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Abstract

Temporal sentence grounding in videos aims to detect and localize one target video
segment, which semantically corresponds to a given sentence. Existing methods
mainly tackle this task via matching and aligning semantics between a sentence and
candidate video segments, while neglect the fact that the sentence information plays
an important role in temporally correlating and composing the described contents in
videos. In this paper, we propose a novel semantic conditioned dynamic modulation
(SCDM) mechanism, which relies on the sentence semantics to modulate the
temporal convolution operations for better correlating and composing the sentence-
related video contents over time. More importantly, the proposed SCDM performs
dynamically with respect to the diverse video contents so as to establish a more
precise matching relationship between sentence and video, thereby improving
the temporal grounding accuracy. Extensive experiments on three public datasets
demonstrate that our proposed model outperforms the state-of-the-arts with clear
margins, illustrating the ability of SCDM to better associate and localize relevant
video contents for temporal sentence grounding. Our code for this paper is available
at https://github.com/yytzsy/SCDM .

1 Introduction

Detecting or localizing activities in videos [18, 30, 26, 34, 11, 29, 21, 9, 8] is a prominent while
fundamental problem for video understanding. As videos often contain intricate activities that cannot
be indicated by a predefined list of action classes, a new task, namely temporal sentence grounding
in videos (TSG) [14, 10], has recently attracted much research attention [2, 36, 3, 19, 4, 5, 35].
Formally, given an untrimmed video and a natural sentence query, the task aims to identify the start
and end timestamps of one specific video segment, which contains activities of interest semantically
corresponding to the given sentence query.

Most of existing approaches [10, 14, 19, 4] for the TSG task often sample candidate video segments
first, then fuse the sentence and video segment representations together, and thereby evaluate their
matching relationships based on the fused features. Lately, some approaches [2, 36] try to directly
fuse the sentence information with each video clip, then employ an LSTM or a ConvNet to compose
the fused features over time, and thus predict the temporal boundaries of the target video segment.
While promising results have been achieved, there are still several problems that need to be concerned.
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Sentence query: The woman takes the book across the room to read it on the sofa.

start point end point

Figure 1: The temporal sentence grounding in videos (TSG) task. Our proposed SCDM relies on the sentence
to modulate the temporal convolution operations, which can thereby temporally correlate and compose the
various sentence-related activities (highlighted in red and green) for more accurate grounding results.

First, previous methods mainly focus on semantically matching sentences and individual video
segments or clips, while neglect the important guiding role of sentences to help correlate and compose
video contents over time. For example, the target video sequence shown in Figure 1 mainly expresses
two distinct activities “woman walks cross the room” and “woman reads the book on the sofa”.
Without referring to the sentence, these two distinct activities are not easy to be associated as one
whole event. However, the sentence clearly indicates that “The woman takes the book across the room
to read it on the sofa”. Keeping such a semantic meaning in mind, persons can easily correlate the two
activities together and thereby precisely determine the temporal boundaries. Therefore, how to make
use of the sentence semantics to guide the composing and correlating of relevant video contents over
time is very crucial for the TSG task. Second, activities contained in videos are usually of diverse
visual appearances, and present in various temporal scales. Therefore, the sentence guidance for
composing and correlating video contents should also be considered in different temporal granularities
and dynamically evolve with the diverse visual appearances.

In this paper, we propose a novel semantic conditioned dynamic modulation (SCDM) mechanism,
which leverages sentence semantic information to modulate the temporal convolution processes in a
hierarchical temporal convolutional network. The SCDM manipulates the temporal feature maps by
adjusting the scaling and shifting parameters for feature normalization with referring to the sentence
semantics. As such, the temporal convolution process is activated to better associate and compose
sentence-related video contents over time. More specifically, such a modulation dynamically evolves
when processing different convolutional layers and different locations of feature maps, so as to
better align the sentence and video semantics under diverse video contents and various granularities.
Coupling SCDM with the temporal convolutional network, our proposed model naturally characterizes
the interaction behaviors between sentence and video, leading to a novel and effective architecture
for the TSG task.

Our main contributions are summarized as follows. (1) We propose a novel semantic conditioned
dynamic modulation (SCDM) mechanism, which dynamically modulates the temporal convolution
procedure by referring to the sentence semantic information. In doing so, the sentence-related
video contents can be temporally correlated and composed to yield a precise temporal boundary
prediction. (2) Coupling the proposed SCDM with the hierarchical temporal convolutional network,
our model naturally exploits the complicated semantic interactions between sentence and video in
various temporal granularities. (3) We conduct experiments on three public datasets, and verify
the effectiveness of the proposed SCDM mechanism as well as its coupled temporal convolution
architecture with the superiority over the state-of-the-art methods.

2 Related Works

Temporal sentence grounding in videos is a new task introduced recently [10, 14]. Some previous
works [10, 14, 19, 33, 4, 12] often adopted a two-stage multimodal matching strategy to solve
this problem. They sampled candidate segments from a video first, then integrated the sentence
representation with those video segments individually, and thus evaluated their matching relationships
through the integrated features. With the above multimodal matching framework, Hendricks et al.
[14] further introduced temporal position features of video segments into the feature fusion procedure;
Gao et al. [10] established a location regression network to adjust the temporal position of the
candidate segment to the target segment; Liu et al. [19] designed a memory attention mechanism
to emphasize the visual features mentioned in the sentence; Xu et al. [33] and Chen et al. [4]
proposed to generate query-specific proposals as candidate segments; Ge et al. [12] investigated
activity concepts from both videos and queries to enhance the temporal sentence grounding.
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Figure 2: An overview of our proposed model for the TSG task, which consists of three fully-coupled
components. The multimodal fusion fuses the entire sentence and each video clip in a fine-grained manner.
Based on the fused representation, the semantic modulated temporal convolution correlates sentence-related
video contents in the temporal convolution procedure, with the proposed SCDM dynamically modulating
temporal feature maps with reference to the sentence. Finally, the position prediction outputs the location offsets
and overlap scores of candidate video segments based on the modulated features. Best viewed in color.

Recently, some other works [4, 36] proposed to directly integrate sentence information with each
fine-grained video clip unit, and then predicted the temporal boundary of the target segment by
gradually merging the fusion feature sequence over time in an end-to-end fashion. Specifically, Chen
et al. [2] aggregated frame-by-word interactions between video and language through a Match-LSTM
[31]. Zhang et al. [36] adopted the Graph Convolutional Network (GCN) [16] to model relations
among candidate segments produced from a convolutional neural network.

Although promising results have been achieved by existing methods, they all focus on better aligning
semantic information between sentence and video, while neglect the fact that sentence information
plays an important role in correlating the described activities in videos. Our work firstly introduces
the sentence information as a critical prior to compose and correlate video contents over time, subse-
quently sentence-guided video composing is dynamically performed and evolved in a hierarchical
temporal convolution architecture, in order to cover the diverse video contents of various temporal
granularities.

3 The Proposed Model

Given an untrimmed video V and a sentence query S, the TSG task aims to determine the start and
end timestamps of one video segment, which semantically corresponds to the given sentence query. In
order to perform the temporal grounding, the video is first represented as V = {vt}Tt=1 clip-by-clip,
and accordingly the query sentence is represented as S = {sn}Nn=1 word-by-word.

In this paper, we propose one novel model to handle the TSG task, as illustrated in Figure 2.
Specifically, the proposed model consists of three components, namely the multimodal fusion, the
semantic modulated temporal convolution, and the position prediction. Please note that the three
components fully couple together and can therefore be trained in an end-to-end manner.

3.1 Multimodal Fusion

The TSG task requires to understand both the sentence and video. As such, in order to correlate their
corresponding semantic information, we first let each video clip meet and interact with the entire
sentence, which is formulated as:

ft = ReLU
(
Wf

(
vt‖s

)
+ bf

)
, (1)

where Wf and bf are the learnable parameters. s denotes the global sentence representation,
which can be obtained by simply averaging the word-level sentence representation S. With such
a multimodal fusion strategy, the yielded representation F = {ft}Tt=1 ∈ RT×df captures the
interactions between sentence and video clips in a fine-grained manner. The following semantic
modulated temporal convolution will gradually correlate and compose such representations together
over time, expecting to help produce accurate temporal boundary predictions of various scales.
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3.2 Semantic Modulated Temporal Convolution

As aforementioned, the sentence-described activities in videos may have various durations and scales.
Therefore, the fused multimodal representation F should be exploited from different temporal scales
to comprehensively characterize the temporal diversity of video activities. Inspired by the efficient
single-shot object and action detections [20, 18], the temporal convolutional network established
via one hierarchical architecture is used to produce multi-scale features to cover the activities of
various durations. Moreover, in order to fully exploit the guiding role of the sentence, we propose one
novel semantic conditioned dynamic modulation (SCDM) mechanism, which relies on the sentence
semantics to modulate the temporal convolution operations for better correlating and composing the
sentence-related video contents over time. In the following, we first review the basics of the temporal
convolutional network. Afterwards, the proposed SCDM will be described in details.

3.2.1 Temporal Convolutional Network

Taking the multimodal fusion representation F as input, the standard temporal convolution operation
in this paper is denoted as Conv(θk, θs, dh), where θk, θs, and dh indicate the kernel size, stride
size, and filter numbers, respectively. Meanwhile, the nonlinear activation, such as ReLU, is then
followed with the convolution operation to construct a basic temporal convolutional layer. By setting
θk as 3 and θs as 2, respectively, each convolutional layer will halve the temporal dimension of the
input feature map and meanwhile expand the receptive field of each feature unit within the map. By
stacking multiple layers, a hierarchical temporal convolutional network is constructed, with each
feature unit in one specific feature map corresponding to one specific video segment in the original
video. For brevity, we denote the output feature map of the k-th temporal convolutional layer as
Ak = {ak,i}Tk

i=1 ∈ RTk×dh , where Tk = Tk−1/2 is the temporal dimension, and ak,i ∈ Rdh

denotes the i-th feature unit at the the k-th layer feature map.

3.2.2 Semantic Conditioned Dynamic Modulation

Regarding video activity localization, besides the video clip contents, their temporal correlations
play an even more important role. For the TSG task, the query sentence, presenting rich semantic
indications on such important correlations, provides crucial information to temporally associate
and compose the consecutive video contents over time. Based on the above considerations, in this
paper, we propose a novel SCDM mechanism, which relies on the sentence semantic information to
dynamically modulate the feature composition process in each temporal convolutional layer.

Specifically, as shown in Figure 3(b), given the sentence representation S = {sn}Nn=1 and one feature
map extracted from one specific temporal convolutional layer A = {ai} (we omit the layer number
here), we attentively summarize the sentence representation to ci with respect to each feature unit ai:

ρni = softmax
(
w>tanh (Wssn + Waai + b)

)
, ci =

N∑
n=1

ρni sn, (2)

Attention

S1 S2 SN

(b) Semantic Conditioned Dynamic Modulation

(a) Conditional Normalization

SCDM

Conditional
Normalization

Figure 3: The comparison between conditional
normalization and our proposed semantic condi-
tioned dynamic modulation.

where w, Ws, Wa, and b are the learnable param-
eters. Afterwards, two fully-connected (FC) layers
with the tanh activation function are used to generate
two modulation vectors γci ∈ Rdh and βci ∈ Rdh ,
respectively:

γci = tanh(Wγci + bγ),

βci = tanh(Wβci + bβ),
(3)

where Wγ , bγ , Wβ , and bβ are the learnable pa-
rameters. Finally, based on the generated modulation
vectors γci and βci , the feature unit ai is modulated as:

âi = γci ·
ai − µ(A)

σ(A)
+ βci . (4)

With the proposed SCDM, the temporal feature maps,
yielded during the temporal convolution process, are
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meticulously modulated by scaling and shifting the corresponding normalized features under the
sentence guidance. As such, each temporal feature map will absorb the sentence semantic information,
and further activate the following temporal convolutional layer to better correlate and compose the
sentence-related video contents over time. Coupling the proposed SCDM with each temporal
convolutional layer, we thus obtain the novel semantic modulated temporal convolution as shown in
the middle part of Figure 2.

Discussion. As shown in Figure 3, our proposed SCDM differs from the existing conditional
batch/instance normalization [6, 7], where the same γc and βc are applied within the whole
batch/instance. On the contrary, as indicated in Equations (2)-(4), our SCDM dynamically ag-
gregates the meaningful words with referring to different video contents, making the yielded γc
and βc dynamically evolve for different temporal units within each specific feature map. Such a
dynamic modulation enables each temporal feature unit to be interacted with each word to collect
useful grounding cues along the temporal dimension. Therefore, the sentence-video semantics can
be better aligned over time to support more precise boundary predictions. Detailed experimental
demonstrations will be given in Section 4.5.

3.3 Position Prediction

Similar to [20, 18] for object/action detections, during the prediction, lower and higher temporal
convolutional layers are used to localize short and long activities, respectively. As illustrated in
Figure 4, regarding a feature map with temporal dimension Tk, the basic temporal span for each
feature unit within this feature map is 1/Tk. We impose different scale ratios based on the basic span,
and denote them as r ∈ R = {0.25, 0, 5, 0.75, 1.0}. As such, for the i-th feature unit of the feature
map, we can compute the length of the scaled spans within it as r/Tk, and the center of these spans is
(i+ 0.5)/Tk. For the whole feature map, there are a total number of Tk · |R| scaled spans within it,
with each span corresponding to a candidate video segment for grounding.

Center = (i+0.5)/Tk  , Width = r/Tk

1.0
0.75

0.5
0.25

Feature map with temporal dimension Tk  (Tk=4 here)

Temporal scale ratios r

Target segment

(pover
, c w),

Figure 4: The illustration of temporal scale ratios
and offsets.

Then, we impose an additional set of convolution op-
erations on the layer-wise temporal feature maps to
predict the target video segment position. Specif-
ically, each candidate segment will be associated
with a prediction vector p = (pover,4c,4w), where
pover is the predicted overlap score between the can-
didate and ground-truth segment, and 4c and 4w
are the temporal center and width offsets of the can-
didate segment relative to the ground-truth. Suppose
that the center and width for a candidate segment are µc and µw, respectively. Then the center φc and
width φw of the corresponding predicted segment are therefore determined by:

φc = µc + αc · µw · 4c, φw = µw · exp(αw · 4w), (5)
where αc and αw both are used for controlling the effect of location offsets to make location prediction
stable, which are set as 0.1 empirically. As such, for a feature map with temporal dimension Tk, we
can obtain a predicted segment set Φk = {(poverj , φcj , φ

w
j )}Tk·|R|

j=1 . The total predicted segment set is
therefore denoted as Φ = {Φk}Kk=1, where K is the number of temporal feature maps.

3.4 Training and Inference

Training: Our training sample consists of three elements: an input video, a sentence query, and the
ground-truth segment. We treat candidate segments within different temporal feature maps as positive
if their tIoUs (temporal Intersection-over-Union) with ground-truth segments are larger than 0.5. Our
training objective includes an overlap prediction loss Lover and a location prediction loss Lloc. The
Lover term is realized as a cross-entropy loss, which is defined as:

Lover =
∑

z∈{pos,neg}

− 1

Nz

Nz∑
i

goveri log(poveri ) + (1− goveri ) log(1− poveri ), (6)
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where gover is the ground-truth tIoU between the candidate and target segments, and pover is the
predicted overlap score. The Lloc term measures the Smooth L1 loss [13] for positive samples:

Lloc =
1

Npos

Npos∑
i

SL1(gci − φci ) + SL1(gwi − φwi ), (7)

where gc and gw are the center and width of the ground-truth segment, respectively.

The two losses are jointly considered for training our proposed model, with λ and η balancing their
contributions:

Lall = λLover + ηLloc. (8)

Inference: The predicted segment set Φ of different temporal granularities can be generated in one
forward pass. All the predicted segments within Φ will be ranked and refined with non maximum
suppression (NMS) according to the predicted pover scores. Afterwards, the final temporal grounding
result is obtained.

4 Experiments

4.1 Datasets and Evaluation Metrics

We validate the performance of our proposed model on three public datasets for the TSG task: TACoS
[24], Charades-STA [10], and AcitivtyNet Captions [17]. The TACoS dataset mainly contains videos
depicting human’s cooking activities, while Charades-STA and ActivityNet Captions focus on more
complicated human activities in daily life.

For fair comparisons, we adopt “R@n, IoU@m” as our evaluation metrics as in previous works
[2, 10, 36, 32, 19]. Specifically, “R@n, IoU@m” is defined as the percentage of the testing queries
having at least one hitting retrieval (with IoU larger than m) in the top-n retrieved segments.

4.2 Implementation Details

Following the previous methods, 3D convolutional features (C3D [28] for TACoS and ActivityNet,
and I3D [1] for Charades-STA) are extracted to encode videos, with each feature representing a
1-second video clip. According to the video duration statistics, the length of input video clips is
set as 1024 for both ActivityNet Captions and TACoS, and 64 for Charades-STA to accommodate
the temporal convolution. Longer videos are truncated, and shorter ones are padded with zero
vectors. For the design of temporal convolutional layers, 6 layers with {32, 16, 8, 4, 2, 1} temporal
dimensions, 6 layers with {512, 256, 128, 64, 32, 16} temporal dimensions, and 8 layers with {512,
256, 128, 64, 32, 16, 8, 4} temporal dimensions are set for Charades-STA, TACoS, and ActivityNet
Captions, respectively. All the first temporal feature maps will not be used for location prediction,
because the receptive fields of the corresponding feature units are too small and are too rare to contain
target activities. To save model memory footprint, the SCDM mechanism is only performed on the
following temporal feature maps which directly serve for position prediction. For sentence encoding,
we first embed each word in sentences with the Glove [23], and then employ a Bi-directional GRU to
encode the word embedding sequence. As such, words in sentences are finally represented with their
corresponding GRU hidden states. Hidden dimension of the sentence Bi-directional GRU, dimension
of the multimodal fused features df , and the filter number dh for temporal convolution operations are
all set as 512 in this paper. The trade-off parameters of the two loss terms λ and η are set as 100 and
10, respectively.

4.3 Compared Methods

We compare our proposed model with the following state-of-the-art baseline methods on the TSG
task. CTRL [10]: Cross-model Temporal Regression Localizer. ACRN [19]: Attentive Cross-Model
Retrieval Network. TGN [2]: Temporal Ground-Net. MCF [32]: Multimodal Circulant Fusion. ACL
[12]: Activity Concepts based Localizer. SAP [4]: A two-stage approach based on visual concept
mining. Xu et al. [33]: A two-stage method (proposal generation + proposal rerank) exploiting
sentence re-construction. MAN [36]: Moment Alignment Network. We use Ours-SCDM to refer
our temporal convolutional network coupled with the proposed SCDM mechanism.

6



Table 1: Performance comparisons on the TACoS and Charades-STA datasets (%).

Method
TACoS Charades-STA

R@1,
IoU@0.3

R@1,
IoU@0.5

R@5,
IoU@0.3

R@5,
IoU@0.5

R@1,
IoU@0.5

R@1,
IoU@0.7

R@5,
IoU@0.5

R@5,
IoU@0.7

CTRL (C3D) [10] 18.32 13.30 36.69 25.42 23.63 8.89 58.92 29.52
MCF (C3D) [32] 18.64 12.53 37.13 24.73 - - - -

ACRN (C3D) [19] 19.52 14.62 34.97 24.88 - - - -
SAP (VGG) [4] - 18.24 - 28.11 27.42 13.36 66.37 38.15
ACL (C3D) [12] 24.17 20.01 42.15 30.66 30.48 12.20 64.84 35.13
TGN (C3D) [2] 21.77 18.90 39.06 31.02 - - - -

Xu et al. (C3D) [33] - - - - 35.60 15.80 79.40 45.40
MAN (I3D) [36] - - - - - 46.53 22.72 86.23 53.72
Ours-SCDM (*) 26.11 21.17 40.16 32.18 54.44 33.43 74.43 58.08

*: We adopt C3D [28] features to encode videos on the TACoS and ActivityNet Captions datasets, and I3D [1] features on the
Charades-STA dataset for fair comparisons. Video features adopted by other compared methods are indicated in brackets. VGG
denotes VGG16 [25] features.

Table 2: Performance comparisons on the ActivityNet Captions dataset (%).
Method R@1,IoU@0.3 R@1,IoU@0.5 R@1,IoU@0.7 R@5,IoU@0.3 R@5,IoU@0.5 R@5,IoU@0.7

TGN (INP*) [2] 45.51 28.47 - 57.32 43.33 -
Xu et al. (C3D) [33] 45.30 27.70 13.60 75.70 59.20 38.30
Ours-SCDM (C3D) 54.80 36.75 19.86 77.29 64.99 41.53

*: INP denotes Inception-V4 [27] features.

4.4 Performance Comparison and Analysis

Table 1 and Table 2 report the performance comparisons between our model and the existing methods
on the aforementioned three public datasets. Overall, Ours-SCDM achieves the highest temporal
sentence grounding accuracy, demonstrating the superiority of our proposed model. Notably, for
localizing complex human activities in Charades-STA and ActivityNet Captions datasets, Ours-
SCDM significantly outperforms the state-of-the-art methods with 10.71% and 6.26% absolute
improvements in the R@1,IoU@0.7 metrics, respectively. Although Ours-SCDM achieves lower
results of R@5,IoU@0.5 on the Charades-STA dataset, it is mainly due to the biased annotations in
this dataset. For example, in Charades-STA, the annotated ground-truth segments are 10s on average
while the video duration is only 30s on average. Randomly selecting one candidate segment can also
achieve competing temporal grounding results. It indicates that the Recall values under higher IoUs
are more stable and convincing even considering the dataset biases. The performance improvements
under the high IoU threshold demonstrate that Ours-SCDM can generate grounded video segments of
more precise boundaries. For TACoS, the cooking activities take place in the same kitchen scene
with some slightly varied cooking objects (e.g., chopping board, knife, and bread, as shown in the
second example of Figure 5). Thus, it is hard to localize such fine-grained activities. However, our
proposed model still achieves the best results, except slight worse performances in R@5,IoU@0.3.

The main reasons for our proposed model outperforming the competing models lie in two folds. First,
the sentence information is fully leveraged to modulate the temporal convolution processes, so as
to help correlate and compose relevant video contents over time to support the temporal boundary
prediction. Second, the modulation procedure dynamically evolves with different video contents in the
hierarchical temporal convolution architecture, and therefore characterizes the diverse sentence-video
semantic interactions of different granularities.

4.5 Ablation Studies

In this section, we perform ablation studies to examine the contributions of our proposed SCDM.
Specifically, we re-train our model with the following four settings.

• Ours-w/o-SCDM: SCDM is replaced by the plain batch normalization [15].
• Ours-FC: Instead of performing SCDM, one FC layer is used to fuse each temporal feature unit

with the global sentence representation s after each temporal convolutional layer.
• Ours-MUL: Instead of performing SCDM, element-wise multiplication between each temporal

feature unit and the global sentence representation s is performed after each temporal convolutional
layer.

• Ours-SCM: We use the global sentence representation s to produce γc and βc without dynamically
changing these two modulation vectors with respect to different feature units.
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Table 3 shows the performance comparisons of our proposed full model Ours-SCDM w.r.t. these
ablations on the Charades-STA dataset (please see results on the other datasets in our supplemental
material). Without considering SCDM, the performance of the model Ours-w/o-SCDM degenerates
dramatically. It indicates that only relying on multimodal fusion to exploit the relationship between
video and sentence is not enough for the TSG task. The critical sentence semantics should be
intensified to guide the temporal convolution procedure so as to better link the sentence-related video
contents over time. However, roughly introducing sentence information in the temporal convolution
architecture like Ours-MUL and Ours-FC does not achieve satisfying results. Recall that temporal
feature maps in the proposed model are already multimodal representations since the sentence
information has been integrated during the multimodal fusion process. Directly coupling the global
sentence representation s with temporal feature units could possibly disrupt the visual correlations
and temporal dependencies of the videos, which poses a negative effect on the temporal sentence
grounding performance. In contrast, the proposed SCDM mechanism modulates the temporal feature
maps by manipulating their scaling and shifting parameters under the sentence guidance, which is
lightweight while meticulous, and still achieves the best results.

Table 3: Ablation studies on the Charades-STA dataset (%).

Method R@1,
IoU@0.5

R@1,
IoU@0.7

R@5,
IoU@0.5

R@5,
IoU@0.7

Ours-w/o-SCDM 47.52 26.91 69.85 49.35
Ours-FC 46.33 25.94 68.96 49.81

Ours-MUL 49.08 28.77 72.68 51.02
Ours-SCM 53.07 31.41 71.71 54.57

Ours-SCDM 54.44 33.43 74.43 58.08

In addition, comparing Ours-SCM with Ours-
SCDM, we can find that dynamically chang-
ing the modulation vectors γc and βc with
respect to different temporal feature units is
beneficial, with R@5,IoU@0.7 increasing
from 54.57% of Ours-SCM to 58.08% of
Ours-SCDM. The SCDM intensifies mean-
ingful words and cues in sentences catering
for different temporal feature units, with the
motivation that different video segments may contain diverse visual contents and express different
semantic meanings. Establishing the semantic interaction between these two modalities in a dynamic
way can better align the semantics between sentence and diverse video contents, yielding more
precise temporal boundary predictions.

4.6 Model Efficiency Comparison

Table 4: Comparison of model running efficiency,
model size and memory footprint

Method Run-Time Model Size Memory Footprint

CTRL [10] 2.23s 22M 725MB
ACRN [19] 4.31s 128M 8537MB
Ours-SCDM 0.78s 15M 4533MB

Table 4 shows the run-time efficiency, model
size (#param), and memory footprint of dif-
ferent methods. Specifically, “Run-Time” de-
notes the average time to localize one sen-
tence in a given video. The methods with
released codes are run with one Nvidia TI-
TAN XP GPU. The experiments are run on
the TACoS dataset since the videos in this
dataset are relatively long (7 minutes on av-
erage), and are appropriate to evaluate the temporal grounding efficiency of different methods. It
can be observed that ours-SCDM achieves the fastest run-time with the smallest model size. Both
CTRL and ACRN methods need to sample candidate segments with various sliding windows in
the videos first, and then match the input sentence with each of the segments individually. Such a
two-stage architecture will inevitably influence the temporal sentence grounding efficiency, since
the matching procedure through sliding window is quite time-consuming. In contrast, Ours-SCDM
adopts a hierarchical convolution architecture, and naturally covers multi-scale video segments for
grounding with multi-layer temporal feature maps. Thus, we only need to process the video in one
pass of temporal convolution and then get the TSG results, and achieve higher efficiency. In addition,
SCDM only needs to control the feature normalization parameters and is lightweight towards the
overall convolution architecture. Therefore, ours-SCDM also has smaller model size.

4.7 Qualitative Results

Some qualitative examples of our model are illustrated in Figure 5. Evidently, our model can produce
accurate segment boundaries for the TSG task. Moreover, we also visualize the attention weights
(defined in Equation (2)) produced by SCDM when it processes different temporal units. It can be
observed that different video contents attentively trigger different words in sentences so as to better
align their semantics. For example, in the first example, the words “walking” and “open” obtain
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Ground-Truth

Sentence query: Person walking across the room to open a cabinet door.

23.8s 31.0s
23.7s 30.5s 5

Sentence query: The person returns the bread to the fridge.

55.8s 64.0s
57.2s 63.7sPrediction

Ground-Truth

Figure 5: Qualitative prediction examples of our proposed model. The rows with green background show
the ground-truths for the given sentence queries, and the rows with blue background show the final location
prediction results. The gray histograms show the word attention weights produced by SCDM at different
temporal regions.

Sentence query: Person start getting dressed

Ours-w/o-SCDM

Sentence query: The boy closes the cabinet door
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Ours-SCDM Ours-w/o-SCDM Ours-SCDM

Figure 6: t-SNE projections of temporal feature maps yielded by the models Ours-w/o-SCDM and Ours-
SCDM. Each temporal feature unit within these feature maps is represented by its corresponding video clip in
the original video. Video clips marked with red color are within ground-truth video segments.

higher attention weights in the ground-truth segment since the described action indeed happens there.
While in the other region, the word attention weights are more inclined to be an even distribution.

In order to gain more insights of our proposed SCDM mechanism, we visualize the temporal feature
maps produced by the variant model Ours-w/o-SCDM and the full-model Ours-SCDM. For both of
the trained models, we extract their temporal feature maps, and subsequently apply t-SNE [22] to
each temporal feature unit within these maps. Since each temporal feature unit corresponds to one
specific location in the original video, we then assign the corresponding video clips to the positions
of these feature units in the t-SNE embedded space. As illustrated in Figure 6, temporal feature
maps of two testing videos are visualized, where the video clips marked with red color denote the
ground-truth segments of the given sentence queries. Interestingly, it can be observed that through
SCDM processing, video clips within ground-truth segments are more tightly grouped together.
In contrast, the clips without SCDM processing are separated in the learned feature space. This
demonstrates that SCDM successfully associates the sentence-related video contents according to the
sentence semantics, which is beneficial to the later temporal boundary predictions. More visualization
results are provided in the supplemental material.

5 Conclusion

In this paper, we proposed a novel semantic conditioned dynamic modulation mechanism for tackling
the TSG task. The proposed SCDM leverages the sentence semantics to modulate the temporal
convolution operations to better correlate and compose the sentence-related video contents over time.
As SCDM dynamically evolves with the diverse video contents of different temporal granularities in
the temporal convolution architecture, the sentence described video contents are tightly correlated
and composed, leading to more accurate temporal boundary predictions. The experimental results
obtained on three widely-used datasets further demonstrate the superiority of the proposed SCDM on
the TSG task.
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