
A Supplementary Materials

A.1 Proof of Theorem 1

Proof. According to the attention strategy in LogSparse Transformer, in each layer, cell l could attend to the
cells with indicies in Ikl = {l − 2blog2 lc, l − 2blog2 lc−1, l − 2blog2 lc−2, · · · , l − 20, l}. To ensure that every
cell receives the information from all its previous cells and itself, the number of stacked layers k̃l should satisfy
that Sk̃ll = {j : j ≤ l} for l = 1, · · · , L. That is, ∀ l and j ≤ l, there is a directed path Pjl = (j, p1, p2, · · · , l)
with k̃l edges, where j ∈ I1p1 , p1 ∈ I2p2 , · · · , pk̃l−1 ∈ I

k̃l
l . We prove the theorem by constructing a path

from cell j to cell l, with length (number of edges) no larger than blog2 lc+ 1. Case j = l is trivial, we only
need to consider j < l here. Consider the binary representation of l − j, l − j =

∑blog2(l−j)c
m=0 bm2m, where

bm ∈ {0, 1}. Suppose {msub} is the subsequence {m|0 ≤ m ≤ blog2(l − j)c , bm = 1} and mp is the pth
element of {msub}. A feasible path from j to l is Pjl = {j, j + 2m0 , j + 2m0 + 2m1 , · · · , l}. The length of
this path is |{msub}|, which is no larger than blog2(l − j)c+ 1. So

min {k̃l|Sk̃ll = {j : j ≤ l}} ≤ max
{j|j<l}

blog2(l − j)c+ 1 ≤ blog2 lc+ 1.

Furthermore, by reordering {msub}, we can generate multiple different paths from cell j to cell l. The number
of feasible paths increases at a rate of O(blog2(l − j)c!) along with l.

A.2 Training

Table 5: Dataset statistics. "T", "M" and "S" represent the length, number and sample rate of the time
series, respectively.

electricity-c electricity-f traffic-c traffic-f wind solar M4-Hourly

T 32304 129120 4049 12435 10957 5832 748/1008
M 370 370 963 963 28 137 414
S 1 hour 15 mins 1 hour 20 mins 1 day 1 hour 1 hour

To learn the model, we are given a time series dataset {zi,1:T }Mi=1 and its associated covariates {xi,1:T }Mi=1,
where T is the length of all available observations and M is the number of different time series. The dataset
statistics is shown as Table 5. Following [3], we create training instances by selecting windows with fixed history
length t0 and forecasting horizon τ but varying the start point of forecasting from each of the original long
time series. As a follow-up of [3], we sample training windows through weight sampling strategy in [3]. Note
that during selecting training windows, data in the test set can never be accessed. As a result, we get a training
dataset with N sliding windows {zi,1:t0+τ ,xi,1:t0+τ}Ni=1.

For positional encoding in Transformer, we use learnable position embedding. For covariates, following [3], we
use all or part of year, month, day-of-the-week, hour-of-the-day, minute-of-the-hour, age and time-series-ID
according to the granularities of datasets. age is the distance to the first observation in that time series [3]. Each
of them except time series ID has only one dimension and is normalized to have zero mean and unit variance (if
applicable). For time-series-ID, it has the same dimension as position embedding through ID embedding matrix
so that they can be summed up (with broadcasting). The summation is then concatnated with aforementioned
other covariates as the input of 1st layer in Transformer.

DeepAR [3] uses an encoder-decoder fashion, where the encoder is the same as the decoder and the final hidden
state of the encoder is used to initialize the hidden state of the decoder. Such an architecture can be seen as a
decoder-only network as the encoder and decoder are the same, where the objective is to predict the distribution
of next point according to current input and last hidden state. Inspired by this observation, we use Transformer
decoder-only mode [36] to model time series. Similar to [37], a fully-connected layer on the top of Transformer
is stacked, which outputs the parameters of the probability distribution after scaling for the next time point with
appropriate transformations. For example, for parameters requiring positivity, a softplus activation is applied. We
use the same scale handling technique as in [3] to scale our input and output of our models. We refer readers to
[3] for more details of scale handling. In our experiments, we use Gaussian likelihood since our training datasets
are real-valued data. Note that one can also use other likelihood models, e.g. negative-binomial likelihood for
positive count data. In synthetic datasets, we only count log-likelihood from t0 + 1 to t0 + τ . On real-world
datasets, we not only count log-likelihood from t0 +1 to t0 + τ , but also include the log-likelihood from 1 to t0,
similar to training in [3] and pre-training in [37].

During training, we use vanilla Adam optimizer [28] with early stopping except experiments on electricity-f
and traffic-f to maximize the log-likelihood of each training instance. Our preliminary study show that

12

training on these two datasets are very unstable with Adam. Rather, we found that BERTAdam [38] 8 , a variant
of Adam with warmup and learning rate annealing, can stabilize the training process on these two datasets.

For electricity-c and traffic-c, we take 500K training windows while for electricity-f and
traffic-f, we select 125K and 200K training windows, respectively. For wind, M4-Hourly and solar,
we choose 10K, 50K and 50K training windows, respectively. The window selection strategy is described above.
For our Transformer models, all of them use H = 8 heads and the dimension of position embedding and time
series ID embedding are all 20. All of our models have 3 layers except experiments on electricity-f and
traffic-f, where our models use 6 and 10 layers, respectively. The data before the forecast start time is used
as the training set and split into two partitions. For each experiment on real-world datasets, we train our model
on the first partition of the training set containing 90% of the data 5 times with different random seeds and
we pick the one that has the minimal negative log-likelihood on the remaining 10%. The results on test set
corresponding to minimal negative log-likelihood on the remaining 10% are reported. All models are trained on
GTX 1080 Ti GPUs.

A.3 Evaluation

Following the experimental settings in [6], one week data from 9/1/2014 00:00 (included) 9 on electricity-c
and 6/15/2008 17:00 (included) 10 on traffic-c is left as test sets. For electricity-f and traffic-f
datasets, one week data from 8/31/2014 00:15 (included) and 6/15/2008 17:00 (included) 11 is left as test sets,
respectively. For solar, we leave the last 7 days in August as test set. For wind, last 210 days in year 2015 are
left as test set. For M4-Hourly, its training and test set are already provided. After training on previous settings,
we evaluate our models on aforementioned test intervals and report standard quantile loss (R0.5 and R0.9) on
the test sets.

A.4 Implementation of sparse attention and its memory cost

During the implementation of our sparse attention, ∀l ≤ |IkL|, one can allow such cell l to densely attend all its
past cells and itself without increasing space usage as query-key matching are parallelly computed in reality and
maximum number of cells that a cell can attend is reached by cell L.

Our current implementation of LogSparse attention is via a mask matrix and its relative memory usage is
calculated ideally from the attention matrix, which is the memory bottleneck of Transformer.

For electricity-f dataset, we choose Le1 = 768 with subsequence length Le1sub = Le1/8 = 96 and local
attention length Le1loc = dlog2(L

e1
sub)e = 7 in each subsequence for our sparse attention model, and Le2 = 293

in its full attention counterpart. We stack the same layers on both sparse attention and full attention models.
Hence, we can make sure that their whole memory usage is comparable if their memory usage is comparable in
every layer. In sparse attention equipped with local attention, every cell attends to 2 ∗ Le1loc = 14 cells in each
subsequence at most, causing a cell attend to 2∗Le1loc∗Le1/L

e1
sub = 14∗8 = 112 cells at most in total. Therefore,

we get the memory usage of sparse attention in each layer isLe1 ∗2∗L
e1
loc∗Le1/L

e1
sub = 768∗112 = L2

e2 ≈ 293.
Following such setting, the memory usage of the sparse attention model is comparable to that of the full attention
model. For traffic-f dataset, one can follow the same procedure to check the memory usage.

A.5 Visualization of attention matrix

Here we show an example of learned attention patterns in the masked attention matrix of a head within canonical
Transformer’s last layer on traffic-c dataset. Figure 6 (a) is a time series window containing 8 days in
traffic-c . The time series obviously demonstrates both hourly and daily patterns. From its corresponding
masked attention matrix, as shown in Figure 6 (b), we can see that for points in weekdays, they heavily attend to
previous cells (including itself) at the same time in weekdays while points on weekends tend to only attend to
previous cells (including itself) at the same time on weekends. Hence, the model automatically learned both
hourly and daily seasonality, which is the key to accurate forecasting.

8https://github.com/nlpdata/mrc_bert_baseline/blob/master/bert/optimization.py
9Value in 00:00 is the aggregation of original value in 00:15, 00:30, 00:45 and 01:00.

10Value in 17:00 is the mean of original value in 17:00, 17:10, 17:20, 17:30, 17:40 and 17:50.
11Value in 17:00 is the mean of original value in 17:00 and 17:10.

13

https://github.com/nlpdata/mrc_bert_baseline/blob/master/bert/optimization.py

Sun Mon Tue Wed Thu Fri Sat Sun
0.00

0.05

0.10

0.15

0.20
occupancy rate

(a)

Sun Mon Tue Wed Thu Fri Sat Sun

0.0

0.2

0.4

0.6

0.8

1.0

(b)

Figure 6: (a): An example time series window in traffic-c dataset. (b): Corresponding learned
attention patterns in the masked attention matrix of a head within the last layer.

14

	Supplementary Materials
	Proof of Theorem 1
	Training
	Evaluation
	Implementation of sparse attention and its memory cost
	Visualization of attention matrix

