
Appendix

Derivation of the VB algorithm

VB-E step

In this step, the posterior distribution of latent variables q(S|Y) is updated sequentially at every time
t via Kalman filtering and smoothing, given the current estimate of q(θ|Y). Rewrite our state space
model in a compact form as:

st = Gtst−1 + Dut + ωt
yt = Cst + φt

(1)

where Gt = A +
∑K
k=1m

k
tB

k.

Kalman filtering In the filtering step, we compute the posterior mean µtt and posterior covariance
Σt
t of latent variables st at time step t given the observations at t = 1, 2, ...t, i.e.

p(st|y1,y2, ...,yt) = N(µtt,Σ
t
t) (2)

The forward recursion updates for µtt and Σt
t at t = 1, 2, ..., T are given by

µtt = µt−1t + Kt(yt −Cµt−1t )

µt−1t = Gtµ
t−1
t−1 + Dut

Σt
t = Σt−1

t −KtCΣt−1
t

Σt−1
t = GtΣ

t−1
t−1G

′
t + Qs

(3)

The Kalman gain is given by

Kt = Σt−1
t C′(R + CΣt−1

t C′)−1 (4)

The forward recursion is initialized with µ0
0 = s0 and Σ0

0 = Q0, where we set s0 = 0 and
Q0 = 0.01IS .

Kalman smoothing In the smoothing step, we compute the posterior mean µTt and posterior
covariance ΣT

t of latent variables st at time step t given all observations at t = 1, 2, ...T , i.e.

p(st|y1,y2, ...,yT ) = N(µTt ,Σ
T
t ) (5)

The backward recursion updates for µTt and ΣT
t at t = T − 1, T − 2, ..., 1 are given by

µTt = µtt + Vt(µ
T
t+1 −Gt+1µ

t
t −Dut+1)

ΣT
t = Σt

t + Vt(Σ
T
t+1 −Σt

t+1)V′t
(6)

where Vt is defined as
Vt = Σt

tG
′
t+1(Σt

t+1)−1 (7)

The backward recursion is initialized with µTT and ΣT
T from the forward recursion step. Note that

Σt
t+1, µtt and Σt

t have already been computed in the forward recursion step.

The following expectations will also be needed in the VB-M step.

Pt = E[sts
′
t] = ΣT

t + µTt µ
T ′

t

Pt,t−1 = E[sts
′
t−1] = Vt−1Σ

T
t + µTt µ

T ′

t−1
(8)

VB-M step

In this step, we derive closed-form posterior updates of q(θ|Y) using conjugate priors, given the
current estimate of q(S|Y). The solution is given by [1]:

log q(θ|Y) ∝ ES(log p(S,θ,Y)) (9)

Based on the conditional independence in the graphical model, the posterior distribution q(θ|Y) can
be further factorized into

q(θ|Y) = q(θS |Y)q(R|Y) (10)

where θS =
{
A, {Bk}Kk=1,D,Qs

}
.
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Posteriors of θS Since we assume the state noise covariance Qs to be diagonal, we can estimate
each row in the model parameters A, {Bk}Kk=1,D,Qs separately. Specifically, the rth row of the
state equation can be expressed as:

st[r] =

(
a[r] +

K∑
k=1

bk[r]mk
t

)
st−1 + d[r]ut[r] + ωt[r]

ωt[r] ∼ N (0, β−1[r])

(11)

where β[r] = 1
Qs(r,r)

is a scalar denoting the precision of the state noise at the rth row; a[r] and
bk[r] are the rth rows of A and Bk, respectively; d[r] is the rth diagonal element of D. We
collect the rth row of the model parameters in the state equation as an (S +KS + 1) × 1 vector
η[r] = [a[r],b1[r], ...,bK [r], d[r]]

′ and reformulate the rth row of the state equation as:

st[r] = η′[r]

[
F̃tst−1
ut[r]

]
+ ωt[r] = η′[r]̃st[r] + ωt[r] (12)

where F̃t =
[
IS m1

t IS . . . mK
t IS

]′
and s̃t[r] =

[
F̃tst−1
ut[r]

]
.

We assume the following Gaussian-Gamma conjugate priors for η[r] and β[r] [2]:

p(η[r], β[r]|α) = N
(
0, (β[r]Λα)−1

)
Gamma(a0, b0) (13)

whereα = [α1, α2, ..., α(K+1)S+1] is a vector of hyperparameters on each element of η[r] and Λα is
a diagonal matrix with the vectorα. We also choose a separate Gamma prior for each hyperparameter
in α as:

p(α) =

(K+1)S+1∏
i=1

Gamma(c0, d0) (14)

Applying Equation (9),

log q(η[r], β[r]|Y) ∝ Es,α [log p(s|η, β)p(η|β,α)p(α)p(β)] (15)

log q(α|Y) ∝ Es,η[r],β[r] [log p(η|β,α)p(α)p(β)] (16)

The variational joint posterior for η[r] and β[r] has the same form as their priors:

q(η[r], β[r]|Y) = N (µ̄[r], β−1[r]Σ̄[r])Gamma(ā[r], b̄[r]) (17)

where

Σ̄−1[r] =

[ ∑T
t=2 F̃tPt−1F̃

′
t

∑T
t=2 F̃tµ

T
t−1ut[r]∑T

t=2 ut[r](µ
T
t−1)′F̃′t

∑T
t=2 (ut[r])

2

]
+ Eα(Λα) (18)

µ̄[r] = Σ̄[r]

[∑T
t=2 F̃tEs[st[r]st−1]∑T

t=2 ut[r]µ
T
t [r]

]
(19)

Eα(Λα) = diag
(
c̄1
d̄1
,
c̄2
d̄2
, ...,

c̄(K+1)S+1

d̄(K+1)S+1

)
(20)

ā[r] = a0 +
T − 1

2
(21)

b̄[r] = b0 +
1

2

[
T∑
t=2

Es[(st[r])
2]− µ̄′[r]Σ̄−1[r]µ̄[r]

]
(22)

Es[st[r]st−1] is the transpose of the rth row of Pt,t−1 and Es[(st[r])
2] is the rth diagonal element

of Pt.

The posterior for each hyperparameter αj , j = 1, 2, ..., (K+1)S+1 can be computed independently:

q(αj |Y) = Gamma(αj |c̄j , d̄j) (23)
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where

c̄j = c0 +
1

2
(24)

d̄j = d0 +
1

2

[
ā[r]

b̄[r]
(µ̄[r, j])2 + Σ̄r[j, j]

]
(25)

µ̄[r, j] is the jth element of µ̄[r] and Σ̄r[j, j] is the jth diagonal element of Σ̄[r].

The variational posteriors for η[r], β[r], and α are computed for r = 1, 2, ..., S separately, from
which we obtain the posteriors of state parameters θS =

{
A, {Bk}Kk=1,D,Qs

}
.

Posterior of R The noise covariance R = Qy + LQxL
′ has two unknown covariance matrices

Qx and Qy. Since it is difficult to choose a conjugate prior for Qx and Qy separately, we set a
conjugate prior on R directly. Applying Equation (14):

log q(R|y) ∝ Es(log p(y|s,R)p(R)) (26)

We set the inverse Wishart prior IW (v0,V0) on R [3]:

p(R) =
|V0|

v0
2

2
v0M

2 ΓM (v02 )
|R|−

v0+M+1
2 exp

(
−1

2
Tr(V0(R)−1)

)
(27)

The posterior is given by:
q(R|y) = IW (vn,Vn) (28)

where
vn = v0 + T (29)

Vn = V0 +

(
T∑
t=1

(yt −CµTt )(yt −CµTt )′ + CΣT
t C′

)
(30)

We have E(R) = Vn

vn−M−1 and E(R−1) = V−1n vn.

Computation for ELBO

The ELBO can be computed by:

L(q) =

S∑
r=1

{−1

2

T∑
t=2

ā[r]

b̄[r]

(
E(s2t [r])− 2E(st[r]µ̄[r]′s̃t) + Tr

((
µ̄[r]µ̄[r]′ +

b̄[r]

ā[r]
Σ̄[r]

)
E(̃sts̃

′
t)

))
− T − 1

2
log 2π +

1

2
log det(Σ̄η[r]) +

(K + 1)S + 1

2
− log Γ(a0) + a0 log b0 − b0

ā[r]

b̄[r]

+ log Γ(ā[r])− ā[r] log b̄[r] + ā[r]

+

(K+1)S+1
2∑
j=1

(
− log Γ(c0) + c0 log d0 + log Γ(c̄j [r])− c̄j [r] log d̄j [r]

)
}

+
ST

2
log 2π +

1

2

T∑
t=1

log det(ΣT
t ) +

ST

2

− T

2
log 2π − T

2
log det R

− 1

2
Tr

[
(R)−1

(
T∑
t=1

(yt −CµTt )(yt −CµTt )′ + CΣT
t C′

)]
(31)
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Additional information on simulations

The lead field matrix L used in the simulation was computed based on the anatomical MRI data of a
single subject using the FieldTrip toolbox [7]. We first generated a Boundary Element Method (BEM)
volume conductor model based on the head geometry obtained from the T1-weighted structural MR
image of the subject. The head model specifies the conductivity of three different tissue types: brain,
skull and scalp. We then constructed a 3-D volumetric source model that discretizes the brain volume
using a uniformly spaced 3-D grid with 5 mm spatial resolution. It contains 24948 source points
(dipoles) in total. The spatial placement of 34 EEG electrodes was manually aligned to the same
coordination system as the head model and the source model. The lead field matrix was computed
for each source point using a fixed dipole orientation estimated from the EEG data using MNE.
Hence, a lead field matrix L with dimension 34× 24948 was obtained. We selected 5 ROIs based
on the fMRI activation map (see section 3.2) specific to the subject at the face fusiform area (FFA),
parahippocampal place area (PPA), superior parietal lobule (SPL), anterior cingulate cortex (ACC),
and frontal eye field (FEF). In total, 117 true sources were included across all 5 ROIs (FFA: 32, PPA:
24, SPL: 9, ACC: 33, FEF: 19). Therefore there are 117 rows in the binary indicator matrix G that
are not all zeros. When fMRI data is not available, one can only select ROIs based on atlases defined
in a standard space, which results in inaccurate localization of ROIs for each individual subject. To
simulate the loss in spatial specificity, we dilated the ROIs such that only a small number of spurious
sources (38 in total) were added to each ROI (FFA: 10, PPA: 7, SPL: 4, ACC: 15, FEF: 2). We
compared the performance of the algorithm in this "EEG-only" condition with the "EEG-fMRI"
condition in which the spatial localization of ROIs is accurate. The only difference between the
two conditions was the number of nonzero rows in the indicator matrix G. Figure 1 shows the
network configuration used in the simulation. Scenarios 1 and 2 have the same external input u and
intrinsic connectivity matrix A, but they differ in the number and type of modulatory inputs. m1

in scenario 1 represents a block-design while m2 and m3 in scenario 2 represent an event-related
design. Scenario 2 was designed to mimic our real data experiment. Figure 2 and Figure 3 show
an example of the comparison between "EEG-fMRI" and "EEG-only" conditions in recovering the
connectivity matrices and noise covariance matrices, for scenarios 1 and 2 respectively. In both cases,
the "EEG-fMRI" condition yields smaller error and less false positive connections. In practice, it is
common to get inaccurate ROIs or even neglect important ROIs with EEG information alone. Our
simulations illustrate the value of simultaneous EEG-fMRI data.

Figure 1: Network configuration in the simulation.
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Figure 2: Comparison of posterior estimates between "EEG-fMRI" and "EEG-only" in scenario 1.
Connections in A and B1 were thresholded at P < 0.05 after Bonferroni correction.

Additional information on algorithm initialization and runtime

For both simulation scenarios, we initialized the algorithm in the same way. The algorithm was
initialized by solving the least squares in Equation (1) to obtain estimates of ŝt, x̂t, Q̂x, Q̂s, Â,
B̂k, and D̂. Q̂y was estimated from the data during baseline period. Small non-informative
priors were chosen for the model parameters such that the posterior largely depends on the data
likelihood. For state noise precision, we set a0 = 10−4, b0 = 10−3. For hyper-parameter Λα, we
set c0 = 10−2, d0 = 10−9. Choosing d0 � c0 increases the sparsity penalty. For covariance R,
we set v0 = 35. In Figure 4, we showed the relative error between the final posterior estimates and
their initial values. In both scenarios, the final posterior estimates changed substantially from their
initial values and moved closer towards the true values. The relative error between the posterior
estimates and the true values is significantly smaller for all model parameters. The runtime of the
Matlab implementation of the algorithm on one set of the data in simulation 1 (comparable to real
data) is 935 s on a 2.8 GHz Intel Core i7 Mac machine.
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Figure 3: Comparison of posterior estimates between "EEG-fMRI" and "EEG-only" in scenario 2.
Connections in A, B3, and B3 were thresholded at P < 0.05 after Bonferroni correction.

Figure 4: Comparison between the posterior estimates and their initial values. A, Relative error
of the initial values vs. posterior estimates and true values vs. posterior estimates in scenario 1. B,
Similar comparison in scenario 2. Error bar represents the standard error of the mean across 10
independent simulations.

Additional information on simultaneous EEG-fMRI experiment

Simultaneous EEG and fMRI were recorded when subjects performed an event-related three-choice
visual categorization task. On each trial, an image of a face, car, or house was presented for 100
ms. Subjects reported their choice of the image category by pressing one of the three buttons on
an MR-compatible button response pad. The stimuli consisted of a set of 30 face, 30 car, and 30
house images. The phase coherence of the images was degraded at a high coherence (50%) level
and at a low coherence (35%) level by a weighted mean phase algorithm [4]. The phase coherence
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modulates the amount of sensory evidence in the stimuli and thus influences the decision ambiguity.
Each subject completed 4 runs of the categorization task. In each run, there were 180 trials (30 per
condition; 6 conditions: face high, car high, house high, face low, car low, and house low). EEG
data were recorded simultaneously with the fMRI data at 1 kHz sampling rate using a custom-built
MR-compatible EEG system with differential amplifiers and bipolar EEG montage. The caps were
configured with 36 Ag/AgCl electrodes, including left and right mastoids, arranged as 43 bipolar
pairs. More details in data recording and experiment design can be found in [5, 6]. The repetition
time (TR) of fMRI is 2 s.

In the preprocessing of EEG data, we first removed the gradient artifacts by subtracting from
each functional volume an average artifact template obtained from across all functional volume
acquisitions. We then smoothed the data with a 10 ms median filter to attenuate any residual spike
artifacts. Subsequently, we performed a standard EEG noise removal with a 0.5 Hz high-pass filter
to remove direct current drift, 60 and 120 Hz notch filters to remove electrical line noise, and a
100 Hz low-pass filter to remove high-frequency artifacts not associated with neurophysiological
processes. Ballistocardiogram (BCG) artifact was then removed by a conservative approach, based
on principal component analysis to reduce the risk of signal power loss. These BCG-free data were
then rereferenced from the 43 bipolar channels to the 34-electrode space, and then to the common
average of all channels. Finally, EEG data were downsampled to 100 Hz. Stimulus-locked EEG
epochs with a duration of 1000 ms (500 ms prestimulus to 500 ms poststimulus) were extracted from
the BCG-free data for the algorithm initialization. The baseline was chosen from 200 ms prestimulus
to stimulus onset and the average voltage during the baseline period was subtracted from the epoch.
EEG measurement noise covariance Q̂y was then estimated from the baseline period. The free source
orientation lead field matrix L was first computed using the ’BEMCP’ head model in FieldTrip
Toolbox [7].

For each subject, we identified 6 ROI (FFA, PPA, SPL, ACC, PMC, FEF, see Figure 5A) that showed
differential activity for face vs. nonface from an EEG-informed fMRI analysis [5]. FFA and PPA
were identified for each subject based on a separate functional localizer task. Consequently, these
ROIs were task-specific and varied in size depending on each subject’s anatomical geometry. The
algorithm was initialized first by solving the EEG inverse problem using MNE, the inverse operator
W is given by [8]:

W = Q0L
′(LQ0L

′ + λ2Q̂y)−1 (32)

where Q0 is the diagonal source covariance matrix. We set the variance of sources at each ROI to
1 and the variance of sources outside any ROI to 0.1. λ is a regularization parameter calculated as
traceLQ0L

′

traceQ̂y·SNR
. Therefore, the estimated source activity x̂t is given by:

x̂t = Wyt (33)

For each dipole in x̂t, we calculated the first singular value across its three components at x, y, and
z directions. The first singular vector was used as the dipole orientation to calculate a lead field
matrix L with fixed dipole orientation in our model. ŝt was estimated from the mean activity of x̂t at
each ROI. The initial values of other model parameters were then computed by solving a set of least
squares in Equation (1). We modeled face, car, and house stimuli as three separate modulatory inputs.
In addition, face stimuli were fed into FFA and house stimuli fed into PPA as external inputs. Car
stimuli served as a control condition and we focused on the comparison between faces and houses in
this analysis. We fit the state-space model to the continuous noise-cleaned data from each of the 4 runs
separately. In addition to comparing the connectivity matrices induced by faces and houses, we also
qualitatively checked how well our model fit to the data. Based on the posterior estimates of model
parameters, we calculated the model prediction of EEG observations. Since we only modeled three
stimulus events and there are many other covariates that contributed to the variance in the observed
EEG (such as motor response), we focused on the comparison between the predicted and observed
event-related potentials (ERPs). Figure 5B shows the predicted ERP and actual ERP responses at
34 channels of a representative subject, averaged across three stimulus types. The observed ERP
responses were well accounted for by the model, for example at occipital electrodes (Figure 5C).
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Figure 5: Predicted ERP and Actual ERP responses from one representative subject. A, Illustration
of ROI locations in subject’s anatomical space. B, Grand average of ERPs (Actual vs. Predicted)
across three categories at all 34 channels. Scalp topology was shown at t=235 ms post-stimulus onset.
C, Actual vs. Predicted ERPs averaged across three categories at 4 occipital channels. Shaded area
represents the standard error of the mean.
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