
MintNet: Building Invertible Neural Networks with
Masked Convolutions

Yang Song∗
Stanford University

yangsong@cs.stanford.edu

Chenlin Meng∗
Stanford University

chenlin@cs.stanford.edu

Stefano Ermon
Stanford University

ermon@cs.stanford.edu

Abstract

We propose a new way of constructing invertible neural networks by combining
simple building blocks with a novel set of composition rules. This leads to a
rich set of invertible architectures, including those similar to ResNets. Inversion
is achieved with a locally convergent iterative procedure that is parallelizable
and very fast in practice. Additionally, the determinant of the Jacobian can be
computed analytically and efficiently, enabling their generative use as flow models.
To demonstrate their flexibility, we show that our invertible neural networks are
competitive with ResNets on MNIST and CIFAR-10 classification. When trained
as generative models, our invertible networks achieve competitive likelihoods on
MNIST, CIFAR-10 and ImageNet 32×32, with bits per dimension of 0.98, 3.32
and 4.06 respectively.

1 Introduction

Invertible neural networks have many applications in machine learning. They have been employed to
investigate representations of deep classifiers [15], understand the cause of adversarial examples [14],
learn transition operators for MCMC [28, 18], create generative models that are directly trainable by
maximum likelihood [6, 5, 24, 16, 9, 1], and perform approximate inference [27, 17].

Many applications of invertible neural networks require that both inverting the network and computing
the Jacobian determinant be efficient. While typical neural networks are not invertible, achieving these
properties often imposes restrictive constraints to the architecture. For example, planar flows [27]
and Sylvester flow [2] constrain the number of hidden units to be smaller than the input dimension.
NICE [5] and Real NVP [6] rely on dimension partitioning heuristics and specific architectures
such as coupling layers, which could make training more difficult [1]. Methods like FFJORD [9],
i-ResNets [1] have fewer architectural constraints. However, their Jacobian determinants have to be
approximated, which is problematic if repeatedly performed at training time as in flow models.

In this paper, we propose a new method of constructing invertible neural networks which are flexible,
efficient to invert, and whose Jacobian can be computed exactly and efficiently. We use triangular
matrices as our basic module. Then, we provide a set of composition rules to recursively build
more complex non-linear modules from the basic module, and show that the composed modules are
invertible as long as their Jacobians are non-singular. As in previous work [6, 24], the Jacobians
of our modules are triangular, allowing efficient determinant computation. The inverse of these
modules can be obtained by an efficiently parallelizable fixed-point iteration method, making the cost
of inversion comparable to that of an i-ResNet [1] block.

Using our composition rules and masked convolutions as the basic triangular building block, we
construct a rich set of invertible modules to form a deep invertible neural network. The architecture of
our proposed invertible network closely follows that of ResNet [10]—the state-of-the-art architecture

∗Equal contribution.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

of discriminative learning. We call our model Masked Invertible Network (MintNet). To demonstrate
the capacity of MintNets, we first test them on image classification. We found that a MintNet
classifier achieves 99.6% accuracy on MNIST, matching the performance of a ResNet with a similar
architecture. On CIFAR-10, it achieves 91.2% accuracy, comparable to the 92.6% accuracy of ResNet.
When using MintNets as generative models, they achieve the new state-of-the-art results of bits per
dimension (bpd) on uniformly dequantized images. Specifically, MintNet achieves bpd values of 0.98,
3.32, and 4.06 on MNIST, CIFAR-10 and ImageNet 32×32, while former best published results are
0.99 (FFJORD [9]), 3.35 (Glow [16]) and 4.09 (Glow) respectively. Moreover, MintNet uses fewer
parameters and less computational resources. Our MNIST model uses 30% fewer parameters than
FFJORD [9]. For CIFAR-10 and ImageNet 32×32, MintNet uses 60% and 74% fewer parameters
than the corresponding Glow [16] models. When training on dataset such as CIFAR-10, MintNet
required 2 GPUs for approximately 5 days, while FFJORD [9] used 6 GPUs for approximately 5
days, and Glow [16] used 8 GPUs for approximately 7 days.

2 Background

Consider a neural network f : RD → RL that maps a data point x ∈ RD to a latent representation
z ∈ RL. When for every z ∈ RL there exists a unique x ∈ RD such that f(x) = z, we call f an
invertible neural network. There are several basic properties of invertible networks. First, when f(x)
is continuous, a necessary condition for f to be invertible is D = L. Second, if f1 : RD → RD
and f2 : RD → RD are both invertible, f = f2 ◦ f1 will also be invertible. In this work, we mainly
consider applications of invertible neural networks to classification and generative modeling.

2.1 Classification with invertible neural networks

Neural networks for classification are usually not invertible because the number of classes L is usually
different from the input dimension D. Therefore, when discussing invertible neural networks for
classification, we separate the classifier into two parts f = f2 ◦ f1: feature extraction z = f1(x) and
classification y = f2(z), where f2 is usually the softmax function. We say the classifier is invertible
when f1 is invertible. Invertible classifiers are arguably more interpretable, because a prediction can
be traced down by inverting latent representations [15, 14].

2.2 Generative modeling with invertible neural networks

An invertible network f : x ∈ RD 7→ z ∈ RD can be used to warp a complex probability density
p(x) to a simple base distribution π(z) (e.g., a multivariate standard Gaussian) [5, 6]. Under the
condition that both f and f−1 are differentiable, the densities of p(x) and π(z) are related by the
following change of variable formula

log p(x) = log π(z) + log |det(Jf (x))|, (1)

where Jf (x) denotes the Jacobian of f(x) and we require Jf (x) to be non-singular so that
log |det(Jf (x))| is well-defined. Using this formula, p(x) can be easily computed if the Jaco-
bian determinant det(Jf (x)) is cheaply computable and π(z) is known.

Therefore, an invertible neural network fθ(x) implicitly defines a normalized density model pθ(x),
which can be directly trained by maximum likelihood. The invertibility of fθ is critical to fast sample
generation. Specifically, in order to generate a sample x from pθ(x), we can first draw z ∼ π(z),
and warp it back through the inverse of fθ to obtain x = f−1θ (z).

Note that multiple invertible models f1, f2, · · · , fK can be stacked together to form a deeper invertible
model f = fK ◦ · · · ◦ f2 ◦ f1, without much impact on the inverse and determinant computation.
This is because we can sequentially invert each component, i.e., f−1 = f−11 ◦ f−12 ◦ · · · ◦ f−1K ,
and the total Jacobian determinant equals the product of each individual Jacobian determinant, i.e.,
|det(Jf)| = |det(Jf1)||det(Jf2)| · · · |det(JfK)|.

3 Building invertible modules compositionally

In this section, we discuss how simple blocks like masked convolutions can be composed to build
invertible modules that allow efficient, parallelizable inversion and determinant computation. To this

2

Figure 1: Illustration of a masked convolution with 3 filters and kernel size 3× 3. Solid checkerboard
cubes inside each filter represent unmasked weights, while the transparent blue blocks represent the
weights that have been masked out. The receptive field of each filter on the input feature maps is
indicated by regions shaded with the pattern (the colored square) below the corresponding filter.

end, we first introduce the basic building block of our models. Then, we propose a set of composition
rules to recursively build up complex non-linear modules with triangular Jacobians. Next, we prove
that these composed modules are invertible as long as their Jacobians are non-singular. Finally, we
discuss how these modules can be inverted efficiently using numerical methods.

3.1 The basic module

We start from considering linear transformations f(x) = Wx + b, with W ∈ RD×D, and b ∈ RD.
For a general W, computing its Jacobian determinant requires O(D3) operations. We therefore
choose W to be a triangular matrix. In this case, the Jacobian determinant det(Jf (x)) = det(W) is
the product of all diagonal entries of W, and the computational complexity is reduced to O(D). The
linear function f(x) = Wx + b with W being triangular is our basic module.

Masked convolutions. Convolution is a special type of linear transformation that is very effective
for image data. The triangular structure of the basic module can be achieved using masked con-
volutions (e.g., causal convolutions in PixelCNN [22]). We provide the formula of our masks in
Appendix B and an illustration of a 3× 3 masked convolution with 3 filters in Fig. 1. Intuitively, the
causal structure of the filters (ordering of the pixels) enforces a triangular structure.

3.2 The calculus of building invertible modules

Complex non-linear invertible functions can be constructed from our basic modules in two steps.
First, we follow several composition rules so that the composed module has a triangular Jacobian.
Next, we impose appropriate constraints so that the module is invertible. To simplify the discussion,
we only consider modules with lower triangular Jacobians here, and we note that it is straightforward
to extend the analysis to modules with upper triangular Jacobians.

The following proposition summarizes several rules to compositionally build new modules with
triangular Jacobians using existing ones.

Proposition 1. Define F as the set of all continuously differentiable functions whose Jacobian is
lower triangular. Then F contains the basic module in Section 3.1, and is closed under the following
composition rules.

• Rule of addition. f1 ∈ F ∧ f2 ∈ F ⇒ λf1 + µf2 ∈ F , where λ, µ ∈ R.

• Rule of composition. f1 ∈ F ∧f2 ∈ F ⇒ f2 ◦f1 ∈ F . A special case is f ∈ F ⇒ h◦f ∈
F , where h(·) is a continuously differentiable non-linear activation function that is applied
element-wise.

The proof of this proposition is straightforward and deferred to Appendix A. By repetitively applying
the rules in Proposition 1, our basic linear module can be composed to construct complex non-linear
modules having continuous and triangular Jacobians. Note that besides our linear basic modules,

3

