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Abstract

Blind image denoising is an important yet very challenging problem in computer
vision due to the complicated acquisition process of real images. In this work we
propose a new variational inference method, which integrates both noise estimation
and image denoising into a unique Bayesian framework, for blind image denoising.
Specifically, an approximate posterior, parameterized by deep neural networks, is
presented by taking the intrinsic clean image and noise variances as latent variables
conditioned on the input noisy image. This posterior provides explicit parametric
forms for all its involved hyper-parameters, and thus can be easily implemented
for blind image denoising with automatic noise estimation for the test noisy image.
On one hand, as other data-driven deep learning methods, our method, namely
variational denoising network (VDN), can perform denoising efficiently due to
its explicit form of posterior expression. On the other hand, VDN inherits the
advantages of traditional model-driven approaches, especially the good general-
ization capability of generative models. VDN has good interpretability and can
be flexibly utilized to estimate and remove complicated non-i.i.d. noise collected
in real scenarios. Comprehensive experiments are performed to substantiate the
superiority of our method in blind image denoising.

1 Introduction
Image denoising is an important research topic in computer vision, aiming at recovering the underlying
clean image from an observed noisy one. The noise contained in a real noisy image is generally
accumulated from multiple different sources, e.g., capturing instruments, data transmission media,
image quantization, etc. [40]. Such complicated generation process makes it fairly difficult to access
the noise information accurately and recover the underlying clean image from the noisy one. This
constitutes the main aim of blind image denoising.

There are two main categories of image denoising methods. Most classical methods belong to the first
category, mainly focusing on constructing a rational maximum a posteriori (MAP) model, involving
the fidelity (loss) and regularization terms, from a Bayesian perspective [6]. An understanding for data
generation mechanism is required for designing a rational MAP objective, especially better image
priors like sparsity [3], low-rankness [16, 50, 42], and non-local similarity [9, 27]. These methods
are superior mainly in their interpretability naturally led by the Bayesian framework. They, however,
still exist critical limitations due to their assumptions on both image prior and noise (generally i.i.d.
Gaussian), possibly deviating from real spatially variant (i.e.,non-i.i.d.) noise, and their relatively low
implementation speed since the algorithm needs to be re-implemented for any new coming image.
Recently, deep learning approaches represent a new trend along this research line. The main idea is to
firstly collect large amount of noisy-clean image pairs and then train a deep neural network denoiser
on these training data in an end-to-end learning manner. This approach is especially superior in its
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effective accumulation of knowledge from large datasets and fast denoising speed for test images.
They, however, are easy to overfit to the training data with certain noisy types, and still could not be
generalized well on test images with unknown but complicated noises.

Thus, blind image denoising especially for real images is still a challenging task, since the real
noise distribution is difficult to be pre-known (for model-driven MAP approaches) and hard to be
comprehensively simulated by training data (for data-driven deep learning approaches).

Against this issue, this paper proposes a new variational inference method, aiming at directly inferring
both the underlying clean image and the noise distribution from an observed noisy image in a unique
Bayesian framework. Specifically, an approximate posterior is presented by taking the intrinsic clean
image and noise variances as latent variables conditioned on the input noisy image. This posterior
provides explicit parametric forms for all its involved hyper-parameters, and thus can be efficiently
implemented for blind image denoising with automatic noise estimation for test noisy images.

In summary, this paper mainly makes following contributions: 1) The proposed method is capable
of simultaneously implementing both noise estimation and blind image denoising tasks in a unique
Bayesian framework. The noise distribution is modeled as a general non-i.i.d. configurations with
spatial relevance across the image, which evidently better complies with the heterogeneous real
noise beyond the conventional i.i.d. noise assumption. 2) Succeeded from the fine generalization
capability of the generative model, the proposed method is verified to be able to effectively estimate
and remove complicated non-i.i.d. noises in test images even though such noise types have never
appeared in training data, as clearly shown in Fig. 3. 3) The proposed method is a generative approach
outputted a complete distribution revealing how the noisy image is generated. This not only makes
the result with more comprehensive interpretability beyond traditional methods purely aiming at
obtaining a clean image, but also naturally leads to a learnable likelihood (fidelity) term according
to the data-self. 4) The most commonly utilized deep learning paradigm, i.e., taking MSE as loss
function and training on large noisy-clean image pairs, can be understood as a degenerated form of
the proposed generative approach. Their overfitting issue can then be easily explained under this
variational inference perspective: these methods intrinsically put dominant emphasis on fitting the
priors of the latent clean image, while almost neglects the effect of noise variations. This makes them
incline to overfit noise bias on training data and sensitive to the distinct noises in test noisy images.

The paper is organized as follows: Section 2 introduces related work. Sections 3 presents the proposed
full Bayesion model, the deep variational inference algorithm, the network architecture and some
discussions. Section 4 demonstrates experimental results and the paper is finally concluded.

2 Related Work
We present a brief review for the two main categories of image denoising methods, i.e., model-driven
MAP based methods and data-driven deep learning based methods.

Model-driven MAP based Methods: Most classical image denoising methods belong to this cate-
gory, through designing a MAP model with a fidelity/loss term and a regularization one delivering
the pre-known image prior. Along this line, total variation denoising [37], anisotropic diffusion [31]
and wavelet coring [38] use the statistical regularities of images to remove the image noise. Later,
the nonlocal similarity prior, meaning many small patches in a non-local image area possess similar
configurations, was widely used in image denoising. Typical ones include CBM3D [11] and non-local
means [9]. Some dictionary learning methods [16, 13, 42] and Field-of-Experts (FoE) [36], also re-
vealing certain prior knowledge of image patches, had also been attempted for the task. Several other
approaches focusing on the fidelity term, which are mainly determined by the noise assumption on
data. E.g., Mulitscale [23] assumed the noise of each patch and its similar patches in the same image
to be correlated Gaussian distribution, and LR-MoG [30, 48, 50], DP-GMM [44] and DDPT [49]
fitted the image noise by using Mixture of Gaussian (MoG) as an approximator for noises.

Data-driven Deep Learning based Methods: Instead of pre-setting image prior, deep learning
methods directly learn a denoiser (formed as a deep neural network) from noisy to clean ones
on a large collection of noisy-clean image pairs. Jain and Seung [19] firstly adopted a five layer
convolution neural network (CNN) for the task. Then some auto-encoder based methods [41, 2] were
applied. Meantime, Burger et al. [10] achieved the comparable performance with BM3D using plain
multi-layer perceptron (MLP). Zhang et al. [45] further proposed the denoising convolution network
(DnCNN) and achieved state-of-the-art performance on Gaussian denoising tasks. Mao et al. [29]
proposed a deep fully convolution encoding-decoding network with symmetric skip connection. Tai

2



et al. [39] preposed a very deep persistent memory network (MemNet) to explicitly mine persistent
memory through an adaptive learning process. Recently, NLRN [25], N3Net [33] and UDNet [24]
all embedded the non-local property of image into DNN to facilitate the denoising task. In order to
boost the flexibility against spatial variant noise, FFDNet [46] was proposed by pre-evaluating the
noise level and inputting it to the network together with the noisy image. Guo et al. [17] and Brooks
et al. [8] both attempted to simulate the generation process of the images in camera.

3 Variational Denoising Network for Blind Noise Modeling
Given training set D = {yj ,xj}nj=1, where yj ,xj denote the jth training pair of noisy and the
expected clean images, n represents the number of training images, our aim is to construct a variational
parametric approximation to the posterior of the latent variables, including the latent clean image
and the noise variances, conditioned on the noisy image. Note that for the noisy image y, its training
pair x is generally a simulated “clean” one obtained as the average of many noisy ones taken under
similar camera conditions [4, 1], and thus is always not the exact latent clean image z. This explicit
parametric posterior can then be used to directly infer the clean image and noise distribution from
any test noisy image. To this aim, we first need to formulate a rational full Bayesian model of the
problem based on the knowledge delivered by the training image pairs.

3.1 Constructing Full Bayesian Model Based on Training Data
Denote y = [y1, · · · , yd]T and x = [x1, · · · , xd]T as any training pair in D, where d (width*height)
is the size of a training image1. We can then construct the following model to express the generation
process of the noisy image y:

yi ∼ N (yi|zi, σ2
i ), i = 1, 2, · · · , d, (1)

where z ∈ Rd is the latent clean image underlying y, N (·|µ, σ2) denotes the Gaussian distribution
with mean µ and variance σ2. Instead of assuming i.i.d. distribution for the noise as conventional [28,
13, 16, 42], which largely deviates the spatial variant and signal-depend characteristics of the real
noise [46, 8], we models the noise as a non-i.i.d. and pixel-wise Gaussian distribution in Eq. (1).

The simulated “clean” image x evidently provides a strong prior to the latent variable z. Accordingly
we impose the following conjugate Gaussian prior on z:

zi ∼ N (zi|xi, ε20), i = 1, 2, · · · , d, (2)
where ε0 is a hyper-parameter and can be easily set as a small value.

Besides, for σ2 = {σ2
1 , σ

2
2 , · · · , σ2

d}, we also introduce a rational conjugate prior as follows:

σ2
i ∼ IG

(
σ2
i |
p2

2
− 1,

p2ξi
2

)
, i = 1, 2, · · · , d, (3)

where IG(·|α, β) is the inverse Gamma distribution with parameter α and β, ξ = G
(
(ŷ − x̂)2; p

)
represents the filtering output of the variance map (ŷ − x̂)2 by a Gaussian filter with p× p window,
and ŷ, x̂ ∈ Rh×w are the matrix (image) forms of y, x ∈ Rd, respectively. Note that the mode of
above IG distribution is ξi [6, 43], which is a approximate evaluation of σ2

i in p× p window.

Combining Eqs. (1)-(3), a full Bayesian model for the problem can be obtained. The goal then turns
to infer the posterior of latent variables z and σ2 from noisy image y, i.e., p(z,σ2|y).

3.2 Variational Form of Posterior
We first construct a variational distribution q(z,σ2|y) to approximate the posterior p(z,σ2|y) led
by Eqs. (1)-(3). Similar to the commonly used mean-field variation inference techniques, we assume
conditional independence between variables z and σ2, i.e.,

q(z,σ2|y) = q(z|y)q(σ2|y). (4)
Based on the conjugate priors in Eqs. (2) and (3), it is natural to formulate variational posterior forms
of z and σ2 as follows:

q(z|y) =
d∏
i

N (zi|µi(y;WD),m
2
i (y;WD)), q(σ

2|y) =
d∏
i

IG(σ2
i |αi(y;WS), βi(y;WS)), (5)

1We use j (= 1, · · · , n) and i (= 1, · · · , d) to express the indexes of training data and data dimension,
respectively, throughout the entire paper.
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Figure 1: The architecture of the proposed deep variational inference network. The red solid lines denote the
forward process, and the blue dotted lines mark the gradient flow direction in the BP algorithm.

where µi(y;WD) and m2
i (y;WD) are designed as the prediction functions for getting posterior

parameters of latent variable z directly from y. The function is represented as a network, called
denoising network or D-Net, with parameters WD. Similarly, αi(y;WS) and βi(y;WS) denote the
prediction functions for evaluating posterior parameters of σ2 from y, where WS represents the
parameters of the network, called Sigma network or S-Net. The aforementioned is illustrated in Fig. 1.
Our aim is then to optimize these network parameters WD and WS so as to get the explicit functions
for predicting clean image z as well as noise knowledge σ2 from any test noisy image y. A rational
objective function with respect to WD and WS is thus necessary to train both the networks.

Note that the network parameters WD and WS are shared by posteriors calculated on all training
data, and thus if we train them on the entire training set, the method is expected to induce the general
statistical inference insight from noisy image to its underlying clean image and noise level.

3.3 Variational Lower Bound of Marginal Data Likelihood
For notation convenience, we simply write µi(y;WD), m2

i (y;WD), αi(y;WS), βi(y;WS) as µi,
m2
i , αi, βi in the following calculations. For any noisy image y and its simulated “clean” image x in

the training set, we can decompose its marginal likelihood as the following form [7]:

log p(y; z,σ2) = L(z,σ2;y) +DKL

(
q(z,σ2|y)||p(z,σ2|y)

)
, (6)

where
L(z,σ2;y) = Eq(z,σ2|y)

[
log p(y|z,σ2)p(z)p(σ2)− log q(z,σ2|y)

]
, (7)

Here Ep(x)[f(x)] represents the exception of f(x) w.r.t. stochastic variable x with probability density
function p(x). The second term of Eq. (6) is a KL divergence between the variational approximate
posterior q(z,σ2|y) and the true posterior p(z,σ2|y) with non-negative value. Thus the first term
L(z,σ2;y) constitutes a variational lower bound on the marginal likelihood of p(y|z,σ2), i.e.,

log p(y; z,σ2) ≥ L(z,σ2;y). (8)

According to Eqs. (4), (5) and (7), the lower bound can then be rewritten as:

L(z,σ2;y) = Eq(z,σ2|y)
[
log p(y|z,σ2)

]
−DKL (q(z|y)||p(z))−DKL

(
q(σ2|y)||p(σ2)

)
. (9)

It’s pleased that all the three terms in Eq (9) can be integrated analytically as follows:

Eq(z,σ2|y)
[
log p(y|z,σ2)

]
=

d∑
i=1

{
− 1

2
log 2π − 1

2
(log βi − ψ(αi))−

αi
2βi

[
(yi − µi)2 +m2

i

] }
, (10)

DKL (q(z|y)||p(z)) =

d∑
i=1

{ (µi − xi)2

2ε20
+

1

2

[
m2
i

ε20
− log

m2
i

ε20
− 1

]}
, (11)
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DKL
(
q(σ2|y)||p(σ2)

)
=

d∑
i=1

{(
αi −

p2

2
+ 1

)
ψ(αi) +

[
log Γ

(
p2

2
− 1

)
− log Γ(αi)

]
+

(
p2

2
− 1

)(
log βi − log

p2ξi
2

)
+ αi

(
p2ξi
2βi
− 1

)}
, (12)

where ψ(·) denotes the digamma function. Calculation details are listed in supplementary material.

We can then easily get the expected objective function (i.e., a negtive lower bound of the marginal
likelihood on entire training set) for optimizing the network parameters of D-Net and S-Net as follows:

min
WD,WS

−
n∑
j=1

L(zj ,σ2
j ;yj). (13)

3.4 Network Learning
As aforementioned, we use D-Net and S-Net together to infer the variational parameters µ,m2 and
α, β from the input noisy image y, respectively, as shown in Fig. 1. It is critical to consider how
to calculate derivatives of this objective with respect to WD,WS involved in µ, m2, α and β to
facilitate an easy use of stochastic gradient varitional inference. Fortunately, different from other
related variational inference techniques like VAE [22], all three terms of Eqs. (10)-(12) in the lower
bound Eq. (9) are differentiable and their derivatives can be calculated analytically without the need
of any reparameterization trick, largely reducing the difficulty of network training.

At the training stage of our method, the network parameters can be easily updated with backprop-
agation (BP) algorithm [15] through Eq. (13). The function of each term in this objective can be
intuitively explained: the first term represents the likelihood of the observed noisy images in training
set, and the last two terms control the discrepancy between the variational posterior and the corre-
sponding prior. During the BP training process, the gradient information from the likelihood term of
Eq. (10) is used for updating both the parameters of D-Net and S-Net simultaneously, implying that
the inference for the latent clean image z and σ2 is guided to be learned from each other.

At the test stage, for any test noisy image, through feeding it into D-Net, the final denoising result can
be directly obtained by µ. Additionally, through inputting the noisy image to the S-Net, the noise
distribution knowledge (i.e., σ2) is easily inferred. Specifically, the noise variance in each pixel can
be directly obtained by using the mode of the inferred inverse Gamma distribution: σ2

i = βi

(αi+1) .

3.5 Network Architecture
The D-Net in Fig. 1 takes the noisy image y as input to infer the variational parameters µ and
m2 in q(z|y) of Eq. (5), and performs the denoising task in the proposed variational inference
algorithm. In order to capture multi-scale information of the image, we use a U-Net [35] with depth
4 as the D-Net, which contains 4 encoder blocks ([Conv+ReLU]×2+Average pooling), 3 decoder
blocks (Transpose Conv+[Conv+ReLU]×2) and symmetric skip connection under each scale. For
parameter µ, the residual learning strategy is adopted as in [45], i.e., µ = y + f(y;WD), where
f(·;WD) denotes the D-Net with parameters WD. As for the S-Net, which takes the noisy image
y as input and outputs the predicted variational parameters α and β in q(σ2|y) of Eq (5), we use
the DnCNN [45] architecture with five layers, and the feature channels of each layer is set as 64.
It should be noted that our proposed method is a general framework, most of the commonly used
network architectures [46, 34, 24, 47] in image restoration can also be easily substituted.

3.6 Some Discussions
It can be seen that the proposed method succeeds advantages of both model-driven MAP and data-
driven deep learning methods. On one hand, our method is a generative approach and possesses
fine interpretability to the data generation mechanism; and on the other hand it conducts an explicit
prediction function, facilitating efficient image denoising as well as noise estimation directly through
an input noisy image. Furthermore, beyond current methods, our method can finely evaluate and
remove non-i.i.d. noises embedded in images, and has a good generalization capability to images
with complicated noises, as evaluated in our experiments. This complies with the main requirement
of the blind image denoising task.

If we set the hyper-parameter ε20 in Eq.(2) as an extremely small value close to 0, it is easy to see
that the objective of the proposed method is dominated by the second term of Eq. (10), which makes
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(a)

(d1)

(d2)

(c1)

(c2)

(b1)

(b2)
Figure 2: (a) The spatially variant mapM for noise generation in training data. (b1)-(d1): Three differentMs
on testing data in Cases 1-3. (b2)-(d2): Correspondingly predictedMs by our method on the testing data.

Table 1: The PSNR(dB) results of all competing methods on the three groups of test datasets. The best and
second best results are highlighted in bold and Italic, respectively.

Cases Datasets Methods
CBM3D WNNM NCSR MLP DnCNN-B MemNet FFDNet FFDNetv UDNet VDN

Case 1
Set5 27.76 26.53 26.62 27.26 29.85 30.10 30.16 30.15 28.13 30.39

LIVE1 26.58 25.27 24.96 25.71 28.81 28.96 28.99 28.96 27.19 29.22
BSD68 26.51 25.13 24.96 25.58 28.73 28.74 28.78 28.77 27.13 29.02

Case 2
Set5 26.34 24.61 25.76 25.73 29.04 29.55 29.60 29.56 26.01 29.80

LIVE1 25.18 23.52 24.08 24.31 28.18 28.56 28.58 28.56 25.25 28.82
BSD68 25.28 23.52 24.27 24.30 28.15 28.36 28.43 28.42 25.13 28.67

Case 3
Set5 27.88 26.07 26.84 26.88 29.13 29.51 29.54 29.49 27.54 29.74

LIVE1 26.50 24.67 24.96 25.26 28.17 28.37 28.39 28.38 26.48 28.65
BSD68 26.44 24.60 24.95 25.10 28.11 28.20 28.22 28.20 26.44 28.46

the objective degenerate as the MSE loss generally used in traditional deep learning methods (i.e.,
minimizing

∑n
j=1 ||µ(yj ;WD) − xj ||2. This provides a new understanding to explain why they

incline to overfit noise bias in training data. The posterior inference process puts dominant emphasis
on fitting priors imposed on the latent clean image, while almost neglects the effect of noise variations.
This naturally leads to its sensitiveness to unseen complicated noises contained in test images.

Very recently, both CBDNet [17] and FFDNet [46] are presented for the denoising task by feeding
the noisy image integrated with the pre-estimated noise level into the deep network to make it better
generalize to distinct noise types in training stage. Albeit more or less improving the generalization
capability of network, such strategy is still too heuristic and is not easy to interpret how the input
noise level intrinsically influence the final denoising result. Comparatively, our method is constructed
in a sound Bayesian manner to estimate clean image and noise distribution together from the input
noisy image, and its generalization can be easily explained from the perspective of generative model.

4 Experimental Results

We evaluate the performance of our method on synthetic and real datasets in this section. All
experiments are evaluated in the sRGB space. We briefly denote our method as VDN in the following.
The training and testing codes of our VDN is available at https://github.com/zsyOAOA/VDNet.

4.1 Experimental Setting
Network training and parameter setting: The weights of D-Net and S-Net in our variational
algorithm were initialized according to [18]. In each epoch, we randomly crop N = 64 × 5000
patches with size 128× 128 from the images for training. The Adam algorithm [21] is adopted to
optimize the network parameters through minimizing the proposed negative lower bound objective.
The initial learning rate is set as 2e-4 and linearly decayed in half every 10 epochs until to 1e-6. The
window size p in Eq. (3) is set as 7. The hyper-parameter ε20 is set as 5e-5 and 1e-6 in the following
synthetic and real-world image denoising experiments, respectively.

Comparison methods: Several state-of-the-art denoising methods are adopted for performance
comparison, including CBM3D [11], WNNM [16], NCSR [14], MLP [10], DnCNN-B [45], Mem-
Net [39], FFDNet [46], UDNet [24] and CBDNet [17]. Note that CBDNet is mainly designed for
blind denoising task, and thus we only compared CBDNet on the real noise removal experiments.
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(a) (c)(b) (d) (e) (f )
Figure 3: Image denoising results of a typical test image in Case 2. (a) Noisy image, (b) Groundtruth, (c)
CBM3D (24.63dB), (d) DnCNN-B (27.83dB), (e) FFDNet (28.06dB), (f) VDN (28.32dB).

Table 2: The PSNR(dB) results of all competing methods on AWGN noise cases of three test datasets.
Sigma Datasets Methods

CBM3D WNNM NCSR MLP DnCNN-B MemNet FFDNet FFDNete UDNet VDN

σ = 15
Set5 33.42 32.92 32.57 - 34.04 34.18 34.30 34.31 34.19 34.34

LIVE1 32.85 31.70 31.46 - 33.72 33.84 33.96 33.96 33.74 33.94
BSD68 32.67 31.27 30.84 - 33.87 33.76 33.85 33.68 33.76 33.90

σ = 25
Set5 30.92 30.61 30.33 30.55 31.88 31.98 32.10 32.09 31.82 32.24

LIVE1 30.05 29.15 29.05 29.16 31.23 31.26 31.37 31.37 31.09 31.50
BSD68 29.83 28.62 28.35 28.93 31.22 31.17 31.21 31.20 31.02 31.35

σ = 50
Set5 28.16 27.58 27.20 27.59 28.95 29.10 29.25 29.25 28.87 29.47

LIVE1 26.98 26.07 26.06 26.12 27.95 27.99 28.10 28.10 27.82 28.36
BSD68 26.81 25.86 25.75 26.01 27.91 27.91 27.95 27.95 27.76 28.19

4.2 Experiments on Synthetic Non-I.I.D. Gaussian Noise Cases
Similar to [46], we collected a set of source images to train the network, including 432 images from
BSD [5], 400 images from the validation set of ImageNet [12] and 4744 images from the Waterloo
Exploration Database [26]. Three commonly used datasets in image restoration (Set5, LIVE1 and
BSD68 in [20]) were adopted as test datasets to evaluate the performance of different methods. In
order to evaluate the effectiveness and robustness of VDN under the non-i.i.d. noise configuration,
we simulated the non-i.i.d. Gaussian noise as following,

n = n1 �M , n1ij ∼ N (0, 1), (14)

where M is a spatially variant map with the same size as the source image. We totally generated
four kinds of Ms as shown in Fig. 2. The first (Fig. 2 (a)) is used for generating noisy images of
training data and the others (Fig. 2 (b)-(d)) generating three groups of testing data (denotes as Cases
1-3). Under this noise generation manner, the noises in training data and testing data are with evident
difference, suitable to verify the robustness and generalization capability of competing methods.

Comparson with the State-of-the-art: Table 1 lists the average PSNR results of all competing
methods on three groups of testing data. From Table 1, it can be easily observed that: 1) The
VDN outperforms other competing methods in all cases, indicating that VDN is able to handle such
complicated non-i.i.d. noise; 2) VDN surpasses FFDNet about 0.25dB averagely even though FFDNet
depends on the true noise level information instead of automatically inferring noise distribution as
our method; 3) the discriminative methods MLP, DnCNN-B and UDNet seem to evidently overfit on
training noise bias; 4) the classical model-driven method CBM3D performs more stably than WNNM
and NCSR, possibly due to the latter’s improper i.i.d. Gaussian noise assumption. Fig. 3 shows the
denoising results of different competing methods on one typical image in testing set of Case 2, and
more denoising results can be found in the supplementary material. Note that we only display the top
four best results from all due to page limitation. It can be seen that the denoised images by CBM3D
and DnCNN-B still contain obvious noise, and FFDNet over-smoothes the image and loses some
edge information, while our proposed VDN removes most of the noise and preserves more details.

Even though our VDN is designed based on the non-i.i.d. noise assumption and trained on the
non-i.i.d. noise data, it also performs well on additive white Gaussian noise (AWGN) removal task.
Table 2 lists the average PSNR results under three noise levels (σ = 15, 25, 50) of AWGN. It is easy
to see that our method obtains the best or at least comparable performance with the state-of-the-art
method FFDNet. Combining Table 1 and Table 2, it should be rational to say that our VDN is robust
and able to handle a wide range of noise types, due to its better noise modeling manner.

Noise Variance Prediction: The S-Net plays the role of noise modeling and is able to infer the noise
distribution from the noisy image. To verify the fitting capability of S-Net, we provided the M
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