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Abstract

We propose a new way of constructing invertible neural networks by combining
simple building blocks with a novel set of composition rules. This leads to a
rich set of invertible architectures, including those similar to ResNets. Inversion
is achieved with a locally convergent iterative procedure that is parallelizable
and very fast in practice. Additionally, the determinant of the Jacobian can be
computed analytically and efficiently, enabling their generative use as flow models.
To demonstrate their flexibility, we show that our invertible neural networks are
competitive with ResNets on MNIST and CIFAR-10 classification. When trained
as generative models, our invertible networks achieve competitive likelihoods on
MNIST, CIFAR-10 and ImageNet 32×32, with bits per dimension of 0.98, 3.32
and 4.06 respectively.

1 Introduction

Invertible neural networks have many applications in machine learning. They have been employed to
investigate representations of deep classifiers [15], understand the cause of adversarial examples [14],
learn transition operators for MCMC [28, 18], create generative models that are directly trainable by
maximum likelihood [6, 5, 24, 16, 9, 1], and perform approximate inference [27, 17].

Many applications of invertible neural networks require that both inverting the network and computing
the Jacobian determinant be efficient. While typical neural networks are not invertible, achieving these
properties often imposes restrictive constraints to the architecture. For example, planar flows [27]
and Sylvester flow [2] constrain the number of hidden units to be smaller than the input dimension.
NICE [5] and Real NVP [6] rely on dimension partitioning heuristics and specific architectures
such as coupling layers, which could make training more difficult [1]. Methods like FFJORD [9],
i-ResNets [1] have fewer architectural constraints. However, their Jacobian determinants have to be
approximated, which is problematic if repeatedly performed at training time as in flow models.

In this paper, we propose a new method of constructing invertible neural networks which are flexible,
efficient to invert, and whose Jacobian can be computed exactly and efficiently. We use triangular
matrices as our basic module. Then, we provide a set of composition rules to recursively build
more complex non-linear modules from the basic module, and show that the composed modules are
invertible as long as their Jacobians are non-singular. As in previous work [6, 24], the Jacobians
of our modules are triangular, allowing efficient determinant computation. The inverse of these
modules can be obtained by an efficiently parallelizable fixed-point iteration method, making the cost
of inversion comparable to that of an i-ResNet [1] block.

Using our composition rules and masked convolutions as the basic triangular building block, we
construct a rich set of invertible modules to form a deep invertible neural network. The architecture of
our proposed invertible network closely follows that of ResNet [10]—the state-of-the-art architecture
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of discriminative learning. We call our model Masked Invertible Network (MintNet). To demonstrate
the capacity of MintNets, we first test them on image classification. We found that a MintNet
classifier achieves 99.6% accuracy on MNIST, matching the performance of a ResNet with a similar
architecture. On CIFAR-10, it achieves 91.2% accuracy, comparable to the 92.6% accuracy of ResNet.
When using MintNets as generative models, they achieve the new state-of-the-art results of bits per
dimension (bpd) on uniformly dequantized images. Specifically, MintNet achieves bpd values of 0.98,
3.32, and 4.06 on MNIST, CIFAR-10 and ImageNet 32×32, while former best published results are
0.99 (FFJORD [9]), 3.35 (Glow [16]) and 4.09 (Glow) respectively. Moreover, MintNet uses fewer
parameters and less computational resources. Our MNIST model uses 30% fewer parameters than
FFJORD [9]. For CIFAR-10 and ImageNet 32×32, MintNet uses 60% and 74% fewer parameters
than the corresponding Glow [16] models. When training on dataset such as CIFAR-10, MintNet
required 2 GPUs for approximately 5 days, while FFJORD [9] used 6 GPUs for approximately 5
days, and Glow [16] used 8 GPUs for approximately 7 days.

2 Background

Consider a neural network f : RD → RL that maps a data point x ∈ RD to a latent representation
z ∈ RL. When for every z ∈ RL there exists a unique x ∈ RD such that f(x) = z, we call f an
invertible neural network. There are several basic properties of invertible networks. First, when f(x)
is continuous, a necessary condition for f to be invertible is D = L. Second, if f1 : RD → RD
and f2 : RD → RD are both invertible, f = f2 ◦ f1 will also be invertible. In this work, we mainly
consider applications of invertible neural networks to classification and generative modeling.

2.1 Classification with invertible neural networks

Neural networks for classification are usually not invertible because the number of classes L is usually
different from the input dimension D. Therefore, when discussing invertible neural networks for
classification, we separate the classifier into two parts f = f2 ◦ f1: feature extraction z = f1(x) and
classification y = f2(z), where f2 is usually the softmax function. We say the classifier is invertible
when f1 is invertible. Invertible classifiers are arguably more interpretable, because a prediction can
be traced down by inverting latent representations [15, 14].

2.2 Generative modeling with invertible neural networks

An invertible network f : x ∈ RD 7→ z ∈ RD can be used to warp a complex probability density
p(x) to a simple base distribution π(z) (e.g., a multivariate standard Gaussian) [5, 6]. Under the
condition that both f and f−1 are differentiable, the densities of p(x) and π(z) are related by the
following change of variable formula

log p(x) = log π(z) + log |det(Jf (x))|, (1)

where Jf (x) denotes the Jacobian of f(x) and we require Jf (x) to be non-singular so that
log |det(Jf (x))| is well-defined. Using this formula, p(x) can be easily computed if the Jaco-
bian determinant det(Jf (x)) is cheaply computable and π(z) is known.

Therefore, an invertible neural network fθ(x) implicitly defines a normalized density model pθ(x),
which can be directly trained by maximum likelihood. The invertibility of fθ is critical to fast sample
generation. Specifically, in order to generate a sample x from pθ(x), we can first draw z ∼ π(z),
and warp it back through the inverse of fθ to obtain x = f−1θ (z).

Note that multiple invertible models f1, f2, · · · , fK can be stacked together to form a deeper invertible
model f = fK ◦ · · · ◦ f2 ◦ f1, without much impact on the inverse and determinant computation.
This is because we can sequentially invert each component, i.e., f−1 = f−11 ◦ f−12 ◦ · · · ◦ f−1K ,
and the total Jacobian determinant equals the product of each individual Jacobian determinant, i.e.,
|det(Jf )| = |det(Jf1)||det(Jf2)| · · · |det(JfK )|.

3 Building invertible modules compositionally

In this section, we discuss how simple blocks like masked convolutions can be composed to build
invertible modules that allow efficient, parallelizable inversion and determinant computation. To this
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Figure 1: Illustration of a masked convolution with 3 filters and kernel size 3× 3. Solid checkerboard
cubes inside each filter represent unmasked weights, while the transparent blue blocks represent the
weights that have been masked out. The receptive field of each filter on the input feature maps is
indicated by regions shaded with the pattern (the colored square) below the corresponding filter.

end, we first introduce the basic building block of our models. Then, we propose a set of composition
rules to recursively build up complex non-linear modules with triangular Jacobians. Next, we prove
that these composed modules are invertible as long as their Jacobians are non-singular. Finally, we
discuss how these modules can be inverted efficiently using numerical methods.

3.1 The basic module

We start from considering linear transformations f(x) = Wx + b, with W ∈ RD×D, and b ∈ RD.
For a general W, computing its Jacobian determinant requires O(D3) operations. We therefore
choose W to be a triangular matrix. In this case, the Jacobian determinant det(Jf (x)) = det(W) is
the product of all diagonal entries of W, and the computational complexity is reduced to O(D). The
linear function f(x) = Wx + b with W being triangular is our basic module.

Masked convolutions. Convolution is a special type of linear transformation that is very effective
for image data. The triangular structure of the basic module can be achieved using masked con-
volutions (e.g., causal convolutions in PixelCNN [22]). We provide the formula of our masks in
Appendix B and an illustration of a 3× 3 masked convolution with 3 filters in Fig. 1. Intuitively, the
causal structure of the filters (ordering of the pixels) enforces a triangular structure.

3.2 The calculus of building invertible modules

Complex non-linear invertible functions can be constructed from our basic modules in two steps.
First, we follow several composition rules so that the composed module has a triangular Jacobian.
Next, we impose appropriate constraints so that the module is invertible. To simplify the discussion,
we only consider modules with lower triangular Jacobians here, and we note that it is straightforward
to extend the analysis to modules with upper triangular Jacobians.

The following proposition summarizes several rules to compositionally build new modules with
triangular Jacobians using existing ones.

Proposition 1. Define F as the set of all continuously differentiable functions whose Jacobian is
lower triangular. Then F contains the basic module in Section 3.1, and is closed under the following
composition rules.

• Rule of addition. f1 ∈ F ∧ f2 ∈ F ⇒ λf1 + µf2 ∈ F , where λ, µ ∈ R.

• Rule of composition. f1 ∈ F ∧f2 ∈ F ⇒ f2 ◦f1 ∈ F . A special case is f ∈ F ⇒ h◦f ∈
F , where h(·) is a continuously differentiable non-linear activation function that is applied
element-wise.

The proof of this proposition is straightforward and deferred to Appendix A. By repetitively applying
the rules in Proposition 1, our basic linear module can be composed to construct complex non-linear
modules having continuous and triangular Jacobians. Note that besides our linear basic modules,
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Figure 2: Venn Diagram relationships between invertible functions (I), the function sets of F and
M, functions that meet the conditions of Theorem 1 (det(Jf ) 6= 0), functions whose Jacobian is
triangular and Jacobian diagonals are strictly positive (diag(Jf ) > 0), functions whose Jacobian is
triangular and Jacobian diagonals are all 1s (diag(Jf ) = 1).

other functions with triangular and continuous Jacobians can also be made more expressive using the
composition rules. For example, the layers of dimension partitioning models (e.g., NICE [5], Real
NVP [6], Glow [16]) and autoregressive flows (e.g., MAF [24]) all have continuous and triangular
Jacobians and therefore belong to F . Note that the rule of addition in Proposition 1 preserves
triangular Jacobians but not invertibility. Therefore, we need additional constraints if we want the
composed functions to be invertible.

Next, we state the condition for f ∈ F to be invertible, and denote the invertible subset of F asM.

Theorem 1. If f ∈ F and Jf (x) is non-singular for all x in the domain, then f is invertible.

Proof. A proof can be found in Appendix A.

The non-singularity of Jf (x) constraint in Theorem 1 is natural in the context of generative modeling.
This is because in order for Eq. (1) to make sense, log |det(Jf )| has to be well-defined, which
requires Jf (x) to be non-singular.

In many cases, Theorem 1 can be easily used to check and enforce the invertibility of f ∈ F . For
example, the layers of autoregressive flow models and dimension partitioning models can all be
viewed as elements of F because they are continuously differentiable and have triangular Jacobians.
Since the diagonal entries of their Jacobians are always strictly positive and hence non-singular, we
can immediately conclude that they are invertible with Theorem 1, thus generalizing their model-
specific proofs of invertibility.

In Fig. 2, we provide a Venn Diagram to illustrate the set of functions that satisfy the condition of
Theorem 1. As depicted by the orange set labeled by det(Jf ) 6= 0, Theorem 1 captures a subset of
M where the Jacobians of functions are non-singular so that the change of variable formula is usable.
Note the condition in Theorem 1 is sufficient but not necessary. For example, f(x) = x3 ∈ M is
invertible, but Jf (x = 0) = 3x2|x=0 = 0 is singular. Many previous invertible models with special
architectures, such as NICE, Real NVP, and MAF, can be viewed as elements belonging to subsets of
det(Jf ) 6= 0.

3.3 Efficient inversion of the invertible modules

In this section, we show that when the conditions in Theorem 1 hold, not only do we know that f is
invertible (f ∈M), but also we have a fixed-point iteration method to invert f with strong theoretical
guarantees and good performance in practice.

The pseudo-code of our proposed inversion algorithm is described in Algorithm 1. Theoretically, we
can prove that this method is locally convergent—as long as the initial value is close to the true value,
the method is guaranteed to find the correct inverse. We formally summarize this result in Theorem 2.

Theorem 2. The iterative method of Algorithm 1 is locally convergent whenever 0 < α < 2.
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Algorithm 1 Fixed-point iteration method for computing f−1(z).

Require: T, α . T is the number of iterations; 0 < α < 2 is the step size.
1: Initialize x0

2: for t← 1 to T do
3: Compute f(xt−1)
4: Compute diag(Jf (xt−1))
5: xt ← xt−1 − α diag(Jf (xt−1))−1(f(xt−1)− z)
6: end for

return xT

Proof. We provide a more rigorous proof in Appendix A.

In practice, the method is also easily parallelizable on GPUs, making the cost of inverting f ∈M
similar to that of an i-ResNet [1] layer. Within each iteration, the computation is mostly matrix
operations that can be vectorized and run efficiently in parallel. Therefore, the time cost will be
roughly proportional to the number of iterations, i.e., O(T ). As will be shown in our experiments,
Algorithm 1 converges fast and usually the error quickly becomes negligible when T � D. This is in
stark contrast to existing methods of inverting autoregressive flow models such as MAF [24], where
D univariate equations need to be solved sequentially, requiring at least O(D) iterations. There are
also other approaches for inverting f . For example, the bisection method is guaranteed to converge
globally, but its computational cost is O(D), and is usually much more expensive than Algorithm 1.
Note that as discussed earlier, autoregressive flow models can also be viewed as special cases of our
framework. Therefore, Algorithm 1 is also applicable to inverting autoregressive flow models and
could potentially result in large improvements of sampling speed.

4 Masked Invertible Networks

We show that techniques developed in Section 3 can be used to build our Masked Invertible Network
(MintNet). First, we discuss how we compose several masked convolutions to form the Masked
Invertible Layer (Mint layer). Next, we stack multiple Mint layers to form a deep neural network, i.e.,
the MintNet. Finally, we compare MintNets with several existing invertible architectures.

4.1 Building the Masked Invertible Layer

We construct an invertible module inM that serves as the basic layer of our MintNet. This invertible
module, named Mint layer, is defined as

L(x) = t� x +

K∑
i=1

W3
i h

( K∑
j=1

W2
ijh(W1

jx + b1
j ) + b2

ij

)
+ b3

i , (2)

where � denotes the elementwise multiplication, {W1
i }|Ki=1, {W2

ij}|1≤i,j≤K , and {W3
i }|Ki=1 are all

lower triangular matrices with additional constraints to be specified later, and t > 0. Additionally,
Mint layers use a monotonic activation function h, so that h′ ≥ 0. Common choices of h include
ELU [4], tanh and sigmoid. Note that every individual weight matrix has the same size, and the 3
groups of weights {W1

i }|Ki=1, {W2
ij}|1≤i,j≤K and {W3

i }|Ki=1 can be implemented with 3 masked
convolutions (see Appendix B). We design the form of L(x) so that it resembles a ResNet / i-ResNet
block that also has 3 convolutions with K × C filters, with C being the number of channels of x.
When using Algorithm 1 to invert Mint layers, we initialize x0 = z� 1

t .

From Proposition 1 in Section 3.2, we can easily conclude that L ∈ F . Now, we consider additional
constraints on the weights so that L ∈ M, i.e., it is invertible. Note that the analytic form of its
Jacobian is

JL(x) =

K∑
i=1

W3
iAi

K∑
j=1

W2
ijBjW

1
j + t, (3)
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with Ai = diag(h′
(∑K

j=1 W
2
ijh(W1

jx + b1
j ) + b2

ij

)
) ≥ 0, Bj = diag(h′(W1

jx + b1
j )) ≥ 0, and

t > 0. Therefore, once we impose the following constraint

diag(W3
i ) diag(W2

ij) diag(W1
j ) ≥ 0,∀1 ≤ i, j ≤ K, (4)

we have diag(JL(x)) > 0, which satisfies the condition of Theorem 1 and as a conse-
quence we know L ∈ M. In practice, the constraint Eq. (4) can be easily implemented.
For all 1 ≤ i, j ≤ K, we impose no constraint on W3

i and W1
j , but replace W2

ij with
V2
ij = W2

ij sign(diag(W2
ij)) sign(diag(W3

iW
1
j )). Note that diag(V2

ij) has the same signs as
diag(W3

i ) diag(W1
j ) and therefore diag(W3

i ) diag(V2
ij) diag(W1

j ) ≥ 0. Moreover, V2
ij is almost

everywhere differentiable w.r.t. W2
ij , which allows gradients to backprop through.

4.2 Constructing the Masked Invertible Network

In this section, we introduce design choices that help stack multiple Mint layers together to form
an expressive invertible neural network, namely the MintNet. The full MintNet is constructed by
stacking the following paired Mint layers and squeezing layers.

Paired Mint layers. As discussed above, our Mint layer L(x) always has a triangular Jacobian. To
maximize the expressive power of our invertible neural network, it is undesirable to constrain the
Jacobian of the network to be triangular since this limits capacity and will cause blind spots in the
receptive field of masked convolutions. We thus always pair two Mint layers together—one with a
lower triangular Jacobian and the other with an upper triangular Jacobian, so that the Jacobian of the
paired layers is not triangular, and blind spots can be eliminated.

Squeezing layers. Subsampling is important for enlarging the receptive field of convolutions.
However, common subsampling operations such as pooling and strided convolutions are usually not
invertible. Following [6] and [1], we use a “squeezing” operation to reshape the feature maps so
that they have smaller resolution but more channels. After a squeezing operation, the height and
width will decrease by a factor of k , but the number of channels will increase by a factor of k2. This
procedure is invertible and the Jacobian is an identity matrix. Throughout the paper, we use k = 2.

4.3 Comparison to other approaches

In what follows we compare MintNets to several existing methods for developing invertible archi-
tectures. We will focus on architectures with a tractable Jacobian determinant. However, we note
that there are models (cf ., [7, 21, 8]) that allow fast inverse computation but do not have tractable
Jacobian determinants. Following [1], we also provide some comparison in Tab. 5 (see Appendix E).

4.3.1 Models based on identities of determinants

Some identities can be used to speed up the computation of determinants if the Jacobians have
special structures. For example, in Sylvester flow [2], the invertible transformation has the form
f(x) , x + Ah(Bx + b), where h(·) is a nonlinear activation function, A ∈ RD×M , B ∈ RM×D,
b ∈ RM and M ≤ D. By Sylvester’s determinant identity, det(Jf (x)) can be computed in O(M3),
which is much less than O(D3) if M � D. However, the requirement that M is small becomes a
bottleneck of the architecture and limits its expressive power. Similarly, Planar flow [27] uses the
matrix determinant lemma, but has an even narrower bottleneck.

The form of L(x) bears some resemblance to Sylvester flow. However, we improve the capacity of
Sylvester flow in two ways. First, we add one extra non-linear convolutional layer. Second, we avoid
the bottleneck that limits the maximum dimension of latent representations in Sylvester flow.

4.3.2 Models based on dimension partitioning

NICE [5], Real NVP [6], and Glow [16] all depend on an affine coupling layer. Given d < D, x is
first partitioned into two parts x = [x1:d;xd+1:D]. The coupling layer is an invertible transformation,
defined as f : x 7→ z, z1:d = x1:d, zd+1:D = xd+1:D � exp(s(x1:d)) + t(x1:d), where s(·)
and t(·) are two arbitrary functions. However, the partitioning of x relies on heuristics, and the
performance is sensitive to this choice (cf ., [16, 1]). In addition, the Jacobian of f is a triangular
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matrix with diagonal [1d; exp(s(x1:d))]. In contrast, the Jacobian of MintNets has more flexible
diagonals—without being partially restricted to 1’s.

4.3.3 Models based on autoregressive transformations

By leveraging autoregressive transformations, the Jacobian can be made triangular. For example,
MAF [24] defines the invertible tranformation as f : x 7→ z, zi = µ(x1:i−1) +σ(x1:i−1)xi, where
µ(·) ∈ R and σ(·) ∈ R+. Note that f−1(z) can be obtained by sequentially solving xi based on
previous solutions x1:i−1. Therefore, a naïve approach requires Ω(D) computations for inverting
autoregressive models. Moreover, the architecture of f is only an affine combination of autoregressive
functions with x. In contrast, MintNets are inverted with faster fixed-point iteration methods, and the
architecture of MintNets is arguably more flexible.

4.3.4 Free-form invertible models

Some work proposes invertible transformations whose Jacobians are not limited by special structures.
For example, FFJORD [9] uses a continuous version of change of variables formula [3] where the
determinant is replaced by trace. Unlike MintNets, FFJORD needs an ODE solver to compute
its value and inverse, and uses a stochastic estimator to approximate the trace. Another work is
i-ResNet [1] which constrains the Lipschitz-ness of ResNet layers to make it invertible. Both i-
ResNet and MintNet use ResNet blocks with 3 convolutions. The inverse of i-ResNet can be obtained
efficiently by a parallelizable fixed-point iteration method, which has comparable computational
cost as our Algorithm 1. However, unlike MintNets whose Jacobian determinants are exact, the
log-determinant of Jacobian of an i-ResNet must be approximated by truncating a power series and
estimating each term with stochastic estimators.

4.3.5 Other models using masked convolutions

Emerging convolutions [13] and MaCow [20] improve the Glow architecture by replacing 1 × 1
convolutions in the original Glow model with masked convolutions similar to those employed in
MintNets. Emerging convolutions and MaCow are both inverted using forward/back substitutions
designed for inverting triangular matrices, which requires the same number of iterations as the input
dimension. In stark contrast, MintNets use a fixed-point iteration method (Algorithm 1) for inversion,
which is similar to i-ResNet and requires substantially fewer iterations than the input dimension. For
example, our method of inversion takes 120 iterations to converge on CIFAR-10, while inverting
emerging convolutions will need 3072 iterations. In other words, our inversion can be 25 times faster
on powerful GPUs. Additionally, the architecture of MintNet is very different. The architectures of
[13] and [20] are both built upon Glow. In contrast, MintNet is a ResNet architecture where normal
convolutions are replaced by causal convolutions.

5 Experiments

In this section, we evaluate our MintNet architectures on both image classification and density
estimation. We focus on three common image datasets, namely MNIST, CIFAR-10 and ImageNet
32×32. We also empirically verify that Algorithm 1 can provide accurate solutions within a small
number of iterations. We provide more details about settings and model architectures in Appendix D.

5.1 Classification

To check the capacity of MintNet and understand the trade-off of invertibility, we test its classification
performance on MNIST and CIFAR-10, and compare it to a ResNet with a similar architecture.

On MNIST, MintNet achieves a test accuracy of 99.6%, which is the same as that of the ResNet.
On CIFAR-10, MintNet reaches 91.2% test accuracy while ResNet reaches 92.6%. Both MintNet
and ResNet achieve 100% training accuracy on MNIST and CIFAR-10 datasets. This indicates
that MintNet has enough capacity to fit all data labels on the training dataset, and the invertible
representations learned by MintNet are comparable to representations learned by non-invertible
networks in terms of generalizability. Note that the small degradation in classification accuracy is
also observed in other invertible networks. For example, depending on the Lipschitz constant, the
gap between test accuracies of i-ResNet and ResNet can be as large as 1.92% on CIFAR-10.
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Table 1: MNIST, CIFAR-10, ImageNet 32×32 bits per dimension (bpd) results. Smaller values are
better. †Result not directly comparable because ZCA preprocssing was used.

Method MNIST CIFAR-10 ImageNet 32×32

NICE [5] 4.36 4.48† -
MAF [24] 1.89 4.31 -
Real NVP [6] 1.06 3.49 4.28
Glow [16] 1.05 3.35 4.09
FFJORD [9] 0.99 3.40 -
i-ResNet [1] 1.06 3.45 -

MintNet (ours) 0.98 3.32 4.06

5.2 Density estimation and verification of invertibility

In this section, we demonstrate the superior performance of MintNet on density estimation by training
it as a flow generative model. In addition, we empirically verify that Algorithm 1 can accurately
produce the inverse using a small number of iterations. We show that samples can be efficiently
generated from MintNet by inverting each Mint layer with Algorithm 1.

Density estimation. In Tab. 1, we report bits per dimension (bpd) on MNIST, CIFAR-10, and
ImageNet 32×32 datasets. It is notable that MintNet sets the new records of bpd on all three datasets.
Moreover, when compared to previous best models, our MNIST model uses 30% fewer parameters
than FFJORD, and our CIFAR-10 and ImageNet 32×32 models respectively use 60% and 74% fewer
parameters than Glow. When trained on datasets such as CIFAR-10, MintNet requires 2 GPUs for
approximately five days, while FFJORD is trained on 6 GPUs for five days, and Glow on 8 GPUs for
seven days. Note that all values in Tab. 1 are with respect to the continuous distribution of uniformly
dequantized images, and results of models that view images as discrete distributions are not directly
comparable (e.g., PixelCNN [22], IAF-VAE [17], and Flow++ [12]). To show that MintNet learns
semantically meaningful representations of images, we also perform latent space interpolation similar
to the interpolation experiments in Real NVP (see Appendix C).

Verification of invertibility. We first examine the performance of Algorithm 1 by measuring the
reconstruction error of MintNets. We compute the inverse of MintNet by sequentially inverting each
Mint layer with Algorithm 1. We used grid search to select the step size α in Algorithm 1 and chose
α = 3.5, 1.1, 1.15 respectively for MNIST, CIFAR-10 and ImageNet 32×32. An interesting fact
is for MNIST, α = 3.5 actually works better than other values of α within (0, 2), even though it
does not have the theoretical gurantee of local convergence. As Fig. 4a shows, the normalized L2

reconstruction error converges within 120 iterations for all datasets considered. Additionally, Fig. 4b
demonstrates that the reconstructed images look visually indistinguishable to true images.

Samples. Using Algorithm 1, we can generate samples efficiently by computing the inverse of
MintNets. We use the same step sizes as in the reconstruction error analysis, and run Algorithm 1 for
120 iterations for all three datasets. We provide uncurated samples in Fig. 3, and more samples can
be found in Appendix F. In addition, we compare our sampling time to that of the other models (see
Tab. 6 in Appendix E). Our sampling method has comparable speed as i-ResNet. It is approximately
5 times faster than autoregressive sampling on MNIST, and is roughly 25 times faster on CIFAR-10
and ImageNet 32×32.

6 Conclusion

We propose a new method to compositionally construct invertible modules that are flexible, efficient
to invert, and with a tractable Jacobian. Starting from linear transformations with triangular matrices,
we apply a set of composition rules to recursively build new modules that are non-linear and more
expressive (Proposition 1). We then show that the composed modules are invertible as long as their
Jacobians are non-singular (Theorem 1), and propose an efficiently parallelizable numerical method
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(a) MNIST (b) CIFAR-10 (c) ImageNet-32×32

Figure 3: Uncurated samples on MNIST, CIFAR-10, and ImageNet 32×32 datasets.

(a) Reconstruction error analysis. (b) Reconstructed images.

Figure 4: Accuracy analysis of Algorithm 1 on MNIST, CIFAR-10, and ImageNet 32×32 datasets.
Each curve in (a) represents the mean value of normalized reconstruction errors for 128 images. The
2nd, 4th and 6th rows in (b) are reconstructions, while other rows are original images.

(Algorithm 1) with theoretical guarantees (Theorem 2) to compute the inverse. The Jacobians of our
modules are all triangular, which allows efficient and exact determinant computation.

As an application of this idea, we use masked convolutions as our basic module. Using our com-
position rules, we compose multiple masked convolutions together to form a module named Mint
layer, following the architecture of a ResNet block. To enforce its invertibility, we constrain the
masked convolutions to satisfy the condition of Theorem 1. We show that multiple Mint layers can
be stacked together to form a deep invertible network which we call MintNet. The architecture can
be efficiently inverted using a fixed point iteration algorithm (Algorithm 1). Experimentally, we show
that MintNet performs well on MNIST and CIFAR-10 classification. Moreover, when trained as a
generative model, MintNet achieves new state-of-the-art performance on MNIST, CIFAR-10 and
ImageNet 32×32.
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A Proofs

Notations. Let Jf (x) denote the Jacobian of f evaluated at x. We use [f(x)]i to denote the i-th
component of the vector-valued function f , and [Jf (x)]ij to denote the ij-th entry of Jf (x). We
further use xi to denote the i-th component of the input vector x ∈ RD, and ∂[f(x)]i

∂xj

∣∣
x=t

to denote
the partial derivative of [f(x)]i w.r.t. xj , evaluated at x = t.

Proposition 1. Define F as the set of all continuously differentiable functions whose Jacobian is
lower triangular. Then F contains the basic module in Section 3.1, and is closed under the following
composition rules.

• Rule of addition. f1 ∈ F ∧ f2 ∈ F ⇒ λf1 + µf2 ∈ F , where λ, µ ∈ R.

• Rule of composition. f1 ∈ F ∧f2 ∈ F ⇒ f2 ◦f1 ∈ F . A special case is f ∈ F ⇒ h◦f ∈
F , where h(·) is a continuously differentiable non-linear activation function that is applied
element-wisely.

Proof. Since the basic modules have the form f(x) = Wx+b, where W is a lower triangular matrix,
we immediately know that f is continuously differentiable and Jf is lower triangular, therefore f ∈ F .
Next, we prove the closeness properties of F one by one.

• Rule of addition. f = λf1 + µf2 is continuously differentiable, and Jf is lower triangular.
This is because ∂f/∂x = ∂(λf1+µf2)/∂x = λ∂f1/∂x + µ∂f2/∂x, and both ∂f1/∂x and ∂f2/∂x
are continuous and lower triangular.

• Rule of composition. f = f2 ◦ f1 is continuously differentiable and has a lower triangular
Jacobian. This is because ∂f/∂x = ∂(f2◦f1)/∂x = ∂f2/∂x

∣∣
x=f1(x)

∂f1/∂x, and both ∂f2/∂x and
∂f1/∂x are continuous and lower triangular. As a special case, we choose f1 = h, where h is
a continuously differentiable univariate function. Since the Jacobian of h is diagonal and
continuous, we have h ∈ F . Therefore h ◦ f2 ∈ F holds true for all f2 ∈ F .

The following two lemmas will be very helpful for proving Theorem 1.

Lemma 1. Jf (x) is lower triangular for all x ∈ RD implies [f(x)]i is a function of x1, ...,xi, and
does not depend on xi+1, · · · ,xD.

Proof. Due to the fact that Jf (x) is lower triangular, we have [Jf (x)]i,j = ∂[f(x)]i
∂xj

= 0 for any
j > i. When x1, ...,xj−1,xj+1, ...,xD are fixed, we have

[f(x1, ...,xj−1,xj ,xj+1,xD)]i = [f(x1, ...,xj−1, 0,xj+1, ...,xD)]i +

∫ xj

0

∂[f(t)]i
∂tj

dtj (5)

= [f(x1, ...,xj−1, 0,xj+1, ...,xD)]i. (6)

This implies that [f(x)]i does not depend on xj for any j > i. In other words, f(x) is only a function
of x1, ...,xi.

Lemma 2. diag(Jf (x)Jf (0)) > 0 implies that for any 1 ≤ i ≤ n, either (i) ∀x ∈ RD : [Jf (x)]ii >
0 or (ii) ∀x ∈ RD : [Jf (x)]ii < 0. That is, [f(x)]i is monotonic w.r.t. xi when x1, · · · ,xi−1 are
fixed.

Proof. Clearly diag(Jf (x)Jf (0)) > 0 is equivalent to ∀1 ≤ i ≤ n,x ∈ RD : [Jf (x)]ii[Jf (0)]ii =
∂[f(x)]i
∂xi

∂[f(x)]i
∂xi

∣∣
x=0

> 0. This means for any x ∈ RD, [Jf (x)]ii = ∂[f(x)]i
∂xi

6= 0 and it shares the

same sign with [Jf (0)]ii = ∂[f(x)]i
∂xi

∣∣
x=0

, a constant that is either strictly positive or strictly negative.

This further implies that when x1, · · · ,xi−1 are fixed, ∂[f(x)]i∂xi
is either strictly positive or strictly

negative for all xi ∈ R, and [f(x)]i is therefore monotonic w.r.t. xi.
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Theorem 1. If f ∈ F and Jf (x) is non-singular for all x in the domain, then f is invertible.

Proof. Assume without loss of generality that Jf (x) is lower triangular. We first prove that
diag(Jf (x)Jf (0)) > 0 by contradiction. Assuming diag(Jf (x)Jf (0)) ≤ 0, then ∃1 ≤ i ≤
n,x′ ∈ RD such that [Jf (x′)]ii[Jf (0)]ii ≤ 0. Because Jf (x) is always triangular and non-singular,
we immediately conclude that [Jf (x′)]ii[Jf (0)]ii < 0. Assume without loss of generality that
[Jf (0)]ii > 0 and [Jf (x′)]ii < 0. Then, by the intermediate value theorem, we know that ∃t ∈ (0, 1)
such that [Jf (tx′)]ii = 0, which contradicts that fact that Jf (x) is always non-singular.

Next, we prove that for all z in the range of f(x), there exists a unique x such that f(x) = z. To
obtain x1, we only need to solve [f(x)]1 = z1, which is an equation of variable x1, as concluded
from Lemma 1. Since Lemma 2 implies that [f(x)]1 is monotonic w.r.t. x1, we know that [f(x)]1 has
a unique inverse x1 whenever z1 is in the range of [f(x)]1. Now assume we have already obtained
x1, ...,xk, where k ≥ 1. In this case, Lemma 1 asserts that [f(x)]k+1 = zk+1 is an equation
of variable xk+1. Again Lemma 2 implies that [f(x)]k+1 is a monotonic function of xk+1 given
x1, · · · ,xk, which implies further that [f(x)]k+1 = zk+1 has a unique solution xk+1 whenever zk+1

is in the range of [f(x)]k+1. By induction, we can solve for x1,x2, · · · ,xD by repetitively employing
this procedure, which concludes that f−1(z) = (x1, ...,xD)ᵀ exists, and can be determined uniquely.

Theorem 2. The iterative method of Algorithm 1 is locally convergent whenever 0 < α < 2.

Proof. Let z be any value in the range of f(x) and g(x;α, z) , x − α diag(Jf (x))−1[f(x) − z],
where diag(A)−1 denotes a diagonal matrix whose diagonal entries are the reciprocals of those of A.
The iterative method of Algorithm 1 can be written as xt = g(xt−1;α, z). Because of Theorem 1,
there exists a unique x∗ ∈ RD such that f(x∗) = z, in which case g(x∗;α, z) = x∗. Applying the
product rule, we have

Jg(x
∗;α, z) = I − α diag(Jf (x∗))−1Jf (x∗),

where Jg(x∗;α, z) denotes the Jacobian of g(x;α, z) evaluated at x∗. Since Jf (x∗) is triangular,
Jg(x

∗;α, z) will also be triangular. Therefore, the only eigenvalue of Jg(x∗;α, z) is 1− α, due to
the fact that the only solution to the equation system det(λI − Jg(x∗;α, z)) = (λ− 1 + α)D = 0
is λ = 1 − α. Since 0 < α < 2, the spectral radius of Jg(x∗;α, z) satisfies ρ(Jg(x

∗;α, z)) =
|1− α| < 1. Then the Ostrowski Theorem (cf ., Theorem 10.1.3. in [23]) shows that the sequence
{x1,x2, · · · ,xt} obtained by xt = g(xt−1;α, z) converges locally to x∗ as t→∞.

B Masked convolutions

Convolution is a special type of linear transformation that proves to be very effective for image data.
The basic invertible module can be implemented using masked convolutions (e.g., causal convolutions
in PixelCNN [22]). Consider a 2D convolutional layer with Cin input feature maps, Cout filters, a
kernel size of R×R and a zero-padding of bR/2c. We assume R is an odd integer and Cout = Cin so
that the input and output of the convolutional layer have the same shape. Let W ∈ RCout×Cin×R×R

be the weight tensor of this layer. We define a mask M ∈ {0, 1}Cout×Cin×R×R that satisfies

M[i, j,m, n] =

{
0, if i < j or i = j ∧m > bR/2c or i = j ∧m = bR/2c ∧ n > bR/2c,
1, Otherwise.

(7)

The masked convolution then uses M�W as the weight tensor. In Fig. 1, we provide an illustration
on a 3× 3 masked convolution with 3 filters.

In MintNet, L(x) is efficiently implemented with 3 masked convolutional layers. The weights
and masks are denoted as (W1,M1), (W2,M2) and (W3,M3), which separately correspond to
{W1

i }Ki=1, {W2
ij}1≤i,j≤K , {W3

j}Kj=1 in Eq. (2). Let C be the number of input feature maps, and
suppose the kernel size is R×R. The shapes of W1, W2 and W3 are respectively (KC,C,R,R),
(KC,KC,R,R) and (C,KC,R,R). The masks of them are simple concatenations of copies of the
mask in Eq. (7). For instance, M1 consists of K copies of Eq. (7), and M2 consists of K ×K copies.
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Figure 5: MintNet interpolation of hidden representation. Left: MintNet MNIST latent space
interpolation. Middle: MintNet CIFAR-10 latent space interpolation. Right: MintNet ImageNet
32×32 latent space interpolation.

Using masked convolutions, L(x) can be concisely written as

L(x) = t� x + (W3 �M3) ~ h

(
(W2 �M2) ~ h

(
(W1 �M1) ~ x + b1

)
+ b2

)
+ b3, (8)

where b1,b2,b3 are biases, and ~ denotes the operation of discrete 2D convolution.

C Interpolation of hidden representations

Given four images x1,x2,x3,x4 in the dataset, let zi = f(xi), where i = 1, 2, 3, 4, be the corre-
sponding features in the feature domain. Similar to [6], in the feature domain, we define

z = cos(φ)(cos(φ′)z1 + sin(φ′)z2) + sin(φ)(cos(φ′)z3 + sin(φ′)z4) (9)

where x-axis corresponds to φ′, y-axis corresponds to φ, and both φ and φ′ range over {0, π14 , ...,
7π
14 }.

We then transform z back to the image domain by taking f−1(z). Interpolation results are shown in
Fig. 5.

D Experiment setup and network architecture

Hyperparameter tuning and computation infrastructure. We use the standard train/test split of
MNIST, CelebA and CIFAR-10. We tune our models by observing its training bpd. For density
estimation on CIFAR-10 and ImageNet 32×32, the models were run on two Titan XP GPUs. In other
cases the model was run on one Titan XP GPU.

Classification setup. Following [1], we pad the images to 16 channels with zeros. This corresponds
to the first convolution in ResNet which increases the number of channels to 16. Both ResNet and our
MintNet are trained with AMSGrad [26] for 200 epochs with the cosine learning rate schedule [19]
and an initial learning rate of 0.001. Both networks use a batch size of 128.

Classification architecture. The ResNet contains 38 pre-activation residual blocks [11], and each
block has three 3× 3 convolutions. The architecture is divided into 3 stages, with 16, 64 and 256
filters respectively. Our MintNet uses 19 grouped invertible layers, which include a total of 38
residual invertible layers, each having three 3× 3 convolutions. Batch normalization is applied before
each invertible layer. Note that batch normalization does not affect the invertibility of our network,
because during test time it uses fixed running average and standard deviation and is an invertible
operation. We use 2 squeezing blocks at the same position where ResNet applies subsampling, and
matches the number of filters used in ResNet. To produce the logits for classification, both MintNet
and ResNet first apply global average pooling and then use a fully connected layer (see Tab. 2).

Density estimation setup. We mostly follow the settings in [24]. All training images are dequan-
tized and transformed using the logit transformation. Networks are trained using AMSGrad [25].
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On MNIST, we decay the learning rate by a factor of 10 at the 250th and 350th epoch, and train
for 400 epochs. On CIFAR-10, we train with cosine learning rate decay for a total of 200 epochs.
On ImageNet 32×32, we train with cosine learning rate decay for a total of 350k steps. All initial
learning rates are 0.001.

Density estimation architecture. For density estimation on MNIST, we use 20 paired Mint layers
with 45 filters each. For both CIFAR-10 and ImageNet 32×32, we use 21 paired Mint layers, each of
which has 255 filters. For all the three datasets, two squeezing operations are used and are distributed
evenly across the network (see Tab. 3 and Tab. 4).

Tuning the step size for sampling. We perform grid search to find hyperparamter α for Algorithm 1
using a minibatch of 128 images. More specifically, we start from α = 1 to 5 with a step size 0.5
for MNIST, CIFAR-10, and ImageNet 32×32, and compute the normalized L2 reconstruction error
with respect to the number of iterations. The normalized L2 error is defined as ‖x− y‖22 /D, where
x ∈ RD and y ∈ RD are two image vectors corresponding to the original and reconstructed images.
We find that the algorithm converges most quickly when α is in intervals [3, 4], [1, 2] and [1, 2] for
MNIST, CIFAR-10 and ImageNet 32×32 respectively. Then we perform a second round grid search
on the corresponding interval with a step size 0.05. In this case, we are able to find the best α, that is
α = 3.5, 1.1, 1.15 for the corresponding datasets.

Verification of invertibility. To verify the invertibility of MintNet, we study the normalized L2

reconstruction error for MNIST, CIFAR-10 and ImageNet 32×32. The L2 reconstruction error is
computed for 128 images on all three datasets. We plot the exponential of the mean log reconstruction
errors in Fig. 4. The shaded area corresponds to the exponential of the standard deviation of log
reconstruction errors.
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Table 2: MintNet image classification network architecture.
Name Configuration Replicate Block

Paired Mint Block1
with Batch Normalization

batch normalization
3× 3 lower triangular masked convolution, 1 filter

×6

leaky relu activation
3× 3 lower triangular masked convolution, 1 filter

leaky relu activation
3× 3 lower triangular masked convolution, 1 filter

batch normalization
3× 3 upper triangular masked convolution,1 filter

leaky relu activation
3× 3 upper triangular masked convolution, 1 filter

leaky relu activation
3× 3 upper triangular masked convolution, 1 filter

Squeezing Layer 2× 2 squeezing layer —

Paired Mint Block2
with Batch Normalization

batch normalization
3× 3 lower triangular masked convolution, 1 filter

×6

leaky relu activation
3× 3 lower triangular masked convolution, 1 filter

leaky relu activation
3× 3 lower triangular masked convolution, 1 filter

batch normalization
3× 3 upper triangular masked convolution,1 filter

leaky relu activation
3× 3 upper triangular masked convolution, 1 filter

leaky relu activation
3× 3 upper triangular masked convolution, 1 filter

Squeezing Layer 2× 2 squeezing layer —

Paired Mint Block3
with Batch Normalization

batch normalization
3× 3 lower triangular masked convolution, 1 filter

×7

leaky relu activation
3× 3 lower triangular masked convolution, 1 filter

leaky relu activation
3× 3 lower triangular masked convolution, 1 filter

batch normalization
3× 3 upper triangular masked convolution,1 filter

leaky relu activation
3× 3 upper triangular masked convolution, 1 filter

leaky relu activation
3× 3 upper triangular masked convolution, 1 filter

Output Layer
average pooling

—fully connected layer
softmax layer
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Table 3: MintNet MNIST density estimation network architecture.
Name Configuration Replicate Block

Paired Mint Block1

3× 3 lower triangular masked convolution, 45 filters

×6

elu activation
3× 3 lower triangular masked convolution, 45 filters

elu activation
3× 3 lower triangular masked convolution, 45 filters
3× 3 upper triangular masked convolution,45 filters

elu activation
3× 3 upper triangular masked convolution, 45 filters

elu activation
3× 3 upper triangular masked convolution, 45 filters

Squeezing Layer 2× 2 squeezing layer —

Paired Mint Block2

3× 3 lower triangular masked convolution, 45 filters

×6

elu activation
3× 3 lower triangular masked convolution, 45 filters

elu activation
3× 3 lower triangular masked convolution, 45 filters
3× 3 upper triangular masked convolution,45 filters

elu activation
3× 3 upper triangular masked convolution, 45 filters

elu activation
3× 3 upper triangular masked convolution, 45 filters

Squeezing Layer 2× 2 squeezing layer —

Paired Mint Block3

3× 3 lower triangular masked convolution, 45 filters

×8

elu activation
3× 3 lower triangular masked convolution, 45 filters

elu activation
3× 3 lower triangular masked convolution, 45 filters
3× 3 upper triangular masked convolution,45 filters

elu activation
3× 3 upper triangular masked convolution, 45 filters

elu activation
3× 3 upper triangular masked convolution, 45 filters
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Table 4: MintNet CIFAR-10 and Imagenet 32×32 density estimation network architecture.
Name Configuration Replicate Block

Paired Mint Block1

3× 3 lower triangular masked convolution, 85 filters

×7

elu activation
3× 3 lower triangular masked convolution, 85 filters

elu activation
3× 3 lower triangular masked convolution, 85 filters
3× 3 upper triangular masked convolution,85 filters

elu activation
3× 3 upper triangular masked convolution, 85 filters

elu activation
3× 3 upper triangular masked convolution, 85 filters

Squeezing Layer 2× 2 squeezing layer —

Paired Mint Block2

3× 3 lower triangular masked convolution, 85 filters

×7

elu activation
3× 3 lower triangular masked convolution, 85 filters

elu activation
3× 3 lower triangular masked convolution, 85 filters
3× 3 upper triangular masked convolution,85 filters

elu activation
3× 3 upper triangular masked convolution, 85 filters

elu activation
3× 3 upper triangular masked convolution, 85 filters

Squeezing Layer 2× 2 squeezing layer —

Paired Mint Block3

3× 3 lower triangular masked convolution, 85 filters

×7

elu activation
3× 3 lower triangular masked convolution, 85 filters

elu activation
3× 3 lower triangular masked convolution, 85 filters
3× 3 upper triangular masked convolution,85 filters

elu activation
3× 3 upper triangular masked convolution, 85 filters

elu activation
3× 3 upper triangular masked convolution, 85 filters
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E Additional tables

Table 5: Comparison to some common invertible models.

Property NICE Real-NVP Glow MaCow FFJORD i-ResNet MintNet

Analytic Forward 3 3 3 3 7 3 3

Analytic Inverse 3 3 7 7 7 7 7
Non-volume Preserving 7 3 3 3 3 3 3

Exact Likelihood 3 3 3 3 7 7 3

Table 6: Sampling time for 64 samples for MintNet, i-ResNet and autoregressive method on the same
model architectures. The time is evaluated on a NVIDIA TITAN Xp.

Method MNIST CIFAR-10 ImageNet 32×32

i-ResNet [1] (100 iterations) 11.56s 99.41s 92.53s
Autoregressive (1 iteration) 63.61s 2889.64s 2860.21s

MintNet (120 iterations) (ours) 12.81s 117.83s 120.78s
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F More Samples

In this section, we provide more uncurated MintNet samples on MNIST, CIFAR-10 and ImageNet
32×32.

Figure 6: MintNet MNIST samples.
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Figure 7: MintNet CIFAR-10 samples.

Figure 8: MintNet ImageNet 32×32 samples.
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