would imply f(xT ) <
f(x0)− Tηε2/8 ≤ f∗, which contradicts Assumption 1.

The variable t in Algorithm 1 is an upper bound on the number of gradient queries issued so far.
For each RGD step on the manifold, t increases by exactly 1. PRGD does not terminate before t
exceeds T , and for every perturbation the counter increases by exactly T . Therefore, there are at least
3T/(4T ) iterates xt ∈M satisfying ‖grad f(xt)‖ ≤ ε. By the definition of T (12), 3T/(4T ) ≥ 2.

Suppose PRGD visits more than T/(4T ) points xt ∈ M satisfying ‖grad f(xt)‖ ≤ ε and
λmin(∇2f̂xt(0)) ≤ −√ρε. Each of these iterates xt is followed by a perturbation and at most T tan-
gent space steps {sj}. For at least one such xt, the sequence of tangent space steps does not escape the
saddle point (that is, f(xt+T )−f(xt) > −F/2), for otherwise f(xT ) < f(x0)−TF/(8T ) ≤ f∗
by the definition of T (12). Yet, by Lemma B.2 and a union bound, the probability that one or more
of these sequences does not escape is at most δ. Indeed, factoring out the third term in the max,

T =
8`(f(x0)− f∗)

ε2
max

{
1

3

χ
√
ρε

ε2

(f(x0)− f∗)
, 50χ4, 1

}
≤ 8`(f(x0)− f∗)

ε2
max

{
χ, 50χ4, 1

}
= O

(
`(f(x0)− f∗)

ε2
χ4

)
,

where we used ε3/2 ≤ 3
√
ρ (f(x0)− f∗). Now using

max
{
χ, 50χ4, 1

}
≤ 218+χ/4

for all χ > 1/4, and χ ≥ 4 log2

(
231 `

2
√
d(f(x0)−f∗)
δ
√
ρε5/2

)
, we find

T · `
√
d

√
ρε

210−χ/2 ≤ `2
√
d

√
ρε

(f(x0)− f∗)
ε2

231−χ/4 ≤ δ,

as announced.

Hence, with probability at least 1 − δ, PRGD visits at most T/(4T ) points xt satisfying
‖grad f(xt)‖ ≤ ε and λmin(∇2f̂xt(0)) ≤ −√ρε. Using that there are at least 3T/(4T ) iter-
ates xt ∈ M with ‖grad f(xt)‖ ≤ ε, we conclude that at least two-thirds of the iterates xt ∈ M
with ‖grad f(xt)‖ ≤ ε also satisfy λmin(∇2f̂xt(0)) ≥ −√ρε, with probability at least 1− δ.

Corollary 3.5 follows directly from Theorem 3.4 and the following lemma.
Lemma B.3. For some ρ > 0 (which would typically come from Assumption 3), under Assump-
tion 4 on the retraction, let x ∈ M satisfy ‖grad f(x)‖ ≤ ε and λmin(∇2f̂x(0)) ≥ −√ρε. Then,
λmin(Hess f(x)) ≥ −√ρε− βε. In particular, if ε ≤ ρ/β2, then λmin(Hess f(x)) ≥ −

√
4ρε.

Proof. Considering s = 0 in Lemma 2.2, we may use Retrx(0) = x and that Tx,0 is the identity (as
per Definition 2.1) to get∇2f̂x(0) = Hess f(x) +W0, where

∀ṡ ∈ TxM with ‖ṡ‖ = 1, 〈W0[ṡ], ṡ〉 ≤
∥∥γ′′x,ṡ(0)

∥∥ ‖grad f(x)‖ ≤ βε.

Thus, ‖W0‖ ≤ βε and we find λmin(Hess f(x)) ≥ −√ρε−βε. For the last part, use β ≤
√
ρ/ε.

Corollary 3.6 follows directly from Corollary 3.5 and Lemma 3.2.
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C Proofs of key lemmas

The goal of this section is to prove Lemmas B.1 and B.2. All proofs deal with linear spaces, not
manifolds. The key ideas are due to Jin et al. [18]. The following lemma is needed because to
apply Jin et al.’s analysis we need the pullbacks not only to satisfy the restricted Lipschitz condition,
Assumption 2, but also to have Lipschitz continuous gradient at least, uniformly in tangent space
balls of fixed radius. The lemma below implies Lemma 3.3.
Lemma C.1. Let f satisfy Assumptions 2 and 3, and let ` = L+ ρb. For all x ∈ M, it holds that
∇f̂x is `-Lipschitz continuous in the ball Bx,b(0) ⊂ TxM.

Proof. By Assumption 2,
∥∥∥∇2f̂x(0)

∥∥∥ ≤ L. Hence, by Assumption 3, for all s ∈ Bx,b(0),∥∥∥∇2f̂x(s)
∥∥∥ ≤ ∥∥∥∇2f̂x(0)

∥∥∥+
∥∥∥∇2f̂x(s)−∇2f̂x(0)

∥∥∥ ≤ L+ ρ ‖s‖ ≤ L+ ρb = `.

Let s1, s2 ∈ Bx,b(0) be arbitrary. Then indeed,∥∥∥∇f̂x(s2)−∇f̂x(s1)
∥∥∥ =

∥∥∥∥∫ 1

0

∇2f̂x(s1 + (s2 − s1)τ)[s2 − s1]dτ

∥∥∥∥ ≤ ` ‖s2 − s1‖ , (13)

where we used that the line segment from s1 to s2 is contained in Bx,b(0).

Together with the one above, the following standard lemma allows us to establish the sufficient
decrease of f̂x in Bx,b(0) upon taking a gradient step in the tangent space.

Lemma C.2. Let ∇f̂x be `-Lipschitz continuous along the line segment connecting sj to sj+1,
related by sj+1 = sj − αη∇f̂x(sj) with η = 1/` and α ∈ [0, 1]. Then,

f̂x(sj+1)− f̂x(sj) ≤ −
αη

2

∥∥∥∇f̂x(sj)
∥∥∥2 .

Proof. It is a standard consequence of Lipschitz continuity of ∇f̂x along the line segment τ 7→
(1− τ)sj + τsj+1 for τ ∈ [0, 1] that

f̂x(sj+1) ≤ f̂x(sj) +
〈
∇f̂x(sj), sj+1 − sj

〉
+
`

2
‖sj+1 − sj‖2 .

Plugging in sj+1 − sj = −αη∇f̂x(sj), we get

f̂x(sj+1) ≤ f̂x(sj) +

[
−αη +

`α2η2

2

] ∥∥∥∇f̂x(sj)
∥∥∥2 .

The coefficient between brackets is further equal to
(
−1 + α

2

)
αη, which is at most −αη/2.

We are now ready to prove Lemma B.1.

Proof of Lemma B.1. The call to TANGENTSPACESTEPS(x, 0, η, b, 1) produces a point Retrx(s1),
with s1 = s0 − αη∇f̂x(s0), where s0 = 0, α ∈ [0, 1] and ‖s1‖ ≤ b. Owing to Assumption 2, we
know that∇f̂x is L-Lipschitz continuous along the line segment connecting s0 to s1. Since ` ≥ L, it
is a fortiori `-Lipschitz continuous along that line segment: Lemma C.2 applies and yields

f(Retrx(s1)) = f̂x(s1) ≤ f̂x(s0)− αη

2

∥∥∥∇f̂x(s0)
∥∥∥2 = f(x)− αη

2

∥∥∥∇f̂x(0)
∥∥∥2 .

If α = 1, since
∥∥∥∇f̂x(0)

∥∥∥ = ‖grad f(x)‖ > ε, we are done. Owing to how TANGENTSPACESTEPS

works, if α < 1, then it must be that ‖αη∇f̂x(0)‖ = b, so that the inequality above yields

f(Retrx(s1)) ≤ f(x)− b

2

∥∥∥∇f̂x(0)
∥∥∥ ≤ f(x)− bε

2
.
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Using ε ≤ b2ρ and ` ≥ L ≥ √ρε,

ηε =
ε

`
≤
√
b2ρε

`
=

√
ρε

`
b ≤ b.

Hence, f(Retrx(s1)) ≤ f(x) − ηε2/2, as desired. (As a side note: Assumption 3 is not truly
necessary here; it is only convenient so that we can use the same definitions of ρ, b and ` as in other
parts of the paper.)

Lemma C.3 is Jin et al.’s “improve or localize lemma” [18], with a tweak for variable step sizes. The
lemma states that if the function value does not decrease much, then the iterates are localized.
Lemma C.3. Fix j ≥ 0, x ∈M and s0 ∈ TxM. For all 0 ≤ i ≤ j − 1, assume 0 ≤ ηi ≤ η = 1/`,
si+1 = si − ηi∇f̂x(si) and ∇f̂x is `-Lipschitz continuous along the line segment connecting si to
si+1. Then,

‖sj − s0‖ ≤
√

2ηj
(
f̂x(s0)− f̂x(sj)

)
.

Proof. Using a telescoping sum, triangle inequality, Cauchy–Schwarz and (to get to the last line)
Lemma C.2, we get:

‖sj − s0‖ =

∥∥∥∥∥
j−1∑
i=0

si+1 − si

∥∥∥∥∥ =

∥∥∥∥∥
j−1∑
i=0

−ηi∇f̂x(si)

∥∥∥∥∥ ≤
j−1∑
i=0

√
ηi

∥∥∥√ηi∇f̂x(si)
∥∥∥

≤

√√√√( j−1∑
i=0

ηi

∥∥∥∇f̂x(si)
∥∥∥2)( j−1∑

i=0

ηi

)
≤

√√√√2ηj

( j−1∑
i=0

ηi
2

∥∥∥∇f̂x(si)
∥∥∥2)

≤

√√√√2ηj

( j−1∑
i=0

f̂x(si)− f̂x(si+1)

)
=

√
2ηj
(
f̂x(s0)− f̂x(sj)

)
.

Lemma C.4 below and its proof are very similar to Jin et al.’s Lemma 13 and its proof [18], except for
a modification since ∇f̂x is only Lipschitz continuous in a ball. This deterministic lemma formalizes
the coupling sequence argument: if the Hessian of the pullback has a negative eigenvalue which
is large in magnitude, upon initializing the tangent space steps at two appropriately chosen points
s0, s

′
0, with certainty, one of them leads to significant decrease in the cost function. As usual, we use

parameters η, r,T as in (9) and F ,L as in (10).

Lemma C.4. Under Assumptions 2 and 3, let x ∈ M be such that λmin(∇2f̂x(0)) ≤ −√ρε, with
ε ≤ b2ρ and L ≥ √ρε. Let s0, s

′
0 ∈ TxM be such that

1. ‖s0‖ , ‖s′0‖ ≤ ηr, and

2. s0 − s′0 = ηr0e1, where e1 is an eigenvector of unit norm associated with the minimum
eigenvalue of∇2f̂x(0), and r0 > ω = 22−χ`L .

Let sT be defined by running TANGENTSPACESTEPS(x, s0, η, b,T ) (see Algorithm 1). Let s′T be
similarly defined by running TANGENTSPACESTEPS(x, s′0, η, b,T ). Then,

min
{
f̂x(sT )− f̂x(s0), f̂x(s′T )− f̂x(s′0)

}
≤ −F .

Proof. First, note that both sequences are initialized in the interior of the ball of radius b. Indeed,
using ` ≥ L,L ≥ √ρε, ε ≤ b2ρ and χ > 1/4,

ηr =
1

`

ε

400χ3
<

ε

L

64

400
= b

√
ρε

L2

ε

b2ρ

64

100
≤ b 64

100
< b. (14)

The proof is by contradiction: assume

min
{
f̂x(sT )− f̂x(s0), f̂x(s′T )− f̂x(s′0)

}
> −F .
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Further assume, for the sake of contradiction, that one of the sequences {sj}j≤T , {s′j}j≤T (defined
in TANGENTSPACESTEPS) escapes the interior of the ball Bx,b(0). Without loss of generality, as-
sume {sj}j≤T escapes. Let j ≤ T − 1 be the minimum integer for which ‖sj+1‖ ≥ b. Then,
TANGENTSPACESTEPS(x, s0, η, b,T ) terminates with sj − αη∇f̂x(sj) for some α ∈ (0, 1] satisfy-

ing b =
∥∥∥sj − αη∇f̂x(sj)

∥∥∥. Using Lemma C.3, ` ≥ L ≥ √ρε and χ > 1
4 ,

b =
∥∥∥sj − αη∇f̂x(sj)

∥∥∥ ≤ ∥∥∥sj − αη∇f̂x(sj)− s0
∥∥∥+ ‖s0‖ ≤

√
2η(j + 1)F + ηr

≤
√

2ηT F + ηr ≤
√

ε

25χ2ρ
+

1

400χ3

√
ε

ρ
≤
(

1

5χ
+

1

400χ3

)√
ε

ρ
≤ 1

4χ

√
ε

ρ
= L .

Since ε ≤ b2ρ, we know that L < b, which shows a contradiction. Thus, neither of the sequences
{sj}j≤T , {s′j}j≤T leave the interior of Bx,b(0). That is, sj+1 = sj − η∇f̂x(sj) and ‖sj+1‖ < b
for j = 0, 1, . . . ,T − 1, and similarly for {s′j}j≤T .

From here, we proceed exactly as in Lemma 13 of [18]. By Lemma C.3, for all j ≤ T ,

max
{
‖sj‖ ,

∥∥s′j∥∥} ≤ max
{
‖sj − s0‖ ,

∥∥s′j − s′0∥∥}+ ηr ≤
√

2ηT F + ηr ≤ L . (15)

Let ŝj = sj − s′j andH = ∇2f̂x(0). Then,

ŝj+1 = ŝj −
(
η∇f̂x(sj)− η∇f̂x(s′j)

)
= ŝj − η

∫ 1

0

∇2f̂x
(
s′j + θ(sj − s′j)

)
[sj − s′j ]dθ

= (I − ηH)ŝj − η∆j ŝj ,

where ∆j =
∫ 1

0

(
∇2f̂x

(
s′j + θ(sj − s′j)

)
−H

)
dθ. By Assumption 3,

‖∆j‖ ≤
∫ 1

0

ρ
∥∥s′j + θ(sj − s′j)

∥∥ dθ ≤ ∫ 1

0

ρmax{‖sj‖ ,
∥∥s′j∥∥}dθ ≤ ρL .

This will be useful momentarily. It is easy to check by induction that

ŝj+1 = p(j + 1)− q(j + 1),

where p(0) = ŝ0, q(0) = 0, and

p(j + 1) = (I − ηH)j+1ŝ0, and q(j + 1) = η

j∑
i=0

(I − ηH)j−i∆iŝi.

We use induction to show that ‖q(j)‖ ≤ ‖p(j)‖ /2. The claim is clearly true for j = 0. Suppose
the claim is true for all i ≤ j. We prove the claim for j + 1. Let −γ = λmin(∇2f̂x(0)). Using
ŝ0 = ηr0e1, notice in particular that

p(j) = (I − ηH)jηr0e1 = (1 + ηγ)jηr0e1,

so that the norm of p(j) grows with j: ‖p(j)‖ = (1 + ηγ)jηr0. Using the induction hypothesis, for
all i ≤ j we have:

‖ŝi‖ ≤ ‖p(i)‖+ ‖q(i)‖ ≤ 3

2
‖p(i)‖ ≤ 2(1 + ηγ)iηr0.

Furthermore, sinceH � LI � `I , it follows that I − ηH � 0. As a result, ‖I − ηH‖ = λmax(I −
ηH) = 1 + ηγ. Therefore, also using 2ηρL T = 1/2 in the last step,

‖q(j + 1)‖ =

∥∥∥∥∥η
j∑
i=0

(I − ηH)j−i∆iŝi

∥∥∥∥∥ ≤ ηρL
j∑
i=0

∥∥(I − ηH)j−i
∥∥ ‖ŝi‖

≤ 2ηρL

j∑
i=0

(1 + ηγ)j−i(1 + ηγ)iηr0

≤ 2ηρL T (1 + ηγ)jηr0 = 2ηρL T ‖p(j)‖ ≤ ‖p(j + 1)‖ /2,
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So we have proven ‖q(j)‖ ≤ ‖p(j)‖ /2 for all j. Therefore, using the definition of r0 in the last step,

max{‖sT ‖ , ‖s′T ‖} ≥ (‖sT ‖+ ‖s′T ‖)/2 ≥ ‖ŝT ‖ /2 ≥ (‖p(T )‖ − ‖q(T )‖)/2
≥ ‖p(T )‖ /4 = (1 + ηγ)T ηr0/4 ≥ 2χ−2ηr0 > L ,

which contradicts (15). In the second to last step, we used γ ≥ √ρε and
√
ρε ≤ ` so that

1

χ
log2

(
(1 + ηγ)T

)
≥ T

χ
log2

(
1 +

√
ρε

`

)
=

T

χ
log2

(
1 +

χ

T

)
≥ 1,

since 1
α log2(1 + α) ≥ 1 for all α ∈ [0, 1]. Except for the initial part, this proof is due to Jin et

al. [18].

We are now ready to prove Lemma B.2. This proof is completely due to Jin et al. [18]: we only
somewhat modify how the proof is presented.

Proof of Lemma B.2. Recall that ηr < b (14), and define the stuck region

Xstuck =
{
s ∈ Bx,ηr(0) : f(TANGENTSPACESTEPS(x, s, η, b,T ))− f(x) > −F

}
.

Running the tangent space steps with s0 in that set does not yield sufficient improvement of the cost
function despite the fact that the Hessian has a negative eigenvalue with large magnitude, hence the
name. We aim to show that this set has a small volume, so that it is unlikely to encounter it by random
chance.

Let Se1 be the subspace of TxM orthogonal to e1. Given a ∈ Se1 ∩Bx,ηr(0), let `a denote the line
in TxM parallel to e1 passing through a. Then, with 1 denoting the indicator function,

Vol(Xstuck) =

∫
TxM

1Xstuck
(y)dy =

∫
Se1∩Bx,ηr(0)

[∫
`a

1Xstuck
(z)dz

]
da.

Lemma C.4 states any two points that are both on the line `a and in Xstuck must be close. Specifically,
for all s, s′ ∈ `a ∩ Xstuck, we have ‖s− s′‖ ≤ ηω, with ω = 22−χ`L . Therefore, the set of
problematic points on the line `a is contained in a segment of length at most ηω and we deduce∫
`a
1Xstuck

(z)dz ≤ ηω. As a result,

Vol(Xstuck) ≤ ηω
∫
Se1∩Bx,ηr(0)

da = ηωVol(Bd−1ηr ),

where BkR denotes a k-dimensional (Euclidean) ball of radius R. Since s0 ∼ Uniform(Bx,ηr(0)),

P(s0 ∈ Xstuck) =
Vol(Xstuck)

Vol(Bdηr)
≤
ηωVol(Bd−1ηr )

Vol(Bdηr)
=

ωΓ(1 + d/2)

r
√
πΓ((d+ 1)/2)

≤ ω

r

√
d

π
=
`
√
d

√
ρε

400√
π

2−χχ2

≤ `
√
d

√
ρε

210−χ/2,

where we used the Gautschi inequality for the Γ function, and χ > 1/4 to bound 400√
π

2−χχ2 ≤
210−χ/2. To conclude, note that if s0 6∈ Xstuck then

f(TANGENTSPACESTEPS(x, s0, η, b,T ))− f(x)

= f(TANGENTSPACESTEPS(x, s0, η, b,T ))− f̂x(s0) + f̂x(s0)− f̂x(0)

≤ −F + εηr + `η2r2/2 = −F +

√
ρε

`
F
(
50χ3

)( 1

400χ3
+

1

2

( 1

400χ3

)2)
≤ −F + F

(
1

8
+

25

4002χ3

)
≤ −F/2,

using
√
ρε ≤ ` and χ > 1/4 once more in the last step, and also

f̂x(s0)− f̂x(0) ≤ εηr + `η2r2/2

owing to the fact that ∇f̂x is `-Lipschitz continuous along the line segment connecting 0 and s0,
‖s0‖ ≤ ηr and ‖∇f̂x(0)‖ ≤ ε.
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D Regularity constants for dominant eigenvector computation (PCA)

Computing the dominant eigenvector of a symmetric matrix A ∈ Rn×n (which notably comes up in
PCA) comes down to solving

max
x∈Sn−1

f(x), f(x) =
1

2
x>Ax, (16)

where Sn−1 = {x ∈ Rn : x>x = 1} is the unit sphere. If we use the retraction Retrx(s) = x+s
‖x+s‖

(where ‖x‖ =
√
x>x)—for which Assumption 4 holds with β = 0—then pullbacks are of the form

f̂x(s) = f(Retrx(s)) =
1

1 + ‖s‖2
1

2
(x+ s)>A(x+ s), (17)

defined over the tangent spaces TxS
n−1 = {s ∈ Rn : x>s = 0}. The gradient of f̂x at s is given by

∇f̂x(s) = Projx

(
1

1 + ‖s‖2
A(x+ s) +

−1

(1 + ‖s‖2)2
(x+ s)>A(x+ s) · s

)
(18)

=
1

1 + ‖s‖2
(

Projx(A(x+ s))− 2f̂x(s) · s
)
, (19)

where Projx(s) = s− (x>s)x is the orthogonal projector from Rn to TxS
n−1. It follows that

∇f̂x(s)−∇f̂x(0) =
1

1 + ‖s‖2
(

Projx(As)− 2f̂x(s)s− ‖s‖2Projx(Ax)
)
. (20)

Using 1
1+‖s‖2 ≤ 1 and ‖s‖2

1+‖s‖2 ≤
1
2‖s‖ for all s, and using the fact that an orthogonal projector can

only reduce the norm of a vector, we find

‖∇f̂x(s)−∇f̂x(0)‖ ≤ ‖As‖+ 2

[
sup

s∈TxSn−1

|f̂x(s)|

]
‖s‖+

1

2
‖Ax‖‖s‖. (21)

Letting ‖A‖ denote the operator norm of A (largest singular value), we finally obtain

‖∇f̂x(s)−∇f̂x(0)‖ ≤ 5

2
‖A‖‖s‖. (22)

This shows that Assumption 2 holds with b1 =∞ and L = 5
2‖A‖, or any larger number. For example,

the induced 1-norm of the matrix A is straightforward to compute and is an upper-bound on ‖A‖.

Now aiming to control second-order derivatives, we compute a directional derivative of ∇f̂x(s) and
obtain the Hessian of f̂x on the tangent space TxS

n−1:

∇2f̂x(s)[ṡ] = −2
〈s, ṡ〉

1 + ‖s‖2
∇f̂x(s) +

1

1 + ‖s‖2
[
Projx(Aṡ)− 2f̂x(s)ṡ− 2〈∇f̂x(s), ṡ〉s

]
,

where 〈u, v〉 = u>v. In particular,∇2f̂x(0)[ṡ] = Projx(Aṡ)− (x>Ax)ṡ, so that〈
ṡ,
(
∇2f̂x(s)−∇2f̂x(0)

)
[ṡ]
〉

= −4
〈s, ṡ〉 〈∇f̂x(s), ṡ〉

1 + ‖s‖2
+

(
1

1 + ‖s‖2
− 1

)
〈ṡ, Aṡ〉

−

(
2

f̂x(s)

1 + ‖s‖2
− x>Ax

)
‖ṡ‖2. (23)

Using ‖s‖
1+‖s‖2 ≤

1
2 , it is easy to see that ‖∇f̂x(s)‖ ≤ 3

2‖A‖ and:

‖∇2f̂x(s)−∇2f̂x(0)‖ ≤ 4‖∇f̂x(s)‖‖s‖+
1

2
‖A‖‖s‖

+

[
sup

s∈TxSn−1

∣∣(x+ s)>A(x+ s)− (1 + ‖s‖2)2x>Ax
∣∣

(1 + ‖s‖2)2‖s‖

]
‖s‖

≤ (6 + 1/2)‖A‖‖s‖+

[
sup
t>0

2t+ 3t2 + t4

(1 + t2)2t

]
‖A‖‖s‖

≤ 9‖A‖‖s‖.
This shows Assumption 3 holds with b2 =∞ and ρ = 9‖A‖.
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