
Individual Regret in Cooperative Nonstochastic
Multi-Armed Bandits

Yogev Bar-On
Tel Aviv University, Israel
baronyogev@gmail.com

Yishay Mansour
Tel Aviv University, Israel

and Google Research, Israel
mansour.yishay@gmail.com

Abstract

We study agents communicating over an underlying network by exchanging mes-
sages, in order to optimize their individual regret in a common nonstochastic
multi-armed bandit problem. We derive regret minimization algorithms that guar-

antee for each agent v an individual expected regret of Õ
(√(

1 + K
|N (v)|

)
T

)
,

where T is the number of time steps, K is the number of actions and N (v) is the
set of neighbors of agent v in the communication graph. We present algorithms
both for the case that the communication graph is known to all the agents, and for
the case that the graph is unknown. When the graph is unknown, each agent knows
only the set of its neighbors and an upper bound on the total number of agents.
The individual regret between the models differs only by a logarithmic factor. Our
work resolves an open problem from [Cesa-Bianchi et al., 2019b].

1 Introduction

The multi-armed bandit (MAB) problem is one of the most basic models for decision making under
uncertainty. It highlights the agent’s uncertainty regarding the losses it suffers from selecting various
actions. The agent selects actions in an online fashion - each time step the agent selects a single action
and suffers a loss corresponding to that action. The agent’s goal is to minimize its cumulative loss
over a fixed horizon of time steps. The agent observes only the loss of the action it selected each step.
Therefore, the MAB problem captures well the crucial trade-off between exploration and exploitation,
where the agent needs to explore various actions in order to gather information about them.

MAB research discusses two main settings: the stochastic setting, where the losses of each action are
sampled i.i.d. from an unknown distribution, and the nonstochastic (adversarial) setting, where we
make no assumptions about the loss sequences. In this work we consider the nonstochastic setting
and the objective of minimizing the regret - the difference between the agent’s cumulative loss and
the cumulative loss of the best action in hindsight. It is known that a regret of the order of Θ

(√
KT

)
is the best that can be guaranteed, where K is the number of actions and T is the time horizon. In
contrast, when the losses of all actions are observed (full-information feedback) the regret can be of
the order of Θ

(√
T lnK

)
(see, e.g., [Cesa-Bianchi and Lugosi, 2006, Bubeck et al., 2012]).

The main focus of our work is to consider agents that are connected in a communication graph, and
can exchange messages in each step, in order to reduce their individual regret. This is possible since
the losses depend only on the action and the time step, but not on the agent.

One extreme case is when the communication graph is a clique, i.e., any pair of agents can commu-
nicate directly. In this case, the agents can run the well known Exp3 algorithm [Auer et al., 2002],
and guarantee each a regret of O

(√
T lnK

)
, assuming there are at least K agents (see [Seldin et al.,

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

2014, Cesa-Bianchi et al., 2019b]). However, in many motivating applications, such as distributed
learning, or communication tasks such as routing, the communication graph is not a clique.

The work of Cesa-Bianchi et al. [2019b] studies a general communication graph, where the agents
can communicate in order to reduce their regret. The paper presents the Exp3-Coop algorithm, which

achieves an expected regret when averaged over all agents of Õ
(√(

1 + K
N α (G)

)
T
)

, where
α (G) is the independence number of the communication graph G, and N is the number of agents.
The question of whether it is possible to obtain a low individual regret, that holds simultaneously
for all agents, was left as an open question. We answer this question affirmatively in this work.

Our main contribution is an individual expected regret bound, which holds for each agent v, of order

Õ

(√(
1 +

K

|N (v)|

)
T

)
,

whereN (v) is the set of neighbors of agent v in the communication graph. We remark that our result
also implies the previous average regret bound.

The main idea of our algorithm is to artificially partition the graph into disjoint connected components.
Each component has a center agent, which is in some sense the leader of the component. The center
agent has (almost) the largest degree in the component, and it selects actions using the Exp3-Coop
algorithm. By observing the outcomes of its immediate neighboring agents, the center agent can
guarantee its own desired individual regret. The main challenge is to create such components with a
relatively small diameter, so that the center will be able to broadcast its information in a short time to
all the agents in the component. Special care is given to relate the agents’ local parameters (degree)
to the global component parameters (degree of the center agent and the broadcast time).

We consider both the case that the communication graph is known to all the agents in advance (the
informed setting), and the case that the graph is unknown (the uninformed setting). In the uninformed
setting, we assume each agent knows its local neighborhood (i.e., the set of its neighbors), and an
upper bound on the total number of agents. The regret bound in the uninformed setting is higher by a
logarithmic factor and the algorithm is more complex.

In the next section, we formally define our model, and review preliminary material. Section 3 shows
the center-based policy, given a graph partition. We then present our graph partitioning algorithms
in Section 4. Overview of the analysis is given in Section 5, while all proofs are differed to the
supplementary material. Our work is concluded in Section 6.

1.1 Additional related works

The cooperative nonstochastic MAB setting was introduced by Awerbuch and Kleinberg [2008], where
they bound the average regret, when some agents might be dishonest and the communication is done
through a public channel (clique network). The previously mentioned [Cesa-Bianchi et al., 2019b],
also considers the issue of delays, and presents a bound on the average regret for a general graph of

order Õ
(√(

d+ K
N α (G)

)
T + d

)
, when messages need d steps to arrive. Dist-Hedge, introduced

by Sahu and Kar [2017], considers a network of forecasting agents, with delayed and inexact losses,
and derives a sub-linear individual regret bound, that also depends on spectral properties of the graph.
More recently, Cesa-Bianchi et al. [2019a] studied an online learning model where only a subset of
the agents play at each time step, and showed matching upper and lower bounds on the average regret
of order

√
α (G)T when the set of agents that play each step is chosen stochastically. When the set

of agents is chosen arbitrarily, the lower bound becomes T .

In the stochastic setting, Landgren et al. [2016a,b] presented a cooperative variant of the well-known
UCB algorithm, that uses a consensus algorithm for estimating the mean losses, to obtain a low
average regret. More cooperative variants of the UCB algorithm that yield a low average regret were
presented by Kolla et al. [2018]. They also showed a policy, where like in the methods in this work,
agents with a low degree follow the actions of agents with a high degree. Stochastic MAB over P2P
communication networks were studied by Szörényi et al. [2013], which showed that the probability
to select a sub-optimal arm reduces linearly with the number of peers. The case where only one agent
can observe losses was investigated by Kar et al. [2011]. This agent needs to broadcast information
through the network, and it was shown this is enough to obtain a low average regret.

2

Another multi-agent research area involve agents that compete on shared resources. The motivation
comes from radio channel selection, where multiple devices need to choose a radio channel, and two
or more devices that use the same channel simultaneously interfere with each other. In this setting,
many papers assume agents cannot communicate with each other, and do not receive a reward upon
collision - where more than one agent tries to choose the same action at the same step. The first to
give regret bounds on this variant are Avner and Mannor [2014], that presented an average regret
bound of order O

(
T

2
3

)
in the stochastic setting. Also in the stochastic setting, Rosenski et al. [2016]

showed an expected average regret bound of order O
(
K
∆2 ln

(
K
δ

)
+N

)
that holds with probability

1− δ, where ∆ is the minimal gap between the mean rewards (notice that this bound is independent
of T). In the same paper, they also studied the case that the number of agents may change each
step, and presented a regret bound of Õ

(√
xT
)

, where x is the total number of agents throughout
the game. Bistritz and Leshem [2018] consider the case that different agents have different mean
rewards, and each agent has a different unique action it should choose to maximize the total regret.
They showed an average regret of order O

(
log2+ε T

)
for every ε > 0, where the O-notation hides

the dependency on the mean rewards.

2 Preliminaries

We consider a nonstochastic multi-armed bandit problem over a finite action set A = {1, . . . ,K}
played by N agents. Let G = 〈V,E〉 be an undirected connected communication graph for the set of
agents V = {1, . . . , N}, and denote by N (v) the neighborhood of v ∈ V , including itself. Namely,

N (v) = {u ∈ V | 〈u, v〉 ∈ E} ∪ {v} .
At each time step t = 1, 2, . . . , T , each agent v ∈ V draws an action It (v) ∈ A from a distribution
pvt = 〈pvt (1) , . . . , pvt (K)〉 on A. It then suffers a loss `t (It (v)) ∈ [0, 1] which it observes. Notice
the loss does not depend on the agent, but only on the time step and the chosen action. Thus, agents
that pick the same action at the same step will suffer the same loss. We also assume the adversary
is oblivious, i.e., the losses do not depend on the agents’ realized actions. In the end of step t, each
agent sends a message

mt (v) = 〈v, t, It (v) , `t (It (v)) ,pvt 〉
to all the agents in its neighborhood, and also receives messages from its neighbors: mt (v′) for all
v′ ∈ N (v). Our goal is to minimize, for each v ∈ V , its expected regret over T steps:

RT (v) = E

[
T∑
t=1

`t (It (v))−min
i∈A

T∑
t=1

`t (i)

]
.

A well-known policy to update pvt is the exponential-weights algorithm (Exp3) with weights wvt (i)

for all i ∈ A, such that pvt (i) =
wvt (i)
Wv
t

where W v
t =

∑
i∈A w

v
t (i) (see, e.g., [Cesa-Bianchi and

Lugosi, 2006]). The weights are updated as follows: let Bvt (i) be the event that v observed the loss of
action i at step t; in our caseBvt (i) = I {∃v′ ∈ N (v) : It (v′) = i}, where I is the indicator function.
Also, let ˆ̀v

t (i) = `t(i)
Et[Bvt (i)]B

v
t (i) be an unbiased estimated loss of action i at step t, where Et [·] is

the expectation conditioned on all the agents’ choices up to step t (hence, Et
[
ˆ̀v
t (i)

]
= `t (i)). Then

wvt+1 (i) = wvt (i) exp
(
−η (v) ˆ̀v

t (i)
)
,

where η (v) is a positive parameter chosen by v, called the learning rate of agent v. Exp3 is given
explicitly in the supplementary material. Notice that in our setting all agents v ∈ V have the
information needed to compute ˆ̀v

t (i), since

Et [Bvt (i)] = Pr [∃v′ ∈ N (v) : It (v′) = i] = 1−
∏

v′∈N (v)

(
1− pv

′

t (i)
)
,

and if agent v does not observe `t (i), then ˆ̀v
t (i) = 0.

We proceed with two useful lemmas that will help us later. For completeness, we provide their proofs
in the supplementary material as well. The first lemma is the usual analysis of the exponential-weights
algorithm:

3

Lemma 1. Assuming agent v uses the exponential-weights algorithm, its expected regret satisfies

RT (v) ≤ lnK

η (v)
+
η (v)

2
E

[
T∑
t=1

K∑
i=1

pvt (i) ˆ̀v
t (i)

2

]
.

The next lemma is from [Cesa-Bianchi et al., 2019b], and it bounds the change of the action
distribution in the exponential-weights algorithm.
Lemma 2. Assuming agent v uses the exponential-weights algorithm with a learning rate η (v) ≤ 1

2K ,
then for all i ∈ A: (

1− η (v) ˆ̀v
t (i)

)
pvt (i) ≤ pvt+1 (i) ≤ 2pvt (i) .

Also, the following definition will be needed for our algorithm. We denote by Gr the r-th power of
G, in which v1, v2 ∈ V are adjacent if and only if distG (v, v′) ≤ r; and by G|U the sub-graph of G
induced by U ⊆ V .
Definition 3. Let G = 〈V,E〉 be an undirected connected graph and let W ⊆ U ⊆ V . W is called
an r-independent set of G, if it is an independent set of Gr. Namely,

∀w,w′ ∈W : distG (w,w′) ≥ r + 1.

If W is also a maximal independent set of (Gr)|U , it is called a maximal r-independent subset
(r-MIS) of U . Namely, there is no r-independent set W ′ ⊆ U such that W ⊂W ′.

3 Center-based cooperative multi-armed bandits

We now present the center-based policy for the cooperative multi-armed bandit setting, which will
give us the desired low individual regret. In the center-based cooperative MAB, not all the agents
behave similarly. We partition the agents to three different types.

Center agents are the agents that determine the action distribution for all other agents. They work
together with their neighbors to minimize their regret. The neighbors of the center agents in the com-
munication graph, center-adjacent agents, always copy the action distribution from their neighboring
center, and thus the centers gain more information about their own distribution each step.

Other (not center or center-adjacent) agents are simple agents, which simply copy the action distribu-
tion from one of the centers. Since they are not center-adjacent, they receive the action distribution
with delay, through other agents that copy from the same center.

We artificially partition the graph to connected components, such that each center c has its own
component, and all the simple agents in the component of c copy their action distribution from it. To
obtain a low individual regret, we require the components to have a relatively small diameter, and
the center agents to have a high degree in the communication graph. Namely, center agents have the
highest or nearly highest degree in their component.

In more detail, we select a set C ⊆ V of center agents. All center agents c ∈ C use the exponential-

weights algorithm with a learning rate η (c) = 1
2

√
(lnK) min{|N (c)|,K}

KT . The agent set V is partitioned
into disjoint subsets {Vc ⊆ V | c ∈ C}, such that N (c) ⊆ Vc for all c ∈ C, and the sub-graph
Gc ≡ G|Vc induced by Vc is connected. Notice that since the components are disjoint, the condition
N (c) ⊆ Vc implies C is a 2-independent set. For all non-centers v ∈ V \C, we denote by C (v) ∈ C
the center agent such that v ∈ VC(v), and call it the center of v. All non-center agents v ∈ V \C copy
their distribution from their origin neighbor U (v), which is their neighbor in GC(v) closest to C (v),
breaking ties arbitrarily. Namely,

U (v) = arg min
v′∈N (v)∩VC(v)

distGC(v)
(v′, C (v)) .

Thus, agent v receives its center’s distribution with a delay of d (v) = distGC(v)
(v, C (v)) steps, so

for all t ≥ d (v) + 1:
pvt = p

C(v)
t−d(v).

Notice that if v ∈ N (c), then v is center-adjacent and it holds U (v) = C (v) and d (v) = 1. For
completeness, we define U (c) = C (c) = c and d (c) = 0 for all c ∈ C.

To express the regret of the center-based policy, we introduce a new concept:

4

Algorithm 1 Center-based cooperative MAB - v is a center agent
Parameters: Number of arms K; Time horizon T .

Initialize: η (v)← 1
2

√
(lnK)M(v)

KT ; wv1 (i)← 1
K for all i ∈ A.

1: for t ≤ T do
2: Set pvt (i)← wvt (i)

Wv
t

for all i ∈ A, where W v
t =

∑
i∈A w

v
t (i).

3: Play an action It (v) drawn from pvt = 〈pvt (1) , . . . , pvt (K)〉.
4: Observe loss `t (It (v)).
5: Send the following message to the set N (v): mt (v) = 〈v, t, It (v) , `t (It (v)) ,pvt 〉.
6: Receive all messages mt (v′) from v′ ∈ N (v).
7: Update for all i ∈ A: wvt+1 (i)← wvt (i) exp

(
−η (v) ˆ̀v

t (i)
)

, where

ˆ̀v
t (i) =

`t (i)

Et [Bvt (i)]
Bvt (i) ,

Bvt (i) = I {∃v′ ∈ N (v) : It (v′) = i} , Et [Bvt (i)] = 1−
∏

v′∈N (v)

(
1− pv

′

t (i)
)
.

8: end for

Algorithm 2 Center-based cooperative MAB - v is a non-center agent
Parameters: Number of arms K; Time horizon T ; Origin neighbor U (v).
Initialize: pv1 (i)← 1

K for all i ∈ A.
1: for t ≤ T do
2: Play an action It (v) drawn from pvt = 〈pvt (1) , . . . , pvt (K)〉.
3: Observe loss `t (It (v)).
4: Send the following message to the set N (v): mt (v) = 〈v, t, It (v) , `t (It (v)) ,pvt 〉.
5: Receive the message mt (U (v)) from U (v).
6: Update pvt+1 (i) = p

U(v)
t (i) for all i ∈ A.

7: end for

Definition 4. The mass of a center agent c ∈ C is defined to be
M (c) ≡ min {|N (c)| ,K} ,

and the mass of non-center agent v ∈ V \ C is

M (v) ≡ e− 1
6d(v)M (C (v)) .

Notice the mass depends only on how the graph is partitioned, and it satisfiesM (v) = e−
1
6M (U (v))

for all non-centers v ∈ V \ C. Intuitively, the mass of agent v captures the idea that as the degree of
the center is larger and as the agent is closer to its center, the lower the regret of v. We prove that
the regret is Õ

(√
K

M(v)T
)

. Our partitioning algorithms, presented in the next section, show that the

mass of agent v satisfies M (v) = Ω (min {|N (v)| ,K}), so we obtain an individual regret of the

order of Õ
(√(

1 + K
|N (v)|

)
T

)
.

We specify the center-based policy in Algorithms 1 and 2. We emphasize that before the agents use
the center-based policy they must partition the graph with one of the algorithms we present in the
next section. While the agents partition the graph, they play arbitrary actions.

4 Partitioning the graph

The goal now is to show that we can partition the graph such that the mass is large for every
v ∈ V . In particular, we want to show that any graph can be partitioned such that M (v) =
Ω (min {|N (v)| ,K}).

We consider two cases: the informed and uninformed settings. In the informed setting, all of the
agents have access to the graph structure. Each agent can partition the graph by itself in advance,

5

Algorithm 3 Centers-to-Components
Parameters: Number of arms K; Center set C.
Initialize: Number of iterations ΘK ← b12 lnKc.

1: if v ∈ C then
2: Initialize: C0 (v)← v; U0 (v)← v; M0 (v)← min {|N (v)| ,K}.
3: else
4: Initialize: C0 (v)← nil; U0 (v)← nil; M0 (v)← 0.
5: end if
6: for 0 ≤ t ≤ ΘK do
7: Send the following message to the set N (v): µt (v) = 〈v, t, Ct (v) ,Mt (v)〉.
8: Receive all messages µt (v′) from v′ ∈ N (v).
9: if Ut (v) /∈ C then . The center-based policy requires N (c) ⊆ Vc for all c ∈ C.

10: Find the best origin neighbor for v:

Ut+1 (v)← arg max
v′∈N (v)\{v}

Mt (v′) .

11: Update: Ct+1 (v)← Ct (Ut+1 (v)) ; Mt+1 (v)← e−
1
6Mt (Ut+1 (v)).

12: else
13: Keep old values: Ct+1 (v)← Ct (v) ; Ut+1 (v)← Ut (v) ; Mt+1 (v)←Mt (v).
14: end if
15: end for
16: return

C (v) = CΘK+1 (v) ; U (v) = UΘK+1 (v) ; M (v) = MΘK+1 (v) .

to know the role it plays: whether it is a center or not, and which agent is its origin neighbor. In
the uninformed setting, the graph structure is not known to the agents, only their neighbors and an
upper bound on the total number of agents N̄ ≥ N . The agents partition the graph using a distributed
algorithm while playing actions and suffering loss.

The basic structure of the partitioning algorithm in both settings is the same. First, we show an
algorithm that computes the connected components given a center set C. Then, we show an algorithm
that computes a center set C. The second algorithm is specifically designed to be used with the first,
and together they partition the graph to connected components such that every agent has a large mass.

4.1 Computing graph components given a center set

Given a center setC, we show a distributed algorithm called Centers-to-Components, which computes
the connected components, and present it in Algorithm 3. Although it is distributed, in the informed
setting agents can simply simulate it locally in advance.

Centers-to-Components runs simultaneous distributed BFS graph traversals, originating from every
center c ∈ C. When the traversal of center c arrives to a simple agent v ∈ V \C, v decides if c is the
best center for it so far, and if it is, v switches its component to Vc. Notice each agent needs to know
only if itself is a center or not.

4.2 Computing centers

To compute the center set C, we show two algorithms; one for the informed setting and one for the
uninformed setting. The regret bound for the informed setting is slightly better, and the algorithm is
simpler.

The informed setting The algorithm that computes the center set in the informed setting is called
Compute-Centers-Informed and is presented in Algorithm 4. The center set is built in a greedy
way: each iteration, all of the agents test if they are “satisfied” with the current center set (i.e.,
M (v) ≥ min {|N (v)| ,K}). If there are unsatisfied agents left, the agent with the highest degree is
added to the center set.

6

Algorithm 4 Compute-Centers-Informed
Parameters: Undirected connected graph G = 〈V,E〉; Number of arms K.
Initialize: Center set C0 ← ∅; Unsatisfied agents S0 ← V .

1: t← 0.
2: while St 6= ∅ do
3: Choose the next center: ct ← arg maxv∈St |N (v)|.
4: Update Ct+1 ← Ct ∪ {ct}.
5: Run Centers-to-Components with center set Ct+1, and obtain mass Mt+1 (v) for each v ∈ V .
6: Update

St+1 ←
{
v ∈ V |Mt+1 (v) < min {|N (v)| ,K} ∧ min

c∈Ct+1

distG (v, c) ≥ 3

}
.

7: t← t+ 1.
8: end while
9: return C = Ct.

The uninformed setting At first, it may seem that the uninformed setting can be solved the same
way as the informed setting, with some distributed version of Compute-Centers-Informed. However,
such algorithm will require Ω (N) steps in the worst case, since at each iteration only one agent
becomes a center. In the informed setting we do not care about this, since the components are
computed in advance. In the uninformed setting however, at each step of the algorithm the agents
suffer a loss, and thus the regret bound will be at least linear in the number of agents, which can be
very large.

To avoid this problem, we need to add many centers each iteration, and not just one as in Compute-
Centers-Informed. To do this, we exploit the fact that there are only K possible values for a center’s
mass. In our algorithm, there are K iterations, and in each iteration t, as many agents as possible
with degree K − t become centers. To ensure the final center set is 2-independent, only a 2-MIS of
the potential center agents are added to the center set each iteration.

To compute a 2-MIS in a distributed manner, we use Luby’s algorithm [Luby, 1986, Alon et al.,
1986] on the sub-graph of G2 induced by the potential center agents. Briefly, at each iteration of
Luby’s algorithm, every potential center agent picks a number uniformly from [0, 1]. Agents that
picked the maximal number among their neighbors of distance 2 join the 2-MIS, and their neighbors
of distance 2 stop participating. A 2-MIS is computed after

⌈
3 ln

(
N√
δ

)⌉
iterations with probability

1− δ. Each iteration requires exchanging 4 messages - 2 for communicating the random numbers and
2 for communicating the new agents in the 2-MIS. Hence, 4

⌈
3 ln

(
N√
δ

)⌉
steps suffice to compute a

2-MIS with probability 1− δ. A more detailed explanation of Luby’s algorithm can be found in the
supplementary material.

We present Compute-Centers-Uninformed in Algorithm 5. Since this is a distributed algorithm, we
have the variables C (v) and S (v) as indicators for whether v is a center or unsatisfied, respectively.

5 Regret analysis

We will now provide an overview for the analysis of our algorithms. We remind that all proofs are
differed to the supplementary material.

5.1 Individual regret of the center-based policy

We start by bounding the expected regret of the agents when they are using the center-based policy.

Theorem 5. Let T ≥ K2 lnK. Using the center-based policy, the regret of each agent v ∈ V
satisfies

RT (v) ≤ 7

√
(lnK)

K

M (v)
T .

7

Algorithm 5 Compute-Centers-Uninformed - agent v
Parameters: Number of arms K; Upper bound on the total number of agents N̄ ; Time horizon T .
Initialize: Center indicator C (v)← FALSE; Unsatisfied indicator S (v)← TRUE.

1: for 0 ≤ t ≤ K − 1 do
2: Participate for 4

⌈
3 ln

(
N̄
√
KT

)⌉
steps in Luby’s algorithm on

(
G2
)
|St

, where

St = {v ∈ V | S (v) = TRUE ∧min {|N (v)| ,K} = K − t} ,

to compute Wt, a 2-MIS of St, with probability 1− 1
TK .

3: If v ∈Wt, set C (v)← TRUE.
4: Participate in Centers-to-Components with center set Ct = {v′ ∈ V | C (v′) = TRUE};

obtain mass Mt (v) and whether minc∈Ct distG (v, c) ≥ 3.
5: . minc∈Ct distG (v, c) ≥ 3 if and only if C2 (v) = nil in Centers-to-Components.
6: Update

S (v)← I
[
Mt (v) < min {|N (v)| ,K} ∧ min

c∈Ct
distG (v, c) ≥ 3

]
.

7: end for
8: return C = CK−1.

This individual regret bound holds simultaneously for all agents in the graph, and it depends only on
the graph structure and components.

5.2 Analyzing Centers-to-Components

We need to show the results of Centers-to-Components follow their definitions, and the derived
components satisfy all the properties required by the center-based policy. The following lemma show
it under some requirements from the center set C.
Lemma 6. Let C ⊆ V be a center set that is 2-independent, such that every v ∈ V holds
minc∈C distG (v, c) ≤ 6 lnK − 1. Let C (v) , U (v) ,M (v) be the results of Centers-to-Components.
For each c ∈ C, let Vc be its corresponding component, namely, Vc = {v ∈ V | C (v) = c}. Then
the following properties are satisfied:

1. {Vc | c ∈ C} are pairwise disjoint and V =
⋃
c∈C Vc.

2. N (c) ⊆ Vc and Gc is connected for all c ∈ C.

3. M (v) = e−
1
6d(v)M (C (v)) and U (v) = arg minv′∈N (v)∩VC(v)

d (v′) for all v ∈ V \ C.

5.3 Analyzing Compute-Centers-Informed

The first thing we need to show is that the center set returned by Compute-Centers-Informed satisfies
the conditions of Lemma 6:
Lemma 7. Let C ⊆ V be the center set returned by Compute-Centers-Informed. Then:

1. C is 2-independent.

2. For all v ∈ V , minc∈C distG (v, c) ≤ 6 lnK − 1.

Now, we can show that by using our informed graph partitioning algorithms, the mass of all agents is
large:
Theorem 8. Let C ⊆ V be the center set returned by Compute-Centers-Informed, and let
{Vc ⊆ V | c ∈ C} be the components resulted from Centers-to-Components. For every v ∈ V :

M (v) ≥ e−1 min {|N (v)| ,K} .

Together with Theorem 5, we obtain the desired regret bound.

8

Corollary 9. Let T ≥ K2 lnK. Let C ⊆ V be the center set returned by Compute-Centers-
Informed, and let {Vc ⊆ V | c ∈ C} be the components resulted from Centers-to-Components. Using
the center-based policy, we obtain for every v ∈ V :

RT (v) ≤ 12

√
(lnK)

(
1 +

K

|N (v)|

)
T = Õ

(√(
1 +

K

|N (v)|

)
T

)
.

5.4 Analyzing Compute-Centers-Uninformed

First, we show that Compute-Centers-Uninformed terminates after a relatively small number of steps,
and thus the loss suffered while running it is insignificant.
Lemma 10. Compute-Centers-Uninformed runs for less than 12K ln

(
K2N̄T

)
steps.

As in the informed setting, we now need to show the center set resulted from Compute-Centers-
Uninformed satisfies the conditions of Lemma 6.
Lemma 11. Let C ⊆ V be the center set resulted from Compute-Centers-Uninformed, such that
Luby’s algorithm succeeded at all iterations of the algorithm. Then:

1. C is 2-independent.

2. For all v ∈ V , minc∈C distG (v, c) ≤ 6 lnK − 1.

We can now obtain the same result as in the informed setting:
Theorem 12. Let C ⊆ V be the center set resulted from Compute-Centers-Uninformed, such that
Luby’s algorithm succeeded at all iterations of the algorithm, and also let {Vc ⊆ V | c ∈ C} be the
components resulted from Centers-to-Components. For every v ∈ V :

M (v) ≥ e−1 min {|N (v)| ,K} .

Again we can use Theorem 5 to obtain the desired regret bound.
Corollary 13. Let T ≥ K2 lnK and N̄ ≥ N . Let C ⊆ V be the center set resulted from
Compute-Centers-Uninformed, and let {Vc ⊆ V | c ∈ C} be the components resulted from Centers-
to-Components. Using the center-based policy, we obtain for every v ∈ V :

RT (v) ≤ 12

(
K ln

(
K2N̄T

)
+

√
(lnK)

(
1 +

K

|N (v)|

)
T

)
+ 1 = Õ

(√(
1 +

K

|N (v)|

)
T

)
.

5.5 Average regret of the center-based policy

As mentioned before, we strictly improve the result of Cesa-Bianchi et al. [2019b], and our algorithms
imply the same average expected regret bound.
Corollary 14. Let T ≥ K2 lnK. Let C ⊆ V be the center set resulted from Compute-Centers-
Informed or Compute-Centers-Uninformed, and let {Vc ⊆ V | c ∈ C} be the components resulted
from Centers-to-Components. Using the center-based policy, we get:

1

N

∑
v∈V

RT (v) = Õ

(√(
1 +

K

N
α (G)

)
T

)
.

6 Conclusions

We investigated the cooperative nonstochastic multi-armed bandit problem, and presented the center-
based cooperation policy (Algorithms 1 and 2). We provided partitioning algorithms that provably
yield a low individual regret bound that holds simultaneously for all agents (Algorithms 3, 4 and 5).
We express this bound in terms of the agents’ degree in the communication graph. This bound strictly
improves a previous regret bound from [Cesa-Bianchi et al., 2019b] (Corollary 14), and also resolves
an open question from that paper.

Note that our regret bound in the informed setting does not depend on the total number of agents,
N , and in the uninformed setting it depends on N̄ only logarithmically. It is unclear whether in the
uninformed setting, any dependence on N in the individual regret is required.

9

Acknowledgments

This work was supported in part by the Yandex Initiative in Machine Learning and by a grant from
the Israel Science Foundation (ISF).

References

Noga Alon, László Babai, and Alon Itai. A fast and simple randomized parallel algorithm for the
maximal independent set problem. Journal of algorithms, 7(4):567–583, 1986.

Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E Schapire. The nonstochastic multiarmed
bandit problem. SIAM journal on computing, 32(1):48–77, 2002.

Orly Avner and Shie Mannor. Concurrent bandits and cognitive radio networks. In Joint European
Conference on Machine Learning and Knowledge Discovery in Databases, pages 66–81. Springer,
2014.

Baruch Awerbuch and Robert Kleinberg. Competitive collaborative learning. Journal of Computer
and System Sciences, 74(8):1271–1288, 2008.

Ilai Bistritz and Amir Leshem. Distributed multi-player bandits-a game of thrones approach. In
Advances in Neural Information Processing Systems, pages 7222–7232, 2018.

Sébastien Bubeck, Nicolo Cesa-Bianchi, et al. Regret analysis of stochastic and nonstochastic
multi-armed bandit problems. Foundations and Trends R© in Machine Learning, 5(1):1–122, 2012.

Nicolo Cesa-Bianchi and Gabor Lugosi. Prediction, learning, and games. Cambridge university
press, 2006.

Nicolò Cesa-Bianchi, Tommaso R Cesari, and Claire Monteleoni. Cooperative online learning:
Keeping your neighbors updated. arXiv preprint arXiv:1901.08082, 2019a.

Nicolo Cesa-Bianchi, Claudio Gentile, and Yishay Mansour. Delay and cooperation in nonstochastic
bandits. The Journal of Machine Learning Research, 20(1):613–650, 2019b.

Soummya Kar, H Vincent Poor, and Shuguang Cui. Bandit problems in networks: Asymptotically
efficient distributed allocation rules. In 2011 50th IEEE Conference on Decision and Control and
European Control Conference, pages 1771–1778. IEEE, 2011.

Ravi Kumar Kolla, Krishna Jagannathan, and Aditya Gopalan. Collaborative learning of stochastic
bandits over a social network. IEEE/ACM Transactions on Networking (TON), 26(4):1782–1795,
2018.

Peter Landgren, Vaibhav Srivastava, and Naomi Ehrich Leonard. On distributed cooperative decision-
making in multiarmed bandits. In 2016 European Control Conference (ECC), pages 243–248.
IEEE, 2016a.

Peter Landgren, Vaibhav Srivastava, and Naomi Ehrich Leonard. Distributed cooperative decision-
making in multiarmed bandits: Frequentist and bayesian algorithms. In 2016 IEEE 55th Conference
on Decision and Control (CDC), pages 167–172. IEEE, 2016b.

Michael Luby. A simple parallel algorithm for the maximal independent set problem. SIAM journal
on computing, 15(4):1036–1053, 1986.

Jonathan Rosenski, Ohad Shamir, and Liran Szlak. Multi-player bandits–a musical chairs approach.
In International Conference on Machine Learning, pages 155–163, 2016.

Anit Kumar Sahu and Soummya Kar. Dist-hedge: A partial information setting based distributed
non-stochastic sequence prediction algorithm. In 2017 IEEE Global Conference on Signal and
Information Processing (GlobalSIP), pages 528–532. IEEE, 2017.

Yevgeny Seldin, Peter L Bartlett, Koby Crammer, and Yasin Abbasi-Yadkori. Prediction with limited
advice and multiarmed bandits with paid observations. In ICML, pages 280–287, 2014.

10

Balázs Szörényi, Róbert Busa-Fekete, István Hegedűs, Róbert Ormándi, Márk Jelasity, and Balázs
Kégl. Gossip-based distributed stochastic bandit algorithms. In Journal of Machine Learning
Research Workshop and Conference Proceedings, volume 2, pages 1056–1064. International
Machine Learning Societ, 2013.

VK Wei. A lower bound on the stability number of a simple graph. Technical report, Bell Laboratories
Technical Memorandum 81-11217-9, Murray Hill, NJ, 1981.

11

Supplementary Material

A Proofs from Subsection 5.1

We first bound the regret of the center agents:
Lemma 15. Let T ≥ K2 lnK. Using the center-based policy, the expected regret of each center
c ∈ C satisfies

RT (c) ≤ 4

√
(lnK)

K

M (c)
T .

Proof. Since T ≥ K2 lnK, we have η (c) = 1
2

√
(lnK)M(c)

KT ≤ 1
2

√
M(c)
K3 ≤ 1

2K . Hence, from
Lemma 2, we get for any v ∈ N (c) \ c and i ∈ A:

pvt (i) = pct−1 (i) ≥ 1

2
pct (i) .

Hence,

Et [Bct (i)] = 1−
∏

v∈N (c)

(1− pvt (i))

≥ 1−
(

1− 1

2
pct (i)

)|N (c)|

≥ 1− exp

(
−1

2
pct (i) |N (c)|

)
(1− x ≤ e−x)

≥ 1− exp

(
−min

{
1

2
|N (c)| pct (i) , 1

})
≥
(
1− e−1

)
min

{
1

2
|N (c)| pct (i) , 1

}
, (

(
1− e−1

)
x ≤ 1− e−x for 0 ≤ x ≤ 1)

and thus,

Et
[
ˆ̀c
t (i)

2
]

= Et

[
`t (i)

2

Et [Bct (i)]
2B

c
t (i)

]

≤ 1

Et [Bct (i)]
(`t (i) ≤ 1)

≤ 1

(1− e−1) min
{

1
2 |N (c)| pct (i) , 1

}
≤ 2 +

4

|N (c)| pct (i)
.

By Lemma 1, we now obtain

RT (c) ≤ lnK

η (c)
+
η (c)

2
E

[
T∑
t=1

K∑
i=1

pct (i)Et
[
ˆ̀c
t (i)

2
]]

≤ lnK

η (c)
+
η (c)

2

(
2 + 4

K

|N (c)|

)
T

≤ lnK

η (c)
+ 4η (c)

K

M (c)
T

= 4

√
(lnK)

K

M (c)
T (η (c) =

1

2

√
(lnK)M (c)

KT
)

as claimed.

12

Since non-center agents use the same distribution as some center, only with delay, we can use this
result together with Lemma 2 to bound the regret of all agents in the graph.

Proof of Theorem 5

Theorem 5. Let T ≥ K2 lnK. Using the center-based policy, the regret of each agent v ∈ V
satisfies

RT (v) ≤ 7

√
(lnK)

K

M (v)
T .

Proof. Again, since T ≥ K2 lnK we have η (v) ≤ 1
2K . Recall that pvt = p

C(v)
t−d(v). Thus, we can use

Lemma 2 iteratively to obtain for all t > d (v):

pvt (i) = p
C(v)
t−d(v) (i)

≤ pC(v)
t−d(v)+1 (i) + η (C (v)) p

C(v)
t−d(v) (i) ˆ̀C(v)

t−d(v) (i)

≤ · · · ≤ pC(v)
t (i) + η (C (v))

d(v)∑
s=1

p
C(v)
t−s (i) ˆ̀C(v)

t−s (i) ,

which yields

RT (v) = E

[
T∑
t=1

`t (It (v))−min
i∈A

T∑
t=1

`t (i)

]

= E

[
T∑
t=1

K∑
i=1

pvt (i) `t (i)−min
i∈A

T∑
t=1

`t (i)

]

≤ d (v) + E

 T∑
t=d(v)

K∑
i=1

p
C(v)
t (i) `t (i)−min

i∈A

T∑
t=d(v)

`t (i)

+ η (C (v))E

 T∑
t=d(v)

K∑
i=1

d(v)∑
s=1

p
C(v)
t−s (i) ˆ̀C(v)

t−s (i) `t (i)

≤ RT (C (v)) + d (v) + d (v) η (C (v))T,

where the last inequality is implied from

Et−s

[
K∑
i=1

p
C(v)
t−s (i) ˆ̀C(v)

t−s (i) `t (i)

]
≤

K∑
i=1

p
C(v)
t−s (i) `t−s (i) ≤ 1.

Hence, using Lemma 15 we get

RT (v) ≤

(
4

√
K

M (C (v))
+ d (v) +

d (v)

2

√
M (C (v))

K

)√
(lnK)T

≤

(
4

√
K

M (C (v))
+ d (v)

√
M (C (v))

K

)√
(lnK)T

≤ 7

√
(lnK)

K

M (v)
T ,

concluding our proof.

B Proofs from Subsection 5.2

We first show two helpful lemmas that analyze the results of Centers-to-Components. In the following,
we denote ΘK = b12 lnKc and τv = minc∈C distG (v, c) for any v ∈ V .

13

Lemma 16. Let Ct (v) , Ut (v) ,Mt (v) be the variables of agent v at iteration t from Centers-to-
Components. Then the following properties hold for all 1 ≤ t ≤ ΘK + 1 and v ∈ V \ C:

1. Mt (v) ≥Mt−1 (v).

2. If Mt (v) 6= Mt−1 (v), then Ct (v) 6= nil and

Mt (v) = e−
1
6 tM (Ct (v)) .

Moreover, t ≥ distG (v, Ct (v)).

3. If τv ≤ ΘK + 1, then Mτv (v) ≥ e− 1
6 τ
v

.

4. If τv ≤ 6 lnK, then CΘK+1 (v) = CΘK (v) ,MΘK+1 (v) = MΘK (v).

Proof.

1. For center-adjacent agents this is immediate from the algorithm. Otherwise, let v be a simple
agent. We proceed by induction over t. If t = 1, we have Mt (v) = M1 (v) = M0 (v) = 0.
Assume for all t > 1 and v′ ∈ V \ C that Mt−1 (v′) ≥Mt−2 (v′). Since we choose Ut (v)
to be the neighbor with maximal mass at iteration t− 1, for any t > 1 we get

Mt (v) = e−
1
6Mt−1 (Ut (v))

≥ e− 1
6Mt−1 (Ut−1 (v))

≥ e− 1
6Mt−2 (Ut−1 (v))

= Mt−1 (v)

as desired.

2. Again we proceed by induction on t. If t = 1 and Mt (v) = M1 (v) 6= M0 (v) = 0,
then M0 (U1 (v)) 6= 0, and thus U1 (v) = C1 (v) ∈ C. Hence, Mt (v) = M1 (v) =

e−
1
6 tM (C1 (v)). For any t > 1, we assume the property is true for any v′ ∈ V \ C at

iteration t− 1. If Mt (v) 6= Mt−1 (v) we obtain from property 1 that Mt (v) > Mt−1 (v),
and thus

e−
1
6Mt−1 (Ut (v)) > e−

1
6Mt−2 (Ut−1 (v)) .

From the way Ut−1 (v) is chosen we get
Mt−1 (Ut (v)) > Mt−2 (Ut−1 (v)) ≥Mt−2 (Ut (v)) .

Hence, Mt−1 (Ut (v)) 6= Mt−2 (Ut (v)), and from our assumption

Mt (v) = e−
1
6Mt−1 (Ut (v)) = e−

1
6−

1
6 (t−1)M (Ct−1 (Ut (v))) = e−

1
6 tM (Ct (v)) ,

where in the last equality we used the fact that Ct (v) = Ct−1 (Ut (v)). We also get
t− 1 ≥ distG (Ut (v) , Ct−1 (Ut (v))) = distG (Ut (v) , Ct (v)) .

Hence, since distG (v, Ct (v)) ≤ distG (Ut (v) , Ct (v)) + 1, we obtain t ≥ distG (v, Ct (v))
as desired.

3. We proceed by induction on τv . If τv = minc∈C distG (v, c) = 1, then v is center-adjacent
and thus C1 (v) = arg minc∈C distG (v, c), which gives

Mτv (v) = M1 (v) = e−
1
6M (C1 (v)) ≥ e− 1

6 τ
v

.

Otherwise, let v ∈ V \ C be a simple agent with τv > 1 and c = arg minc′∈C distG (v, c′).
It must have a neighbor v′ ∈ N (v) such that c = arg minc′∈C distG (v′, c′) and τv

′
=

distG (v′, c) = distG (v, c)− 1 = τv − 1. We assume the property is true for v′. From the
way the origin neighbor at iteration τv is chosen we obtain that

Mτv (v) = e−
1
6Mτv−1 (Uτv (v))

≥ e− 1
6Mτv−1 (v′)

= e−
1
6Mτv′ (v′)

≥ e−
1
6

(
1+τv

′)
= e−

1
6 τ
v

,

14

as desired.

4. Assuming to the contrary MΘK+1 (v) 6= MΘK (v) (or CΘK+1 (v) 6= CΘK (v)), we get

MΘK+1 (v) = e−
1
6 (ΘK+1)M (CΘK+1 (v)) (property 2)

<
1

K

≤ e− 1
6 τ
v

(τv ≤ 6 lnK)

≤Mτv (v) (property 3)
≤Md6 lnKe (v) , (property 1)

contradicting property 1 and concluding our proof.

Lemma 17. Let C (v) , U (v) ,M (v) be the results of Centers-to-Components. Then the following
properties hold for all simple agents v ∈ V \ C such that 2 ≤ minc∈C distG (v, c) ≤ 6 lnK − 1:

1. C (v) 6= nil and U (v) 6= nil.

2. M (v) = e−
1
6M (U (v)).

3. C (v) = C (U (v)).

Proof. Let v ∈ V be a simple agent such that τv = minc∈C distG (v, c) ≤ 6 lnK − 1.

1. We have

M (v) = MΘK+1 (v)

≥Mτv (v) (property 1 of Lemma 16)
> 0, (property 3 of Lemma 16)

and thus it follows from the algorithm that C (v) 6= nil and U (v) 6= nil as desired.

2. Since τU(v) ≤ τv + 1 ≤ 6 lnK, we get:

M (v) = MΘK+1 (v)

= e−
1
6MΘK (U (v)) (from the algorithm)

= e−
1
6MΘK+1 (U (v)) (property 4 of Lemma 16)

= e−
1
6M (U (v)) .

3. Using property 4 of Lemma 16 again, we obtain

C (v) = CΘK (U (v)) = CΘK+1 (U (v)) = C (U (v)) .

The next lemma shows that all simple agents choose the best possible agent as their origin neighbor.
Lemma 18. Let U (v) and M (v) be the results of Centers-to-Components. Then for all simple
agents v ∈ V \ C such that 2 ≤ minc∈C distG (v, c) ≤ 6 lnK − 1:

U (v) = arg max
v′∈N (v)

M (v′)

Proof. Simple agents choose their origin neighbor to be the one with maximal mass at iteration
ΘK = b12 lnKc. In addition, since τv = minc∈C distG (v, c) ≤ 6 lnK − 1 we obtain τU(v) ≤
τv + 1 ≤ 6 lnK, so we can use property 4 of Lemma 16 and get:

M (U (v)) = MΘK+1 (U (v)) = MΘK (U (v)) ≥MΘK (v′) = MΘK+1 (v′) = M (v′)

as desired.

15

Proof of Lemma 6

Lemma 6. Let C ⊆ V be a center set that is 2-independent, such that every v ∈ V holds
minc∈C distG (v, c) ≤ 6 lnK − 1. Let C (v) , U (v) ,M (v) be the results of Centers-to-Components.
For each c ∈ C, let Vc be its corresponding component, namely, Vc = {v ∈ V | C (v) = c}. Then
the following properties are satisfied:

1. {Vc | c ∈ C} are pairwise disjoint and V =
⋃
c∈C Vc.

2. N (c) ⊆ Vc and Gc is connected for all c ∈ C.

3. M (v) = e−
1
6d(v)M (C (v)) and U (v) = arg minv′∈N (v)∩VC(v)

d (v′) for all v ∈ V \ C.

Proof.

1. The components are trivially disjoint from the way we defined them. Since for any v ∈ V
we assume τv = minc∈C distG (v, c) ≤ 6 lnK − 1, we obtain from property 1 of Lemma
17 that C (v) 6= nil and v ∈

⋃
c∈C Vc as desired.

2. Since C is 2-independent, it directly follows from the algorithm that N (c) ⊆ Vc for all
c ∈ C. Now, let v ∈ V . For a path of connected agents v = u0, . . . , um such that
ui+1 = U (ui) for any i < m, we get from property 3 of Lemma 17 that C (ui) = C (v) for
all i. From property 2 of Lemma 17 we also obtain that M (ui) < M (ui+1) for all i < m
such that ui /∈ C, and thus all non-center agents on the path must be different. Hence, if
m ≥ N we obtain that there must be a center u on the path, and since u = C (u) = C (v),
we get that C (v) must be connected to v. We obtain that all agents are connected to their
center, and thus Gc is connected for all c ∈ C as claimed.

3. We proceed by induction on d (v) = distGC(v)
(v, C (v)). If d (v) = 1 (i.e., v is center-

adjacent), the statement trivially follows from the algorithm. Otherwise, we assume the
statement is true for all v′ ∈ V \C such that d (v′) < d (v). Since GC(v) is connected from
property 2, there must be some v′ ∈ N (v) ∩ VC(v) such that d (v) = d (v′) + 1, and thus

we get from the induction assumption that M (v′) = e−
1
6d(v

′)M (C (v)). From Lemma 18,
we get that M (U (v)) ≥M (v′), and using property 2 of Lemma 17 we obtain

M (v) ≥ e− 1
6M (v′) = e−

1
6 (d(v′)+1)M (C (v)) = e−

1
6d(v)M (C (v)) . (1)

As before, from Lemma 17 there is a path v = u0, . . . , um = C (v) from v to its center
such that U (ui) = ui+1 for any i < m and C (ui) = C (v) for all i. We must have
m ≥ distGC(v)

(v, C (v)) = d (v), and using property 2 of Lemma 17 iteratively we get

M (v) = e−
1
6M (u1) = · · · = e−

1
6mM (C (v)) ≤ e− 1

6d(v)M (C (v)) .

Combining with Eq. (1) we get M (v) = e−
1
6d(v)M (C (v)) as desired. From property 3 of

Lemma 17 we have U (v) ∈ N (v) ∩ VC(v), and using Lemma 18 we get

U (v) = arg max
v′∈N (v)∩VC(v)

M (v′)

= arg max
v′∈N (v)∩VC(v)

e−
1
6d(v

′)M (C (v))

= arg min
v′∈N (v)∩VC(v)

d (v′) ,

concluding our proof.

16

C Proofs from Subsection 5.3

Proof of Lemma 7

Lemma 7. Let C ⊆ V be the center set returned by Compute-Centers-Informed. Then:

1. C is 2-independent.

2. For all v ∈ V , minc∈C distG (v, c) ≤ 6 lnK − 1.

Proof.

1. The statement follows directly from the fact the agent v that is added to the center set at
iteration t holds minc∈Ct distG (v, c) ≥ 3.

2. When the algorithm terminates there are no unsatisfied agents. Hence, for all v ∈ V , either
minc∈C distG (v, c) ≤ 2, in which case we are done, or M (v) ≥ min {|N (v)| ,K} ≥ 2.
In the latter case we obtain from properties 1 and 2 of Lemma 16:

2 ≤M (v) = exp

(
−1

6
distG (v, C (v))

)
M (C (v)) ≤ exp

(
−1

6
distG (v, C (v))

)
K,

and thus minc∈C distG (v, c) ≤ 6 lnK − 1 as desired.

Proof of Theorem 8

Theorem 8. Let C ⊆ V be the center set returned by Compute-Centers-Informed, and let
{Vc ⊆ V | c ∈ C} be the components resulted from Centers-to-Components. For every v ∈ V :

M (v) ≥ e−1 min {|N (v)| ,K} .

Proof. For any center v ∈ C this is trivial. Since all agents are satisfied when the algorithm terminates,
each v ∈ V \ C must either hold M (v) ≥ min {|N (v)| ,K} or minc∈C distG (v, c) ≤ 2. Hence,
we only need to prove the claim for each non-center agent v ∈ V \ C in distance at most 2 from the
center set.

We first inspect the case that the agent is not center-adjacent, namely, minc∈C distG (v, c) = 2. Let
t0 be the last iteration such that minc∈Ct0 distG (v, c) ≥ 3. Note that this means distG (v, ct0) = 2.
In the case that v /∈ St0 , v is satisfied, and since minc∈Ct0 distG (v, c) ≥ 3, it must hold
Mt0 (v) ≥ min {|N (v)| ,K}. Also, ct0 ∈ St0 and thus 3 ≤ minc∈Ct0 distG (ct0 , c) and
Mt0 (ct0) < min {|N (ct0)| ,K}. Now, property 2 of Lemma 16 gives

exp

(
−1

6
min
c∈Ct0

distG (v, c)

)
K ≥Mt0 (v) ≥ min {|N (v)| ,K} .

Recall that v ∈ N (v), so |N (v)| ≥ 2 and thus exp
(
− 1

6 minc∈Ct0 distG (v, c)
)
K ≥ 2. Hence,

3 ≤ minc∈Ct0 distG (v, c) ≤ 6 lnK − 6 ln 2 ≤ 6 lnK − 4 and thus 3 ≤ minc∈Ct0 distG (ct0 , c) ≤
6 lnK − 2. Let u be an agent that is a common neighbor of v and ct0 , namely, u ∈ N (v) ∩N (ct0).
We obtain 2 ≤ minc∈Ct0 distG (u, c) ≤ 6 lnK − 3 as well. We can now use Lemma 18 on ct0 and u
to obtain

min {|N (ct0)| ,K} > Mt0 (ct0) ≥ e− 1
6Mt0 (u) ≥ e− 2

6Mt0 (v) ≥ e− 2
6 min {|N (v)| ,K} .

In the other case that v ∈ St0 , since ct0 = arg maxv′∈St0 |N (v′)|, we obtain |N (v)| ≤ |N (ct0)|,
and anyway min {|N (ct0)| ,K} ≥ e−

2
6 min {|N (v)| ,K}. In all further iterations t > t0, we can

use Lemma 18 on v to obtain

Mt (v) ≥ e− 1
6Mt (u) = e−

2
6 min {|N (ct0)| ,K} ≥ e− 4

6 min {|N (v)| ,K} ,

as desired.

17

Now we look at the case where v is center-adjacent and minc∈C distG (v, c) = 1. Again, let t0 be
the last iteration such that minc∈Ct0 distG (v, c) ≥ 2, and thus distG (v, ct0) = 1. In the case that
v /∈ St0 , either Mt0 (v) ≥ min {|N (v)| ,K} or minc∈Ct0 distG (v, c) = 2, in which case we obtain
from before that Mt0 (v) ≥ e− 4

6 min {|N (v)| ,K}. As before, we can use Lemma 18 on ct0 and get

min {|N (ct0)| ,K} > Mt0 (ct0) ≥ e− 1
6Mt0 (v) ≥ e− 5

6 min {|N (v)| ,K} .

In the other case that v ∈ St0 , again we obtain min {|N (ct0)| ,K} ≥ e− 5
6 min {|N (v)| ,K}. In all

further iterations t > t0, we get

Mt (v) = e−
1
6 min {|N (ct0)| ,K} ≥ e−1 min {|N (v)| ,K} ,

concluding our proof.

D Proofs from Subsection 5.4

We first present the next lemma, which will help us with the analysis of Compute-Centers-Uninformed.
In the following, we denote ∆v = K −min {|N (v)| ,K}.
Lemma 19. Let C ⊆ V be the center set returned by Compute-Centers-Uninformed, and let
{Vc ⊆ V | c ∈ C} be the components resulted from Centers-to-Components. For any v ∈ V such
that v /∈ S∆v , either M (v) ≥ min {|N (v)| ,K}, or there is some c ∈ C such that |N (c)| ≥
e−

1
6 |N (v)| and distG (v, c) ≤ 2.

Proof. Let v ∈ V be an agent such that v /∈ S∆v . At iteration ∆v − 1, it follows directly from the
algorithm that either minc∈C∆v−1

distG (v, c) ≤ 2 or M∆v−1 (v) ≥ min {|N (v)| ,K}. In the first
case, since |N (v)| ≤ |N (c)| for all c ∈ C∆v−1 ⊆ C, we are done.

Otherwise, we denote by cv = C∆v−1 (v) 6= nil the center of agent v at iteration ∆v − 1. Note that
from properties 1 and 2 of Lemma 16, we obtain:

e−
1
6 distG(v,cv)M (cv) ≥M∆v−1 (v) ≥ min {|N (v)| ,K} ≥ 2,

and thus distG (v, cv) ≤ 6 lnK − 1. From Lemma 17, we get that C∆v−1 (U∆v−1 (v)) = cv and

e−
1
6 distG(U∆v−1(v),cv)M (cv) ≥M∆v−1 (U∆v−1 (v))

= e
1
6M∆v−1 (v)

≥ min {|N (v)| ,K}
≥ 2.

Thus, we get distG (U∆v−1 (v) , cv) ≤ 6 lnK − 1 as well. Using this fact iteratively, we get that
there is a path v = u0, . . . , um = cv such that U∆v−1 (ui) = ui+1, distG (ui, c

v) ≤ 6 lnK − 1

and M∆v−1 (ui+1) = e
1
6M∆v−1 (ui) for any i < m. Notice that this also means M∆v−1 (v) =

e−
1
6mM (cv).

Now, assume to the contrary some simple agent on the path other than v becomes a center or center-
adjacent after iteration ∆v − 1, and let uj be the first such agent, where 1 ≤ j < m − 1. Let
u ∈ N (uj) be the neighbor of uj that joins the center set. Note that since ∆u ≥ ∆v, we obtain
|N (u)| ≤ |N (v)|. At iteration ∆u − 1, all agents in the path are still simple agents (except cv and
um−1), so we can use Lemma 18 iteratively to obtain

M∆u−1 (u) ≥ e− 1
6M∆u−1 (uj)

≥ · · · ≥ e− 1
6 (m−j)M (um−1)

= e−
1
6 (m−j+1)M (cv)

≥ e− 1
6mM (cv)

= M∆v−1 (v)

≥ min {|N (v)| ,K}
≥ min {|N (u)| ,K} .

18

Hence, u /∈ S∆v which gives u /∈ C∆u , and thus uj remains a simple agent. We get that all simple
agents on the path at iteration ∆v − 1 except v must remain simple agents when the algorithm
terminates. If v remain a simple agent as well, we obtain from Lemma 18 that

M (v) ≥ e− 1
6M (u1) ≥ · · · ≥ e− 1

6mM (cv) = M∆v−1 (v) ≥ min {|N (v)| ,K}

as desired. We are left with the case that some u ∈ N (v) becomes a center after iteration ∆v, and
thus M∆u−1 (u) < min {|N (u)| ,K}. We can again use Lemma 18 iteratively to get

min {|N (u)| ,K} > M∆u−1 (u)

≥ e− 1
6M∆u−1 (v)

≥ · · · ≥ e− 1
6mM (um−1)

= e−
1
6 (m+1)M (cv)

= e−
1
6M∆v−1 (v)

≥ e− 1
6 min {|N (v)| ,K} ,

concluding our proof.

Proof of Lemma 10

Lemma 10. Compute-Centers-Uninformed runs for less than 12K ln
(
K2N̄T

)
steps.

Proof. There are K iterations in Compute-Centers-Uninformed, such that at each iteration the agents
run Luby’s algorithm for 4

⌈
3 ln

(
N̄
√
KT

)⌉
steps, and Centers-to-Components for ΘK + 1 =

b12 lnKc+ 1 steps. We obtain that Compute-Centers-Uninformed terminates after(
4
⌈
3 ln

(
N̄
√
KT

)⌉
+ b12 lnKc+ 1

)
K ≤ 12K ln

(
K2N̄T

)
steps.

Proof of Lemma 11

Lemma 11. Let C ⊆ V be the center set resulted from Compute-Centers-Uninformed, such that
Luby’s algorithm succeeded at all iterations of the algorithm. Then:

1. C is 2-independent.

2. For all v ∈ V , minc∈C distG (v, c) ≤ 6 lnK − 1.

Proof.

1. We get that at each iteration, a 2-independent set is added to the center set, such that
every agent v in that set holds minc∈Ct−1

distG (v, c) ≥ 3. Hence, the final center set is
2-independent as claimed.

2. From Lemma 19 we have either minc∈C distG (v, c) ≤ 2, in which case we are done, or
M (v) ≥ min {|N (v)| ,K} ≥ 2. In the latter case we obtain:

2 ≤M (v)

≤ exp

(
−1

6
distG (v, C (v))

)
M (C (v)) (Properties 1 and 2 of Lemma 16)

≤ exp

(
−1

6
distG (v, C (v))

)
K,

and thus minc∈C distG (v, c) ≤ 6 lnK − 1 as desired.

19

Proof of Theorem 12

Theorem 12. Let C ⊆ V be the center set resulted from Compute-Centers-Uninformed, such that
Luby’s algorithm succeeded at all iterations of the algorithm, and also let {Vc ⊆ V | c ∈ C} be the
components resulted from Centers-to-Components. For every v ∈ V :

M (v) ≥ e−1 min {|N (v)| ,K} .

Proof. In the case that v ∈ S∆v , since W∆v is a maximal 2-independet set of S∆v , we get that either
v ∈ W∆v ⊆ C or distG (v, v′) ≤ 2 for some v′ ∈ W∆v ⊆ C. In the case that v /∈ S∆v , we obtain
from Lemma 19 that either M (v) ≥ min {|N (v)| ,K}, in which case we are done, or there is some
center c′ ∈ C such that distG (v, c′) ≤ 2 and e−

1
6 min {|N (v)| ,K} ≤ min {|N (c′)| ,K}.

Hence we only need to prove the theorem for the case that there is some center c′ ∈ C such that
distG (v, c′) ≤ 2 and e−

1
6 min {|N (v)| ,K} ≤ min {|N (c′)| ,K}. We first inspect the case that v

is not a center or center-adjacent. Let u be an agent that is a common neighbor of v and c′, namely,
u ∈ N (v) ∩N (c′). Lemma 18 yields

M (v) ≥ e− 1
6M (u) = e−

2
6 min {|N (c′)| ,K} ≥ e− 3

6 min {|N (v)| ,K} ,

as desired. If v is a center the claim is trivial, so we are left with the case that v is center-adjacent to a
center c ∈ C. Note that distG (c, c′) ≤ 3. If min {|N (c′)| ,K} ≤ min {|N (c)| ,K} we are done.
Otherwise, in the case that min {|N (c)| ,K} < min {|N (c′)| ,K}, we obtain

min {|N (c)| ,K} > M∆c−1 (c)

≥ e− 3
6M∆c−1 (c′) (iterative application of Lemma 18)

= e−
3
6 min {|N (c′)| ,K} (c′ ∈ C∆c−1)

≥ e− 4
6 min {|N (v)| ,K} .

Hence,
M (v) = e−

1
6 min {|N (c)| ,K} ≥ e− 5

6 min {|N (v)| ,K} ,
concluding our proof.

Proof of Corollary 13

Corollary 13. Let T ≥ K2 lnK and N̄ ≥ N . Let C ⊆ V be the center set resulted from
Compute-Centers-Uninformed, and let {Vc ⊆ V | c ∈ C} be the components resulted from Centers-
to-Components. Using the center-based policy, we obtain for every v ∈ V :

RT (v) ≤ 12

(
K ln

(
K2N̄T

)
+

√
(lnK)

(
1 +

K

|N (v)|

)
T

)
+ 1 = Õ

(√(
1 +

K

|N (v)|

)
T

)
.

Proof. Luby’s algorithm succeeds with probability 1− 1
KT at each iteration of Compute-Centers-

Uninformed. Hence, from the union bound, it succeeds at all iterations with probability 1− 1
T . In

that case, from Lemma 11, we can use Theorem 5 and Theorem 12 to bound the expected regret of
agent v after Compute-Centers-Uninformed finished by:

7

√
(lnK)

K

M (v)
T ≤ 7

√
(lnK) e

K

min {|N (v)| ,K}
T ≤ 12

√
(lnK)

(
1 +

K

|N (v)|

)
T .

From Lemma 10, Compute-Centers-Uninformed finishes after no more than 12K ln
(
K2N̄T

)
steps,

so the overall expected regret in this case is bounded by:

12

(
K ln

(
K2N̄T

)
+

√
(lnK)

(
1 +

K

|N (v)|

)
T

)
.

20

In the case that Luby’s algorithm failed at one of the iterations, we can bound the regret by T , the
maximal regret possible. Hence, we obtain the desired result:

RT (v) ≤ 12

(
1− 1

T

)(
K ln

(
K2N̄T

)
+

√
(lnK)

(
1 +

K

|N (v)|

)
T

)
+

1

T
T

≤ 12

(
K ln

(
K2N̄T

)
+

√
(lnK)

(
1 +

K

|N (v)|

)
T

)
+ 1.

E Proofs from Subsection 5.5

Proof of Corollary 14

Corollary 14. Let T ≥ K2 lnK. Let C ⊆ V be the center set resulted from Compute-Centers-
Informed or Compute-Centers-Uninformed, and let {Vc ⊆ V | c ∈ C} be the components resulted
from Centers-to-Components. Using the center-based policy, we get:

1

N

∑
v∈V

RT (v) = Õ

(√(
1 +

K

N
α (G)

)
T

)
.

Proof. Using either Compute-Centers-Informed or Compute-Centers-Uninformed to partition the
graph for the center-based policy, we get from Corollaries 9 and 13 that for all v ∈ V :

RT (v) = Õ

(√(
1 +

K

|N (v)|

)
T

)
.

Hence,

1

N

∑
v∈V

RT (v) = Õ

(
1

N

∑
v∈V

√(
1 +

K

|N (v)|

)
T

)
= Õ

(
1√
N

√∑
v∈V

(
1 +

K

|N (v)|

)
T

)
,

where the last equality is due to the Cauchy–Schwarz inequality. Since
∑
v∈V

1
|N (v)| ≤ α (G) [Wei,

1981], we obtain:

1

N

∑
v∈V

RT (v) = Õ

√√√√(1 +
K

N

∑
v∈V

1

|N (v)|

)
T

 = Õ

(√(
1 +

K

N
α (G)

)
T

)
as desired.

F Luby’s algorithm

Let G = 〈V,E〉 be an undirected connected graph and let U ⊆ V . We can find a 2-MIS of U in a
distributed manner with high probability by using Luby’s algorithm [Luby, 1986, Alon et al., 1986]
on
(
G2
)
|U , detailed in Algorithm 6.

At each iteration of the algorithm, every agent in U picks a number uniformly from [0, 1]. Agents
that picked the maximal number among their neighbors of distance 2 join the 2-MIS, and their
neighbors of distance 2 stop participating. A 2-MIS is computed after Tδ =

⌈
3 ln

(
|V |√
δ

)⌉
iterations

with probability 1− δ.

To simulate communication over G2, we use 2 steps to deliver a message. First, the agents send their
message. Then, the agents send a message based on the messages they received in the previous step.
In Luby’s algorithm, agents only need to know the agent in their neighborhood with the maximal
random number, or whether an agent in their neighborhood joined the MIS. Hence, every message
has length of order Õ (1).

21

Algorithm 6 Luby’s algorithm on
(
G2
)
|U - agent v

Parameters: Agent set U ⊆ V ; Error probability δ > 0.
Initialize: Participating agents P0 = U .

1: Tδ =
⌈
3 ln

(
|V |√
δ

)⌉
2: for 1 ≤ t ≤ Tδ do
3: if v ∈ Pt then
4: Pick a number rvt uniformly from [0, 1].
5: Send the following message to the set N (v): mt,1 (v) = 〈v, t, 1, rvt 〉.
6: end if
7: Receive all messages mt,1 (v′) from v′ ∈ N (v).
8: if N (v) ∩ Pt 6= ∅ then
9: Set ut = arg maxv′∈N (v)∩Pt

(
rv
′

t

)
.

10: Send the following message to the set N (v): mt,2 (v) = 〈ut, t, 2, rut 〉.
11: end if
12: Receive all messages mt,2 (v′) from v′ ∈ N (v).

13: if v = arg maxv′∈Pt∧distG(v,v′)≤2

(
rv
′

t

)
then

14: Join the 2-MIS of U .
15: Send the following message to the set N (v): mt,3 (v) = 〈v, t, 3, JOINED〉.
16: end if
17: Receive all messages mt,3 (v′) from v′ ∈ N (v).
18: if ∃v′ ∈ N (v) (v′ joined the 2-MIS) then
19: Send the following message to the setN (v): mt,4 (v) = 〈v, t, 4,NEIGHBOR-JOINED〉.
20: end if
21: Receive all messages mt,4 (v′) from v′ ∈ N (v).
22: if v ∈ Pt and ∃v′ ∈ Pt (distG (v, v′) ≤ 2 ∧ v′ joined the 2-MIS) then
23: Stop participating: v /∈ Pt+1.
24: else if v ∈ Pt then
25: Continue participating: v ∈ Pt+1.
26: end if
27: end for

For completeness we also provide an overview of the analysis. It follows directly from the algorithm
that it outputs an independent set of

(
G2
)
|U . We only need to show it is maximal with high probability,

and we prove it using the following lemma (for proof, see [Luby, 1986, Alon et al., 1986]):
Lemma 20. Let Pt ⊆ U be the set of participating agents at iteration t of Luby’s algorithm on(
G2
)
|U , and let mt be the number of edges of

(
G2
)
|Pt

. We obtain for all t ≥ 1:

E [mt+1] ≤ 1

2
E [mt] .

With this lemma we can now show Luby’s algorithm indeed outputs a 2-MIS with high probability.
Corollary 21. Let W ⊆ U be the result of Luby’s algorithm on

(
G2
)
|U . Then with probability 1− 1

δ ,
W is a 2-MIS of U .

Proof. As we previously mentioned, we only need to show W is a maximal independent set with
probability 1− δ. This is equivalent to the statement that PTδ+1 is empty. If we denote the number
of edges of

(
G2
)
|Pt

by mt , we get that it suffices to prove that mTδ = 0 with high probability. By
an iterative application of Lemma 20 we obtain:

E [mTδ] ≤
1

2
E [mTδ−1] ≤ · · · ≤ 1

2Tδ
E [m0] ≤ |V |

2

2Tδ
.

Hence, we can conclude our proof with Markov’s inequality:

Pr [mTδ 6= 0] = Pr [mTδ ≥ 1] ≤ E [mTδ] ≤
|V |2

2Tδ
=

|V |2

2

⌈
3 ln
(
|V |√
δ

)⌉ ≤ δ.

22

Algorithm 7 The exponential-weights algorithm (Exp3)
Parameters: Number of arms K; Time horizon T ; Learning rate η (v).
Initialize: wv1 (i)← 1

K for all i ∈ A.
1: for 1 ≤ t ≤ T do
2: Set pvt (i)← wvt (i)

Wv
t

for all i ∈ A, where W v
t =

∑
i∈A w

v
t (i).

3: Play an action It (v) drawn from pvt = 〈pvt (1) , . . . , pvt (K)〉.
4: Observe loss `t (It (v)).
5: Update for all i ∈ A: wvt+1 (i)← wvt (i) exp

(
−η (v) ˆ̀v

t (i)
)

, where

ˆ̀v
t (i) =

`t (i)

Et [Bvt (i)]
Bvt (i) ,

and Bvt (i) it the event that v observed `t (It (v)).
6: end for

G Proofs from Section 2

For completeness, we give proofs for the preliminary lemmas. The exponential-weights algorithm is
given in Algorithm 7.

Proof of Lemma 1

Lemma 1. Assuming agent v uses the exponential-weights algorithm, its expected regret satisfies

RT (v) ≤ lnK

η (v)
+
η (v)

2
E

[
T∑
t=1

K∑
i=1

pvt (i) ˆ̀v
t (i)

2

]
.

Proof. We have

W v
t+1

W v
t

=
∑
i∈A

wvt+1 (i)

W v
t

=
∑
i∈A

wvt (i)

W v
t

exp
(
−η (v) ˆ̀v

t (i)
)

=
∑
i∈A

pvt (i) exp
(
−η (v) ˆ̀v

t (i)
)

≤
∑
i∈A

pvt (i)
(

1− η (v) ˆ̀v
t (i) + η (v)

2 ˆ̀v
t (i)

2
)

(e−x ≤ 1− x+
1

2
x2 for x ≥ 0)

= 1− η (v)
∑
i∈A

pvt (i) ˆ̀v
t (i) +

η (v)
2

2

∑
i∈A

pvt (i) ˆ̀v
t (i)

2
.

Taking logs and using ln (1 + x) ≤ x we obtain

ln
W v
t+1

W v
t

≤ −η (v)
∑
i∈A

pvt (i) ˆ̀v
t (i) +

η (v)
2

2

∑
i∈A

pvt (i) ˆ̀v
t (i)

2
.

Summing gives

lnW v
T+1 ≤ −η (v)

T∑
t=1

∑
i∈A

pvt (i) ˆ̀v
t (i) +

η (v)
2

2

T∑
t=1

∑
i∈A

pvt (i) ˆ̀v
t (i)

2
. (2)

23

Now, for any fixed action k we also have

lnW v
T+1 ≥ lnwvT+1 (k) = −η (v)

T∑
t=1

ˆ̀v
t (k)− lnK.

Combining with Eq. (2) we obtain

T∑
t=1

∑
i∈A

pvt (i) ˆ̀v
t (i)−

T∑
t=1

ˆ̀v
t (k) ≤ lnK

η (v)
+
η (v)

2

2

T∑
t=1

∑
i∈A

pvt (i) ˆ̀v
t (i)

2
.

This is true for every k ∈ A. Note that E [·] = E [Et [·]], and since Et [`t (It (v))] =
∑
i∈A p

v
t (i) `t (i)

and Et
[
ˆ̀v
t (i)

]
= `t (i), we get

RT (v) = E

[
T∑
t=1

`t (It (v))−min
i∈A

T∑
t=1

`t (i)

]

≤ E

[
T∑
t=1

`t (It (v))

]
−min

i∈A
E

[
T∑
t=1

`t (i)

]

= E

[
T∑
t=1

∑
i∈A

pvt (i) ˆ̀v
t (i)

]
−min

i∈A
E

[
T∑
t=1

ˆ̀v
t (i)

]

≤ lnK

η (v)
+
η (v)

2

2
E

[
T∑
t=1

∑
i∈A

pvt (i) ˆ̀v
t (i)

2

]

as desired.

Proof of Lemma 2

Lemma 2. Assuming agent v uses the exponential-weights algorithm with a learning rate η (v) ≤ 1
2K ,

then for all i ∈ A: (
1− η (v) ˆ̀v

t (i)
)
pvt (i) ≤ pvt+1 (i) ≤ 2pvt (i) .

Proof. From the exponential-weights update rule we have

pvt+1 (i) =
wvt+1 (i)

W v
t+1

=
W v
t

W v
t+1

exp
(
−η (v) ˆ̀v

t (i)
)
pvt (i)

≥ exp
(
−η (v) ˆ̀v

t (i)
)
pvt (i) (W v

t+1 ≤W v
t)

≥
(

1− η (v) ˆ̀v
t (i)

)
pvt (i) . (1− x ≤ e−x)

as stated in the first inequality in the lemma. For the second inequality, note that

pvt (i) ˆ̀v
t (i) = pvt (i)

`t (i)

Et [Bvt (i)]
Bvt (i) ≤ pvt (i)

Et [Bvt (i)]
≤ 1. (3)

24

Hence,

pvt+1 (i) =
wvt+1 (i)

W v
t+1

≤ wvt (i)

W v
t+1

=

∑
j∈A w

v
t (j)∑

j∈A w
v
t (j) exp

(
−η (v) ˆ̀v

t (j)
)pvt (i)

≤
∑
j∈A w

v
t (j)∑

j∈A w
v
t (j)

(
1− η (v) ˆ̀v

t (j)
)pvt (i) (1− x ≤ e−x)

=
1

1− η (v)
∑
j∈A p

v
t (j) ˆ̀v

t (j)
pvt (i)

≤ 1

1− η (v)K
pvt (i) . (Eq. (3))

Assuming η (v) ≤ 1
2K , we obtain the desired bound.

25

