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1 Robustness dependence on regularization strength

The training objective is a combination of task loss and similarity loss, with a relative weight α in
L = Ltask +αLsimilarity. We tested a range of α values, and observed a continuous change in model
performance (Fig. 1). Here similarity matrix is estimated using just one scan, while results in the
main text are using averaged similarity matrix from eight scans. α = 20 was used in the main text,
qualitatively same as the α = 16 shown here. For each α, 2 or 3 random seeds were used.
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Figure 1: Robustness to Gaussian noise at different regularization strengths. α = 0 is the ‘None’
condition in main text, which is mostly occluded by α = 2 here. As neural regularization is more
strongly applied, the model performance on noisy inputs becomes higher.

2 Combination weights for CNN model similarity

We used a trainable weight γk (Eq. 10 in main text) to combine feature similarity of different
convolutional layers to the final similarity of the full model. We design γks to be the outputs of a
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softmax function, and have the same initial values. In our simulations, K = 5 layers are selected,
hence γk = 0.2 for k = 1, 5, 9, 13, 17 in the beginning of training.

We observed that after joint training, γk usually collapse to only one layer. Namely γk ≈ 1 for one
layer, and close to 0 for the others. We think this is a direct result from the competitive nature of our
weight design. As long as one layer is selected to resemble the neural feature space, the joint training
algorithm will keep pushing it towards the target. The identity of the selected layer, which is usually
the easiest one to adjust to neural feature space, is not deterministic. We investigated final weights for
models in Fig. 1, and the averaged weights are listed in Tab. 1.

Table 1: Averaged weights for all candidate layers.

γ1 γ5 γ9 γ13 γ17

α = 0 0.2 0.2 0.2 0.2 0.2
α = 2 0 1 0 0 0
α = 4 0 1 0 0 0
α = 8 0 0.33 0.67 0 0
α = 16 0 0.67 0.33 0 0
α = 32 0.5 0.5 0 0 0

For example, γ5 = 0.67 for α = 16 actually corresponds to that 2 out of 3 random seeds result in a
trained model with γ5 = 1. Though there exists stochasticity in the choice of layers, the possible
ones are usually nearby in terms of their locations in the deep network. Admittedly, more simulations
are needed to be conclusive.

3 More extensive tests on adversarial robustness

We performed a much more thorough tests on our trained models with two more metrics and six
more attacks after the submission. The models being tested here (‘None’, ‘Shuffle’ and ‘Neural’) are
also newer version since we improved the neural predictive model since then. In short, more reliably
measured neurons are weighted even more now, which in theory makes the neural similarity matrix
less noisy.

The evaluation of the models follows the evaluation scheme of [1]. We tested all models on four
different Lp metrics (L0, L1, L2 and L∞) with different state-of-the-art attacks (see below). Every
model/attack combination was evaluated on 1000 samples from the CIFAR-10 validation set and we
used the same subset for all models. Then, on each sample and on each model/attack combination
each attack was run five times for each hyperparameter setting we tested in an untargeted attack
scenario. For each attack we tested a range of hyperparameters to ensure optimal performance. We
used attacks as implemented in Foolbox [2]. To gather the final distortion sizes shown in Fig. 2 we
determined the smallest Lp distance for each sample and for each model/attack combination across all
tested hyperparameters and repetitions. We hope that this scheme approaches as closely as possible
the true minimal adversarial distance. We then average this minimal adversarial distance over all
1000 samples to determine model robustness.

Across L1, L2 and L∞ we observe a market increase in robustness compared to baseline and control
networks. This increase is unlikely to be caused by gradient-masking given that adversarial attacks
work equally well on all models on the L0 norm. At the same time, L0 is also a special metric in the
sense that it introduces strong deviations between original and adversarial image which are also the
most noticeable for humans.

The attacks that we applied to the models are as follows:

• Projected Gradient Descent (PGD) [3]. Iterative gradient attack that optimizes L∞ by
minimizing a cross-entropy loss under a fixed L∞ norm constraint enforced in each step.

• Projected Gradient Descent with Adam (AdamPGD) [4]. Same as PGD with but Adam
Optimiser for update steps.

• C&W [5]. L2 iterative gradient attack that relies on the Adam optimizer, a tanh-nonlinearity
to respect pixel-constraints and a loss function that weighs a classification loss with the
distance metric to be minimized.
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Figure 2: Adversarial robustness for ResNet18 models on grayscale CIFAR10 dataset. Models with
no regularization (‘None’), regularized to shuffled similarity matrix (‘Shuffle’) and to neural similarity
matrix (‘Neural’) are tested for four metrics. Neural regularization increased model robustness to
adversarial perturbations for L0, L1 and L∞.

• Decoupling Direction and Norm Attack (DDN) [6]. L2 iterative gradient attack pitched as a
query-efficient alternative to the C&W attack that requires less hyperparameter tuning.

• Saliency-Map Attack (JSMA) [7]. L0/L1 attack that iterates over saliency maps to discover
pixels with the highest potential to change the decision of the classifier.

• Sparse-Fool [8]. A sparse version of DeepFool, which uses a local linear approximation of
the geometry of the decision boundary to estimate the optimal step towards the boundary.

• Brendel&Bethge [1]. Novel family of L0/L1/L2/L∞ attacks that follow the boundary
between the adversarial and non-adversarial region which has been demonstrated to be
state-of-the-art on all tested Lp norms.
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