
Table 2: Information of benchmark datasets.

Dataset Datasize d Source

housing 404 13 UCI Repository
airfoil 1202 5 UCI Repository
concrete 824 8 UCI Repository

powerplant 7654 4 UCI Repository
mpg 313 7 UCI Repository

redwine 1279 11 UCI Repository
whitewine 3918 11 UCI Repository
abalone 3341 10 UCI Repository
diabetes 353 10 [10]

A Experiments details

In this appendix, we explain the detailed setting of experiments. First, we describe the procedure of
hyper-parameter tuning during the experiments. Then, we provide detailed information on benchmark
datasets.

A.1 Procedure of hyper-parameter tuning

To construct risk R̂RA, we need to tune �, w1, w2, which is done by minimizing empirically approxi-
mated Err(w1, w2) defined in (8). Let y, y be the 0.99-quantile and 0.01-quantile of PY , respectively.
Note that we can calculate these quantities since we have access to fY . Then, we define {y

(i)
}
nsplit+1
i=1

as yi = y + (i � 1)/nsplit(y � y), by which Err(w1, w2) is approximated as

Err(w1, w2) '

nsplit+1X

i=1

fY (yi)|yi � w1FY (yi) � w2(1 � FY (yi))|.

We employ w1, w2 that minimize the empirical approximation above with nsplit = 1000 and fix � to
be (w1 + w2)/2 in all cases.

For the TT method, we employ hypothesis space H
0 = {h(x) = F

�1
Y (�(✓>x)) | ✓ 2 Rd

}, which
is slightly different from hypothesis space of liner functions H = {h(x) = ✓>x | ✓ 2 Rd

}, where
� is logistic function �(x) = 1/(1 + exp(�x)) This simplifies the loss function and reduces the
computational time. We fix � = 1/2 for this risk, which yields the loss

R̂TT(h) = C �
1

nU

X

xi2DU
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� �(✓>xi)

◆
�

0(�(h(xi))) + �(�(✓>xi))

�
1

nR

X

(x+
i ,x�

i )2DR

1

4
�

0(�(✓>x+
i )) �

1

4
�

0(�(✓>x�
i )).

We minimize this loss with respect to ✓.

A.2 Benchmark dataset details

We use eight benchmark datasets from UCI repository [8] and one (diabetes) from Efron et al. [10].
The details of datasets can be found in Table 2. As preprocessing, we excluded all instances that
contain missing values, and we encoded a categorical feature in abalone as a one-hot vector.

B Estimating density function and cumulative distribution function

In this section, we discuss the case where the true probability density function fY is not given. In
such a case, we need a slight modification of proposed methods since we have to estimate fY from
the set of target values DY = {yi}

nY
i=1, where nY is the size of DY . We first introduce a modification

of the RA method and derive an estimation error bound for it. Then, we discuss the same for the TT
method as well.
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B.1 Modification of the risk approximation method

Although R̂RA does not depend on fY or FY , we need the information of PY when tuning weights
w1, w2, which is done by the minimization of Err defined in (8). Since, Err can not be directly
calculated without fY and FY , we propose another quantitydErr below, which substitute expectation
over PY and CDF function FY to empirical mean and the empirical CDF.

dErr(w1, w2) =
1

nY

nYX

i=1

|yi � w1F̂Y (yi) � w2(1 � F̂Y (yi))|,

where F̂Y is the empirical CDF defined as

F̂Y (y) =
1

nY

nYX

i=1

[yi  y] .

Note that dErr can be minimized given DY . To show the validity of the method, we establish an
estimation error bound involvingdErr as follows.

Theorem 5. Let Y be bounded in Y ✓ [�L,L]. Then, for all w1, w2 2 [�L,L], we have

|Err(w1, w2) �dErr(w1, w2)|  O

 r
log �

nY

!

with probability 1 � 2�.

Proof. Since the weights are bounded, from Mohri et al. [22, Thm. 10.3], we have

Err(w1, w2) 
1

nY

nYX

i=1

|yi � w1FY (yi) � w2(1 � FY (yi))| + O

 r
log 1/�

m

!
,

with probability 1 � �. Furthermore, from Dvoretzky-Kiefer-Wolfowitz inequality [20], we have

kFY (y) � F̂Y (y)k1 

s
log(2/�)

2nY
(11)

with probability 1 � �, which yields

1

nY

nYX

i=1

|yi � w1FY (yi) � w2(1 � FY (yi))|  dErr + O

 r
log 1/�

m

!
.

Therefore, from the union bound, we have

|Err(w1, w2) �dErr(w1, w2)|  O

 r
log �

nY

!

with probability 1 � 2�.

From Theorems 2 and 5, we have

R(ĥRA)  R(h⇤) + O

0

@
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log 1/�

nU

1

A+ O

0
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log 1/�

nR

1

A+ O

0

@
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log 1/�

nY

1

A+ MdErr(w1, w2),

with probability 1 � 5� under the conditions given in these theorems.
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B.2 Modification on the target transformation method

Let R̃TT be the risk which substitute FY in RTT to empirical CDF, defined as

R̃TT(h;�) = C �
1

nU

X

xi2DU

⇣
(� � F̂Y (h(xi)))�
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Using (11), we have

|R̂TT(h) � R̃TT(h)|  O
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A

for all h 2 H with probability 1 � �. Let h̃TT be the minimizer of R̃TT in hypothesis space H. Then,
under the condition given in Theorem 4, we have

RTT(h̃TT)  RTT(hTT) + O

0

@
s

log 1/�

nY

1

A+ O

0

@
s

log 1/�

nR

1

A+ O

0

@
s

log 1/�

nU

1

A ,

with probability 1 � 4�, therefore we have

R(h̃TT)  R(h⇤) + 2

✓
P

p
�
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with probability 1 � 4�, which can be shown by the slight modification of the proof of Theorem 4.

C Proofs

C.1 Proof of Lemma 1

Lemma 1 can be proved as follows.

Proof of Lemma 1. Let fX+ be the probability density function (PDF) of PX+ . From the definition
of X+, we have

fX+(x) =
1

Z

ZZZ
fX,Y (x, y)fX,Y (x0

, y
0) [y > y

0] dydy0dx0

=
1

Z

Z
fX,Y (x, y)

Z
fY (y0) [y > y

0] dy0
�

dy

=
1

Z

Z
fX,Y (x, y)FY (y)dy,

where Z is the normalizing constant and fX,Y (y) is the PDF of PX,Y . Now, Z is calculated as

Z =

ZZ
fX,Y (x, y)FY (y)dydx

=

Z
fY (y)FY (y)dy

=
1

2
,

where the last equality holds from the integration by parts. Therefore, we have

EX+

⇥
�

0(X+)
⇤

=

Z
fX+(x)�0(x)dx

=

Z
2

⇢Z
fX,Y (x, y)FY (y)dy

�
�

0(x)dx

= EX,Y [FY (Y )�0(x)] .

The expectation over PX� can be derived in the same way.

14



C.2 Proof of Theorem 2

Here, we show the proof of Theorem 2. First, we show the gap between R and RRA can be bounded
as follows.
Lemma 2. For all h 2 H, such that |�

0(h(x))|  M for all x 2 X , we have

|R(h) � RRA(h;�;w1, w2)|  MErr(w1, w2)

for all � 2 R.

Proof. From Lemma 1 and the fact EX [�0(X)] = 1
2EX+ [�0(X+)] + 1

2EX� [�0(X�)], we have

|R(h) � RRA(h;�, w1, w2)|

=
��EX,Y [Y �

0(h(X))] � w1EX+

⇥
�

0(h(X+))
⇤
� w2EX�

⇥
�

0(h(X�))
⇤��

=

����
Z

fX,Y (x, y)�0(h(x)){y � 2w1FY (y) � 2w2(1 � FY (y))}dydx

����



Z
fX,Y (x, y) |�

0(h(x))| |y � 2w1FY (y) � 2w2(1 � FY (y))| dydx

 M

Z
fY (y) |y � 2w1FY (y) � 2w2(1 � FY (y))| dy

 MErr(w1, w2).

Now, Theorem 2 can be derived as follows.

Proof of Theorem 2. Let d̃, d̃0 be the pseudo-dimensions defined as

d̃ = Pdim({x ! �
0(h(x)) | h 2 H}),

d̃
0 = Pdim({x ! h(x)�0(h(x)) � �(h(x)) | h 2 H}),

where Pdim(F) denotes the pseudo-dimension of the functional space F . From the assumptions in
Theorem 2, using the discussion in Mohri et al. [22, Theorem 10.6], each of following bound holds
with probability 1 � � for all h 2 H.
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where g(x) = h(x)�0(h(x)) + �(h(x)). From the uniform bound, we have

|RRA(h;w1, w2) � R̂RA(h;�, w1, w2)|


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15



with probability 1 � 3� for all h 2 H. Hence, with probability 1 � 3�, we have
R(ĥRA) � R(h⇤)

 RRA(ĥRA;�, w1, w2) � RRA(h⇤;�, w1, w2) + |R(h⇤) � RRA(h⇤;�, w1, w2)|

+ |R(ĥRA) � RRA(ĥRA;�, w1, w2)|

 (RRA(ĥRA;�, w1, w2) � R̂RA(h⇤;�, w1, w2))

� (RRA(h⇤;�, w1, w2) � R̂RA(h⇤;�, w1, w2)) + 2MErr(w1, w2)

 (RRA(ĥRA;�, w1, w2) � R̂RA(ĥRA;�, w1, w2))

� (RRA(h⇤; ,�, w1, w2) � R̂RA(h⇤;�, w1, w2)) + 2MErr(w1, w2)

 O

0

@
s

log 1/�

nU

1

A+ O

0

@
s

log 1/�

nR

1

A+ 2MErr(w1, w2),

where the second inequality holds from the fact R̂RA(ĥRA;�, w1, w2)  R̂RA(ĥ⇤;�, w1, w2) and
Lemma 2.

C.3 Proof of Theorem 1

Theorem 1 can be shown as follows.

Proof of Theorem 1. The variance of R̂RA denoted as Var
h
R̂RA(h;�, w1, w2)

i
can be expressed as

Var
h
R̂RA(h;�, w1, w2)

i
=

✓
w1 �

�

2

◆2
�

2
+

nR
+

✓
w2 �

�

2

◆2
�

2
�

nR

when nU ! 1. By solving the above quadratic optimization problem, we have

arg min
�

Var
h
R̂RA(h;�, w1, w2)

i
=

2(w1�
2
+ + w2�

2
�)

�2
+ + �2

�
.

C.4 Proof of Theorem 3

We can construct a simple example satisfies the conditions in Theorem 3 as follows.

Proof. Let fX,Y , f̃X,Y be the PDF of PX,Y , P̃X,Y , respectively. If we consider X = [�1, 1] and
Y = [0, 4] and these PDF to be

fX,Y (x, y) =

⇢
1
6 (y 2 [0, 2] [ [3, 4]),
0 (otherwise),

f̃X,Y (x, y) =

8
>>>>>>>>><

>>>>>>>>>:

1
8 (x 2 [�1, 0), y 2 [0, 1)),
1
4 (x 2 [�1, 0), y 2 [1, 2)),
1
8 (x 2 [�1, 0), y 2 [3, 4]),
5
24 (x 2 [0, 1], y 2 [0, 1)),
1
12 (x 2 [0, 1], y 2 [1, 2)),
5
24 (x 2 [0, 1], y 2 [3, 4]),
0 (otherwise).

Then, by the simple calculation, we can see that they have the same PDF
fX(x), fY (y), fX+,X�(x+

, x
�), each represents the PDF of PX , PY , PX+,X� , respectively,

which are
fX(x) = 0.5,

fY (y) =

⇢
1
3 (y 2 [0, 2] [ [3, 4]),
0 (otherwise),

fX+,X�(x+
, x

�) = 0.25.
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However, the conditional expectation EY |X=x [Y ] defined on PX,Y is

EY |X=x [Y ] =
11

6
,

while the conditional expectation ẼY |X=x[Y ] defined on P̃X,Y is

ẼY |X=x[Y ] =

⇢
7
4 (x 2 [�1, 0)),
23
12 (x 2 [0, 1]).

C.5 Proof of Theorem 4

The Theorem 4 can be shown as follows.

Proof of Theorem 4. We first show that under the conditions, we have

khtrue(x) � hTT(x)k1 
�P

p
.

Since (FY (y))0 = fY (y)  P and (F�1
Y (q))0 = 1/fY (F�1(q))  1/p for any y 2 Y and q 2 [0, 1],

FY (y), F�1
Y (q) are P, 1/p-Lipschitz continuous, respectively. Therefore, we have

hTT(x) = F
�1
Y (EY |X=x [FY (Y )])

= F
�1
Y (E✏ [FY (htrue(x) + ")])

 F
�1
Y (FY (htrue(x) + �P ))

 htrue(x) +
�P

p

for all x 2 X . With the same discussion, we have |hTT(x) � htrue(x)| 
�P
p . Therefore, we have

khtrue(x) � hTT(x)k1 
�P

p
.

Now, if �(x) = x
2, which means R(h) = EX,Y

⇥
(h(X) � Y )2

⇤
, we have

R(ĥTT) = EX,Y

h
(ĥTT(x) � Y )2

i

= EX,Y

h
(ĥTT(x) � ĥtrue(x) + ĥtrue(x) � Y )2

i

= EX

h
(ĥTT(x) � ĥtrue(x))2

i
+ EX,Y

h
(ĥtrue(x) � Y )2

i

+ 2EX,Y

h
(ĥTT(x) � ĥtrue(x))(ĥtrue(x) � Y )

i

= EX

h
(ĥTT(X) � htrue(X))2

i
+ EX,Y

⇥
(htrue(X) � Y )2

⇤

 R(htrue) + 2EX

h
(ĥTT(x) � hTT(x))2

i
+ 2EX

⇥
(htrue(x) � hTT(x))2

⇤
.

Since khTT(x) � htrue(X)k1 
�P
p , we have

EX

⇥
(htrue(X) � hTT(X))2

⇤


✓
�P

p

◆2

.

Furthermore, using the characteristic of expectation, if �(x) = x
2, which means RTT(h) =

EX,Y

⇥
(FY (h(X)) � FY (Y ))2

⇤
, we have

RTT(ĥTT)

= EX,Y

h
(FY (ĥTT(X)) � FY (Y ))2

i

= EX,Y

h
(FY (ĥTT(X)) � FY (hTT(X)))2

i
+ EX,Y

⇥
(FY (Y ) � FY (hTT(X)))2

⇤

= EX,Y

h
(FY (ĥTT(X)) � FY (hTT(X)))2

i
+ RTT(hTT).

17



Since (FY (y))0
� p, we have

EX

h
(ĥTT(X) � hTT(X))2

i


1

p2
EX,Y

h
(FY (ĥTT(X)) � FY (hTT(X)))2

i

=
1

p2

⇣
RTT(ĥTT) � RTT(hTT)

⌘

 O

0

@
s

log 1/�

nU

1

A+ O

0

@
s

log 1/�

nR

1

A

with probability 1 � 3�, where the last inequality holds from the same discussion as in Theorem 2.
Note that |�0(FY (h(x)))|, |FY (h(x))�0(FY (h(x)))��(FY (h(x)))| are bounded since FY (h(x)) 2

[0, 1] by definition. Combining these inequalities, we can see that

R(ĥTT)  R(htrue(x)) + 2

✓
�P

p

◆2

+ O

0

@
s

log 1/�

nU

1

A+ O

0

@
s

log 1/�

nR

1

A

with probability 1 � 3�.
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