
Toward a Characterization of Loss Functions for
Distribution Learning

Nika Haghtalab∗
Cornell University

nika@cs.cornell.edu

Cameron Musco∗
UMass Amherst

cmusco@cs.umass.edu

Bo Waggoner†
U. Colorado

bwag@colorado.edu

Abstract

In this work we study loss functions for learning and evaluating probability dis-
tributions over large discrete domains. Unlike classification or regression where
a wide variety of loss functions are used, in the distribution learning and density
estimation literature, very few losses outside the dominant log loss are applied.
We aim to understand this fact, taking an axiomatic approach to the design of loss
functions for distributions. We start by proposing a set of desirable criteria that
any good loss function should satisfy. Intuitively, these criteria require that the loss
function faithfully evaluates a candidate distribution, both in expectation and when
estimated on a few samples. Interestingly, we observe that no loss function pos-
sesses all of these criteria. However, one can circumvent this issue by introducing
a natural restriction on the set of candidate distributions. Specifically, we require
that candidates are calibrated with respect to the target distribution, i.e., they may
contain less information than the target but otherwise do not significantly distort
the truth. We show that, after restricting to this set of distributions, the log loss and
a large variety of other losses satisfy the desired criteria. These results pave the
way for future investigations of distribution learning that look beyond the log loss,
choosing a loss function based on application or domain need.

1 Introduction

Estimating a probability distribution given independent samples from that distribution is a fundamental
problem in machine learning and statistics [e.g. 23, 2, 24, 5]. In machine learning applications, the
distribution of interest is often over a very large but finite sample space, e.g., the set of all English
sentences up to a certain length or images of a fixed size in their RGB format.

A central problem is evaluating the learned distribution, most commonly using a loss function. Such
evaluation is an important task in its own right as well as central to some learning techniques. Given
a ground truth distribution p over a set of outcomes X and a sample x ∼ p, a loss function `(q, x)
evaluates the performance of a candidate distribution q in predicting x. Generally, `(q, x) will be
higher if q places smaller probability on x. Thus, in expectation over x ∼ p, the loss will be lower
for candidate distributions that closely match p.

The dominant loss applied in practice is the log loss `(q, x) = ln(1/qx), which corresponds to the
learning technique of log likelihood maximization. Surprisingly, few other losses are ever considered.
This is in sharp contrast to other areas of machine learning, including in supervised learning where
different applications have necessitated the use of different losses, such as the squared loss, hinge
loss, `1 loss, etc. However, alternative loss functions can be beneficial for distribution learning on
large domains, as we show with a brief motivating example.
∗Research conducted while at Microsoft Research, New England.
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Motivating example. In many learning applications, one seeks to fit a complex distribution with a
simple model that cannot fully capture its complexity. This includes e.g., noise tolerant or agnostic
learning. As an example, consider modeling the distribution over English words with a character
trigram model. While this model, trained by minimizing log loss, fits the distribution of English
words relatively well, its performance significantly degrades if a small amount of mostly-irrelevant
data is added, e.g. if the dataset includes a small fraction of foreign language words. The model is
unable to fit the ‘tail’ of the distribution (corresponding to foreign words), however, in trying to do so
it performs significantly worse on the ‘head’ of the distribution (corresponding to common English
words). This is due to the fact that minimizing log loss requires qx to not be much smaller than px
for all x. A more robust loss function, such as the log log loss, `(q, x) = ln(ln(1/qx)), emphasizes
the importance of fitting the ‘head’ and is less sensitive to the introduction of the foreign words. See
Figure 1 and the full version of the paper for details.
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log loss(p) = 7.45
log log loss(p) = 1.91
log loss(q1) = 11.25

log log loss(q1) = 2.22
log loss(q2) = 12.26

log log loss(q2) = 2.18

Figure 1: Modeling the distribution of English words, corrupted with 12% French and German words with
character trigrams. Distribution q1 is trained by minimizing log loss. q2 achieves worse log loss but better log
log loss and better performance at fitting the ‘head’ of the the target p, indicating that log log loss may be more
appropriate in this application. See the full version for more details.

Loss function properties. In this paper, we start by understanding the desirable properties of
log loss and seek to identity other loss functions with such properties that can have applications
in various domains. A key characteristic of the log loss is that it is (strictly) proper. That is, the
true underlying distribution p (uniquely) minimizes the expected loss on samples drawn from p.
Properness is essential for loss functions, as without it minimizing the expected loss leads to choosing
an incorrect candidate distribution even when the target distribution is fully known. Log loss is also
local (sometimes termed pointwise). That is, the loss of q on sample x is a function of the probability
qx and not of qx′ for x′ 6= x. Local losses are preferred in machine learning, where qx is often
implicitly represented as the output of a likelihood function applied to x, but where fully computing
q requires at least linear time in the size of the sample space N and is infeasible for large domains,
such as learning the distribution of all English sentences up to a certain length.

It is well-known that log loss is the unique local and strictly proper loss function [19, 22, 13]. Thus,
requiring strict properness and locality already restricts us to using the log loss. At the same time,
these restrictive properties are not sufficient for effective distribution learning, because:

• A candidate distribution may be far from the target yet have arbitrarily close to optimal loss.
Motivated by this problem, we define strongly proper losses that, if given a candidate far from
the target, will give an expected loss significantly worse than optimal.

• A candidate distribution might be far from the target, yet on a small number of samples, it may
be likely to have smaller empirical loss than that of the target. This motivates our definition of
sample-proper losses.

• On a small number of samples, the empirical loss of a distribution may be far from its expected
loss, making evaluation impossible. This motivates our definition of concentrating losses.

Naively, it seems we cannot satisfy all our desired criteria: our only local strictly proper loss is the
log loss, which in fact fails to satisfy the concentration requirement (see Example 4). We propose
to overcome this challenge by restricting the set of candidate distributions, specifically to ones that
satisfy the reasonable condition of calibration. We then consider the properties of loss functions on,
not the set of all possible distributions, but the set of calibrated distributions.

Calibration and results. We call a candidate distribution q calibrated with respect to a target p
if all elements to which q assigns probability α actually occur on average with probability α in
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the target distribution.3 This can also be interpreted as requiring q to be a coarsening of p, i.e., a
calibrated distribution may contain less information than p but does otherwise not distort information.
While for simplicity we focus on exactly calibrated distributions, in the full version we extend our
results to a natural notion of approximate calibration. Our main results show that the calibration
constraint overcomes the impossibility of satisfying properness along with the our three desired
criteria.

Main results (Informal summary). Any (local) loss `(q, x):=f
(

1
qx

)
such that f is strictly concave

and monotonically increasing has the following properties subject to calibration:

1. ` is strictly proper, i.e., the target distribution minimizes expected loss.

2. If in addition f satisfies left-strong-concavity, then ` is strongly proper, i.e., distributions
far from the target have significantly worse loss.

3. If in addition to the above f grows relatively slowly, then ` is sample proper i.e., on few
samples, distributions far from the target have higher empirical loss with high probability.

4. Under these same conditions, ` concentrates i.e., on few samples, a distribution’s empirical
loss is a reliable estimate of its expected loss with high probability.

The above criteria are formally introduced in Section 3. Each criteria is parameterized and different
losses satisfy them with different parameters. We illustrate a few examples in Table 1 below. We
emphasize that all losses shown below achieve relatively strong bounds, only depending polylogarith-
mically on the domain size N . Thus, we view all of these loss functions as viable alternatives to the
log loss, which may be useful in different applications.

`(q, x)
Strong Properness Concentration Sample Properness

E `(q;x)− E `(p;x) sample size m(γ,N) sample size m(ε,N)

ln 1
qx

Ω(ε2) Õ

(
γ−2 ln

(
N
γ

)2
)

O
(
ε−4 (lnN)2

)
(

ln 1
qx

)p
for p ∈ (0, 1] Ω

(
ε2 (lnN)p−1) Õ

(
γ−2 ln

(
N
γ

)2p
)

O
(
ε−4 (lnN)2

)
ln ln 1

qx
Ω
(

ε2

lnN

)
Õ

(
γ−2 ln ln

(
N
γ

)2
)

O
(
ε−4(ln lnN)2(lnN)2

)
(

ln e2

qx

)2

Ω(ε2) Õ

(
γ−2 ln

(
N
γ

)4
)

O
(
ε−4(lnN)4

)
Table 1: Examples of loss function that demonstrate strong properness, sample properness, and concentration,
when restricted to calibrated distributions. In the above, N is the distributions support size, ε:= ‖p− q‖1 is the
`1 distance between p and q, and γ is an approximation parameter for concentration (see Section 4.2 for details).
We assume for simplicity that ε ≥ 1/N and hide dependencies on a success probability parameter for sample
properness and concentration. Õ(·) suppresses logarithmic dependence on 1/ε and 1/γ.

1.1 Related work

Our work is directly inspired by applications of distribution estimation in very high-dimensional
spaces, such as language modeling [18]. However, we do not know of work in this area that takes a
systematic approach to designing loss functions.

A conceptually related research problem is that of learning distributions using computationally
and statistically efficient algorithms. Beyond loss function minimization, a number of general-
purpose methods have been proposed for this problem, including using histograms, nearest neighbor
estimators, etc. See [15] for a survey of these methods. Much of the work in this space focuses
on learning structured or parametric distributions [7, 16, 17, 6], e.g., monotone distributions or
mixtures of Gaussians. On the other hand, learning an unstructured discrete distribution with support
size N within `1 distance ε requires poly(N, 1/ε) samples. Thus, works in this space typically
focus on designing computationally efficient algorithms for optimal estimation using large sample
sets [24]. In comparison, we focus on unstructured distributions with prohibitively large supports and

3This definition is an adaptation of the standard calibration criterion applied to sequences of predictions
made by a forecaster [8, 11]. See discussion in the full version of the paper.
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characterize loss functions that only require polylog(N) sample complexity to estimate. We do not
introduce a general algorithm for distribution learning — as any such algorithm would require Ω(N)
samples. Rather, motivated by tailored algorithms used in complex domains such as natural language
processing, our work characterizes loss functions that could be used by a variety of algorithms.

Outside distribution learning, loss functions (termed scoring rules) have been studied for decades in
the information elicitation literature, which seeks to incentivize experts, such as weather forecasters,
to give accurate predictions [e.g. 4, 14, 22, 12, 13]. The notion of loss function properness, for
example, comes from this literature. Recent research has made some connections between information
elicitation and loss functions in machine learning; however, it has focused mostly on the classification
and regression and not distribution learning [1, 12, 20, 21, 9]. Our work can be viewed as a
contribution to the literature on evaluating forecasters by showing that, if the forecaster is constrained
to be calibrated, then a variety of simple local loss functions become (strongly, sample) proper.

2 Preliminaries

We work with distributions over a finite domain X with |X | = N . The set of all distributions over X
is denoted by ∆X . We denote a distribution p ∈ {0, 1}N over X by a vector of probabilities, where
px is the probability p places on x ∈ X . For any set B ⊆ X , the total probability p places on B is
denoted by p(B):=

∑
x∈B px. We use X to denote a random variable on X whose distribution is

specified in context. We also consider point mass distributions δx ∈ ∆X where δxx′ = 1 [x = x′].

Throughout this paper, we typically use p to denote the true (or target) distribution and q to denote a
candidate or predicted distribution. For any two distributions p and q, the total variation distance
between them is defined by TV(p,q):= supB⊆X p(B)− q(B) = 1

2‖p− q‖1, where ‖ · ‖1 denotes
the `1 norm of a vector. Together, `1 and the total variation distance are two of the most widely used
measures of distance between distributions.

To measure the quality of a candidate distribution q given samples from p, machine learning typically
turns to loss functions. A loss function is a function ` : ∆X × X → R where `(q, x) is the loss
assigned to candidate q on outcome x. Given a target distribution p, the expected loss for candidate
q is defined as `(q;p):=EX∼p [`(q, X)] . A loss function is called proper if `(p;p) ≤ `(q;p) for
all p 6= q, and strictly proper if the inequality is always strict4. Two common examples of proper
loss functions are the log loss function `(q, x) = ln( 1

qx
) (with the logarithm always taken base e in

this paper) and the quadratic loss `(q, x) = 1
2‖δ

x − q‖22. A loss function ` is called local if `(q, x)
is a function of qx alone. For example, the log loss is local while the quadratic loss is not.

Our main results are characterized by the geometry of the loss functions we consider. For simplicity,
we will generally assume functions are differentiable, although our results can be extended.
Definition 1 (Strongly Concave). A function f : [0,∞]→ R is β-strongly concave if for all z, z′ in
the domain of f , f(z) ≤ f(z′) +∇f(z′) · (z − z′)− β

2 (z − z′)2.

We also consider a relaxation of strong concavity that helps us in analyzing functions that have a
large curvature close to the origin but flatten out as we move farther from it.
Definition 2 (Left-Strongly Concave). A function f : [0,∞]→ R is β(z)-left-strongly concave if
the function restricted to [0, z] is β(z)-strongly concave, for all z.

As discussed, a natural assumption on the set of candidate distributions is calibration. Formally:
Definition 3 (Calibration). Given a distribution q ∈ ∆X , let Bt(q) = {x : qx = t}. When it is clear
from the context, we suppress q in the definition of Bt. We say that q is calibrated with respect to p,
if q(Bt(q)) = p(Bt(q)) for all t ∈ [0, 1]. We let C(p) denote the set of all calibrated distributions
with respect to p.

In other words, q is calibrated with respect to p if points assigned probability qx = t have average
probability t under p. In other words, p can be “coarsened” to q by taking subsets of points
and replacing their probabilities with the subset average. Note that the uniform distribution q =
( 1
N , . . . ,

1
N ) is calibrated with respect to all p, and that p is calibrated with respect to itself. Also

4Our use of “properness” is inspired the literature on proper scoring rules. It is not to be confused with
“properness” in learning theory where the learned hypothesis must belong to a pre-determined class of hypotheses.
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note that there are only finitely many values t ∈ [0, 1] for which Bt is non-empty. We denote the set
of these values by T (q) = {t : Bt 6= ∅}.
We refer an interested reader to the full version of the paper for a more detailed discussion of the
notion of calibration and its connections to similar notions used in forecasting theory, e.g. [8, 11]. See
the full version for a discussion of how our results can be extended to a natural notion of approximate
calibration.

3 Three Desirable Properties of Loss Functions

In this section, we define three criteria and discuss why any desirable loss function should demonstrate
them. We use examples of loss functions, such as the log loss `log-loss(q, x) = ln( 1

qx
) and the linear

loss `lin-loss(q, x) = −qx to help demonstrate the existence or lack of these criteria.

3.1 Strong Properness

Recall that a loss function is strictly proper if all incorrect candidate distributions yield a higher
expected loss value than the target distribution. Here, we expand this to strong properness where this
gap in expected loss grows with distance from the target distribution. We also extend both definitions
to hold over a specific domain of candidate distributions, rather than all distributions.
Definition 4 (Calibrated Properness). Let P : ∆X → 2∆X be a domain function, that is, P(p) ⊆
∆X is a restricted set of distributions. A loss function ` is proper over P if for all p ∈ ∆X ,
p ∈ argminq∈P(p) `(q;p). A loss function is said to be strictly proper over P if the argmin is
always unique. When P(p) = C(p), i.e. is the set of calibrated distributions w.r.t. p, we call such a
loss function (strictly) calibrated proper.

Example 1. It is well-known that `log-loss(q, x) = ln
(

1
qx

)
is the unique local proper loss function

(up to scaling) over the unrestricted domain P(p) = ∆X [3]. Indeed, it is known that the difference
in expected log loss of a prediction q and the target distribution p is the KL-divergence, i.e.

`log-loss(q;p)− `log-loss(p;p) = KL(p,q):=
∑
x

px ln

(
px
qx

)
. (1)

Furthermore, the KL-divergence is strictly positive for p 6= q. This proves that the log loss is strictly
proper over ∆X , and as a result, is strictly calibrated proper as well.

On the other hand, `lin-loss(q, x) = −qx is not proper over ∆X . This is due to that fact that the
minimizer of this loss is the point mass distribution δx for x = argmaxx px. For example, for target
distribution p = ( 1

3 ,
2
3 ), distribution q = (0, 1) yields a lower `lin-loss than that of p. Note, however,

that such a choice of q is not calibrated with respect to p. When loss minimization is constrained
to the set of calibrated distributions, C(p) = {( 1

3 ,
2
3 ), ( 1

2 ,
1
2 )}, p minimizes the expected linear loss.

Indeed, in Section 4 we show more generally that the linear loss and in fact many reasonable local
loss functions are calibrated proper.

While strict properness is an important baseline guarantee, we would like a “stronger” property: If
q is significantly incorrect in the sense of being far from p, then the expected loss of q should be
significantly worse. This motivates the following definition. An analogous definition has appeared in
the context of mechanism design in [10].
Definition 5 (Strong Calibrated Properness). A loss function ` is β-strongly proper over a domain
function P if for all p ∈ ∆X , for all q ∈ P(p), `(q;p) − `(p;p) ≥ β

2 ‖p− q‖21 . When P(p) =
C(p), we call such functions β-strongly calibrated proper and when P(p) = ∆X , we simply refer to
them as β-strongly proper.
Example 2. The log loss is 1-strongly proper. This is equivalent to Pinsker’s inequality, which
states that for all p and q, KL(p,q) ≥ 2TV(p,q)2. Together with (1) and the fact that TV(p,q) =
1
2 ‖p− q‖1, this shows that log loss is 1-strongly proper (and thus also 1-strongly calibrated proper.)

As we will see in Section 4, strong calibrated properness relates to the notion of strong concavity (of
the inverse loss function) in `1 norm. We refer the interested reader to the full version of the paper for
a discussion of the use of alternative norms in the definition of strong properness. In the full version
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we extend the study of normed concavity of loss functions to strong properness of a loss function
over ∆X .

3.2 Sample-properness

So far, we have focused on the loss a candidate q receives in expectation over x ∼ p. Of course,
if one is attempting to learn p, this expectation can generally not be computed. We would like the
notion of properness to carry over to the setting when the loss on q is estimated using a small set of
samples from p. We say that a loss function is sample-proper if within a small number, all candidate
distributions that are sufficiently far from p yield a loss that is larger than that of p on the samples.

In the remainder of this paper, let p̂ denote the empirical distribution corresponding to samples drawn
from p. Note that the average loss of any q on the samples can be written `(q; p̂). Formally:
Definition 6 (Calibrated Sample-Properness). A loss function ` is m(ε, δ,N)-sample proper over a
function domain P if, for all p ∈ ∆X and all q ∈ P(p) with ‖p− q‖1 ≥ ε, with probability at least
1 − δ over m(ε, δ,N) i.i.d. samples from p, we have `(p; p̂) < `(q; p̂). When P(p) = C(p), we
call such functions calibrated m(ε, δ,N)-sample proper.

Example 3. A folklore theorem states that `log-loss is O
(

1
ε2 ln

(
1
δ

))
-sample proper over ∆X , and as

a result it is calibrated O
(

1
ε2 ln

(
1
δ

))
-sample proper.

Now consider `lin-loss(q, x) = −qx. Since it is not a proper loss function over ∆X , by definition
it is not sample proper over ∆X for any m(ε, δ,N). When restricting to calibrated distributions
however, as we claimed in Example 1 linear loss is calibrated proper in expectation. It is interesting
to note that linear loss is not sample proper for any m(ε, δ,N) ∈ o (N). To observe this, consider
p where p1 = 1

4+ 1√
m

, p2 = 1
4−

1√
m

, and px = 1
2(N/2−2) for x = 3, . . . , N/2 and px = 0 for

x = N/2 + 1, . . . , N . Consider q where q1 = q2 = 1
4 and qx = 1

2(N−2) for x = 3, . . . , N . Let
p̂ be the empirical distribution. With a constant probability, p̂1 ≤ 1

4 −
1√
m

and p̂2 ≥ 1
4 . Let

ν = 1
2(N/2−2) −

1
2(N−2) = Θ( 1

N ). Therefore,

`(q; p̂)− `(p; p̂) =

N∑
x=1

p̂x(px − qx)

=
p̂1√
m

+
−p̂2√
m

+ ν

N/2∑
x=3

p̂x − ν
N∑

x=N/2+1

p̂x

=
1√
m

(
1

4
− 1√

m

)
− 1√

m

1

4
+ Θ

(
1

N

)
= − 1

m
+ Θ

(
1

N

)
< 0,

when m ∈ o (N). Furthermore, note that q is calibrated w.r.t. p with two non-empty buckets
B 1

4
(q) = {1, 2} and B 1

2(N−2)
(q) = {3, . . . , N}. Moreover, ‖p − q‖1 = Θ(1). Thus, for `lin-loss

to be calibrated m(ε, δ,N)-sample proper, we must have m(Θ(1),Θ(1), N) ∈ Ω (N).

3.3 Concentration

Beyond sample properness, when the expected loss `(q;p) is estimated from a small i.i.d. sample
from p, we would like the empirical loss to remain faithful to the true value. For example, one might
hope that minimizing loss on that sample will result in a distribution that has small loss on p. This
will hold as long as the empirical loss well approximates the true expected loss with high probability.
Definition 7 (Calibrated Concentration). A loss function ` concentrates over domain function P
with m(γ, δ,N) samples if for all p ∈ ∆X , for all q ∈ P(p), for m(γ, δ,N) i.i.d. samples from p,

Pr [|`(q; p̂)− `(q;p)| ≥ γ] ≤ δ. When P(p) = C(p), we say that ` calibrated concentrates with
m(γ, δ,N) samples.5

5We use γ to denote difference in loss to avoid confusion with ε, which generally means a distance between
distributions.
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Example 4. We can easily see that log loss does not concentrate with o(N) samples over ∆X . Let p
be the uniform distribution and q be uniform on X \ {x}. With high probability, x is not sampled,
and `(q; p̂) is finite. Yet `(q;p) =∞. Note that although this example is extreme, its conclusion is
robust: one can make an arbitrarily large finite gap. As we will see, the log loss, along with many
other reasonable loss will concentrate with a small number of samples over calibrated distributions.

4 Main Results

Looking back at the criteria defined in Section 3, we are immediately faced with an impossibility result:
no local loss function exists that satisfies properness, o(N)-sample properness, and concentration
with o(N) samples. This is because log loss is the unique local loss function that satisfies the first
property and as shown in Example 4 it does not concentrate. In this section, we show that a broad
class of local loss functions with certain niceness properties satisfies the above three criteria over
calibrated domains. Specifically, we consider loss functions `(q, x) that are non-increasing in qx
and are inversely concave: `(q, x) = f( 1

qx
) for some concave function f . Similarly, we say that ` is

inversely strongly concave if the corresponding f is strongly concave.

4.1 Calibrated and Strong Calibrated Properness

In this section, we show that any (strongly) nice loss function is (strongly) proper over the domain of
calibrated distributions. More formally.
Theorem 1 (Strict Properness). Suppose the local loss function ` is such that `(q, x) = f( 1

qx
) for a

concave f function. Then, ` is strictly proper over the domain function C.

Theorem 2 (Strong Properness). Suppose the loss function ` is such that `(q, x) = f( 1
qx

) where f

is non-decreasing and is C(x)
x2 -left-strongly concave where C(x) is non-increasing and non-negative

for x ≥ 1. Then for all p ∈ ∆X and q ∈ C(p),

`(q;p)− `(p;p) ≥ C
(

4N

‖p− q‖1

)
·
‖p− q‖21

128
.

We defer the proof of Theorem 2 to the full version.

We begin with the proof of Theorem 1, which relies on a key property of calibration stated in Lemma
1. At a high level, this lemma shows that the average value of 1/px and 1/qx is the same over
instances x such that qx = t, which is also equal to 1/t.
Lemma 1. For any distribution p ∈ ∆X and q ∈ C(p), and for any t ∈ [0, 1], we have

EX∼p
[

1
pX

∣∣∣ X ∈ Bt] = 1
t , where Bt = {x : qx = t}.

Proof. We have

E
[

1

pX

∣∣∣ X ∈ Bt] =
∑
x∈Bt

px
p(B)

1

px
=
|Bt|
p(Bt)

=
1

t
.

Proof of Theorem 1. Suppose `(q, x) = f( 1
qx

) for a strictly concave f . Consider any q that is
calibrated with respect to p. Recall that Bt = {x : qx = t} and T (q) = {t : |Bt| 6= ∅} is a finite set.

`(p;p) =
∑

t∈T (q)

p(Bt)E
[
f

(
1

pX

) ∣∣∣ X ∈ Bt] ≤ ∑
t∈T (q)

p(Bt)f

(
E
[

1

pX

∣∣∣ X ∈ Bt])

=
∑

t∈T (q)

p(Bt)f

(
1

t

)
=

∑
t∈T (q)

∑
x∈Bt

pxf

(
1

qx

)
= `(q;p),

where the second transition is by Jensen’s inequality and the third transition is by Lemma 1. If f is
strictly concave and there exists a Bt where q and p disagree, then the inequality is strict.
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4.2 Concentration

The (strong) properness of a loss function, as discussed in Section 4.1, is only concerned with
loss functions in expectation. In this section, we consider finite sample guarantees. Recall that `
concentrates over P(p) (Definition 7) if, with m(γ, δ,N) samples, the empirical loss `(q; p̂) of a
distribution q ∈ P(p) is γ-close to its true loss `(q;p) with probability 1− δ. Concentration can be
difficult to achieve: by Example 4, even the log loss does not concentrate for any sample size o(N)
for general q ∈ ∆X . However, as we show below, when q is calibrated, many natural loss functions,
including log loss, indeed concentrate. All that is needed is that the loss function is inverse concave,
increasing, and does not grow too quickly as qx → 0.

Theorem 3 (Concentration). Suppose ` is a local loss function with `(q, x) = f
(

1
qx

)
for nonnega-

tive, increasing, concave f(z). Suppose further that f(z) ≤ c
√
z for all z ≥ 1 and some constant c.

Then ` concentrates over the domain function C for any m(γ, δ,N) ≤ N , such that

m(γ, δ,N) ≥
c1 · f (β)

2
ln 1

δ

γ2
,

where c1 is a fixed constant and β:= 16N8

δ·min(1,γ2/c2) . That is, for any p ∈ ∆X ,q ∈ C(p), drawing at
least m(γ, δ,N) samples guarantees |`(q; p̂)− `(q;p)| ≤ γ with probability ≥ 1− δ.

Note that γ bounds the absolute difference between `(q; p̂) and `(q;p). The desired difference
may depend on the relative scale of the loss function. If e.g., we take `(q, x) and scale to obtain
`′(q, x) = α · `(q, x) for some α, the desired error γ scales by α, f(β) and c both scale by α, and
thus we can see that the sample complexity remains fixed.

We defer the proof of Theorem 3 to the full version of the paper. At a high level, Theorem 3 holds
because calibration helps us avoid worst-case instances (as in Example 4) using a very simple fact:
when q is calibrated, we have qx

px
≥ 1

N for all x. This rules out very low probability events that
contribute significantly to `(q;p) but require many samples to identify. To prove Theorem 3 we
partition X into Ω containing elements of very small probability, and X \ Ω. With high probability,
no element of Ω is ever sampled from p. Conditioned on this, the loss is bounded (and its expectation
does not change much), so a concentration result can be applied.

4.3 Sample Properness

Lastly, we turn our attention to calibrated sample properness. Recall that a loss function is sample
proper if all candidate distributions that are sufficiently far from p have a loss that is larger p on
the empirical distribution p̂ corresponding to a small number of samples from p. It is not hard
to see that sample properness of a loss function is a direct consequence of its concentration and
strong properness. For any candidate distribution q for which ‖q− p‖1 is large, strong properness
(Theorem 2) implies that `(q;p) is significantly larger than `(p;p). Furthermore, concentration
(Theorem 3) implies that with high probability `(q;p) ≈ `(q; p̂) and `(p;p) ≈ `(p; p̂). Therefore,
with high probability, `(q; p̂) > `(p; p̂). Formally in the full version of the paper we prove:
Theorem 4 (Sample properness). Suppose ` is a local loss function with `(q, x) = f( 1

qx
) for

nonnegative, increasing, concave f(z). Suppose further that f(z) ≤ c
√
z for all z ≥ 1 and some

constant c and that f is C(x)
x2 -left-strongly concave for where C(x) is nonincreasing and nonnegative

for x ≥ 1. Then for all p ∈ ∆X and q ∈ C(p), if p̂ is the empirical distribution constructed from m
independent samples of p with m ≤ N and

m ≥
c1 · f(β)2 ln 1

δ(
C
(

4N
‖p−q‖1

)
‖p− q‖2

)2 ,

where c1 is constant and β:= 288N8

δ·min

(
1,

[
C
(

4N
‖p−q‖1

) ‖p−q‖21
128c

]2) , then `(q; p̂) > `(p; p̂) with prob. ≥ 1−δ.

4.4 Application of the Main Results to Loss Functions

We now instantiate Theorems 2, 3, and 4 for one example of a natural loss function `(q, x) =
ln ln( 1

qx
). Refer to Table 1 for other loss functions and see the full version for details on its derivation.
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First, note that ln ln(z) is C(z)/z2-left-strongly concave for C(z) = (1+ln(z))
ln(z)2 .6 Moreover, C(z) is

non-increasing and non-negative for z ≥ 1 and ln ln(z) ≤
√
z. Using these, for any p and q ∈ C(p)

such that ‖p− q‖1 ≥ ε we have

• By Theorem 2, `(q;p)− `(p;p) ≥ Ω( ε2

ln(N/ε) ).

• By Theorem 3, an empirical distribution p̂ of Õ
(
γ−2 ln ln(N)2 ln(1/δ)

)
i.i.d samples from

p is sufficient such that |`(q; p̂)− `(q;p)| ≤ γ with probability 1− δ.

• By Theorem 4, an empirical distribution p̂ of Õ
(
ε−4 ln ln(N ln(N))2 ln(1/δ) ln(N)

)
i.i.d

samples from p is sufficient such that `(q; p̂) > `(p; p̂) with probability 1− δ.

5 Discussion

In this work, we characterized loss functions that meet three desirable properties: properness in
expectation, concentration, and sample properness. We demonstrated that no local loss function
meets all of these properties over the domain of all candidate distributions. But, if one enforces the
criterion of calibration (or approximate calibration as discussed in the full version), then many simple
loss functions have good properties for evaluating learned distributions over large discrete domains.
We hope that our work provides a starting point for several future research directions.

One natural question is to understand how to select a loss function based on the application domain.
Our example for language modeling, from the introduction, motivates the idea that log loss is not
the best choice always. Understanding this more formally, for example in the framework of robust
distribution learning, could provide a systematic approach for selecting loss functions based on the
needs of the domain. Our work also leaves open the question of designing compuationally and
statistically efficient learning algorithms for different loss functions under the constraint that the
candidate q is (approximately) calibrated. One challenge in designing computationally efficient
algorithms is that the space of calibrated distributions is not convex. We present some advances
towards dealing with this challenge in the full version by providing an efficient procedure for
‘projecting’ a non-calibrated distribution on the space of approximately calibrated distribution. It
remains to be seen if iteratively applying this procedure could be useful in designing an efficient
algorithm for minimizing the loss on calibrated distributions.
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