
A Missing Proofs and Derivations in Section 3.1

Let Lγ,j denote the hard margin loss on examples from class j:
Lγ,j [f ] = Pr

x∼Pj
[max
j′ 6=j

f(x)j′ > f(x)j − γ]

and let L̂γ,j denote its empirical variant. For a hypothesis class F , let R̂j(F) denote the empirical
Rademacher complexity of its class j margin:

R̂j(F) =
1

nj
Eσ

sup
f∈F

∑
i∈Sj

σi[f(xi)j −max
j′ 6=j

f(xi)j′ ]


where σ is a vector of i.i.d. uniform {−1,+1} bits. The following formal versiom of Theorem 1
bounds the balanced-class generalization Pbal using samples from P .
Theorem 2. With probability 1− δ over the randomness of the training data, for all choices of class-
dependent margins γ1, . . . , γk > 0, all hypotheses f ∈ F will have balanced-class generalization
bounded by

Lbal[f ] ≤ 1

k

 k∑
j=1

L̂γj ,j [f ] +
4

γj
R̂j(F) + εj(γj)


where εj(γ) ,

√
log log2(

2maxx∈X ,f∈F |f(x)|
γ )+log 2c

δ

nj
is typically a low-order term in nj . Concretely,

the Rademacher complexity R̂j(F) will typically scale as
√

C(F)
nj

for some complexity measure C(F),
in which case

Lbal[f ] ≤ 1

k

 k∑
j=1

L̂γj ,j [f ] +
4

γj

√
C(F)

nj
+ εj(γj)


Proof. We will prove generalization separately for each class j and then union bound over all classes.

Let Lj [f ] denote the test 0− 1 error of classifier f on examples drawn from Pj . As the examples
for class j is a set of nj i.i.d. draws from the conditional distribution Pj , we can apply the standard
margin-based generalization bound (Theorem 2 of [24]) to obtain with probability 1− δ/k, for all
choices of γj > 0 and f ∈ F ,

Lj [f ] ≤ L̂γj ,j +
4

γj
R̂j(F) +

√√√√ log log2(
2 maxx∈X ,f∈F |f(x)|

γj
)

nj
+

√
log 2c

δ

nj
(14)

Now since Lbal = 1
k

∑k
j=1 Lj , we can union bound over all classes and average (14) to get the

desired result.

We will now show that in the case of k = 2 classes, it is always possible to shift the margins in order
to optimize the generalization bound of Theorem 2 by adding bias terms.
Theorem 3. For binary classification, let F be a hypothesis class of neural networks with a bias
term, i.e. F = {f + b} where f is a neural net function and b ∈ R2 is a bias, with Rademacher

complexity upper bound R̂j(F) ≤
√

C(F)
nj

. Suppose some classifier f ∈ F can achieve a total sum
of margins γ′1 + γ′2 = β with γ′1, γ

′
2 > 0. Then there exists a classifier f? ∈ F with margins

γ?1 =
βn

1/4
2

n
1/4
1 + n

1/4
2

, γ?2 =
βn

1/4
1

n
1/4
1 + n

1/4
2

which with probability 1− δ obtains the optimal generalization guarantees for Theorem 2:

Lbal[f
?] ≤ min

γ1+γ2=β

 2

γ1

√
C(F)

n1
+

2

γ2

√
C(F)

n2

+ ε(γ?1) + ε(γ?2 )

where ε is defined in Theorem 2. Furthermore, this f? is obtained via f + b? for some bias b?.

13



0 1 2 3 4 5 6 7 8 9
class

0

1000

2000

3000

4000

5000

co
un

t

(a) ρ = 10

0 1 2 3 4 5 6 7 8 9
class

0

1000

2000

3000

4000

5000

co
un

t

(b) ρ = 100

0 1 2 3 4 5 6 7 8 9
class

0

1000

2000

3000

4000

5000

co
un

t

(c) ρ = 10, µ = 0.5

Figure 4: Number of training examples per class in artificially created imbalanced CIFAR-10 datasets.
Fig. 4a and Fig. 4b belong to long-tailed imbalance type and Fig. 4c is a step imbalance distribution.

Proof. For our bias b?, we simply choose b?1 = (γ?1 − γ′1)/2, b?2 = −(γ?1 − γ′1)/2. Now note that
adding a bias term simply shifts the margins for class 1 by b?1 − b?2, giving a new margin of γ?2 .
Likewise, the margin for class 2 becomes

b?2 − b?1 + γ′2 = γ′2 − γ?1 + γ′1 = β − γ?1 = γ?2

Now we apply Theorem 2 to get with probability 1− δ the generalization error bound

Lbal[f
?] ≤ 2

γ?1

√
C(F)

n1
+

2

γ?2

√
C(F)

n2
+ ε(γ?1 ) + ε(γ?2 )

To see that γ?1 , γ
?
2 indeed solve

min
γ1+γ2=β

1

γ1

√
1

n1
+

1

γ2

√
1

n2

we can substitute γ2 = β − γ1 into the expression and set the derivative to 0, obtaining

1

(β − γ1)2
√
n2
− 1

γ2
1

√
n1

= 0

Solving gives γ?1 .

B Implementation details

Label distributions. Some example distributions of our artificially created imbalance are shown in
Figure 4.

Implementation details for CIFAR. For CIFAR-10 and CIFAR-100, we follow the simple data
augmentation in [19] for training: 4 pixels are padded on each side, and a 32× 32 crop is randomly
sampled from the padded image or its horizontal flip. We use ResNet-32 [19] as our base network,
and use stochastic gradient descend with momentum of 0.9, weight decay of 2× 10−4 for training.
The model is trained with a batch size of 128 for 200 epochs. For fair comparison, we use an initial
learning rate of 0.1, then decay by 0.01 at the 160th epoch and again at the 180th epoch. We also use
linear warm-up learning rate schedule [14] for the first 5 epochs for fair comparison. Notice that the
warm-up trick is essential for the training of re-weighting, but it won’t affect other algorithms in our
experiments. We tune C to normalize ∆j so that the largest enforced margin is 0.5.

Implementation details for Tiny ImageNet. For Tiny ImageNet, we perform simple horizontal
flips, taking random crops of size 64× 64 from images padded by 8 pixels on each side. We perform
1 crop test with the validation images. We use ResNet-18 [19] as our base network, and use stochastic
gradient descend with momentum of 0.9, weight decay of 2× 10−4 for training. We train the model
using a batch size of 128 for 120 epochs with a initial learning rate of 0.1. We decay the learning rate
by 0.1 at epoch 90. We tune C to normalize ∆j so that the largest enforced margin is 0.5.

Implementation details for iNaturalist 2018. On iNaturalist 2018, we followed the same training
strategy used by [19] and trained ResNet-50 with 4 Tesla V100 GPUs. Each image is first resized
by setting the shorter side to 256 pixels, and then a 224 × 224 crop is randomly sampled from an

14



(a) ERM train (b) Re-sampling train (c) Re-weighting train (d) LDAM train

(e) ERM val (f) Re-sampling val (g) Re-weighting val (h) LDAM val

Figure 5: Visualization of feature distribution of different methods. We constrain the feature
dimension to be three and normalize it for better illustration. The top row has the feature distribution
on the training set and the second row the feature distributions on the validation set. We can see that
LDAM appears to have more separate training features compared to the other methods. We note
this visualization is only supposed to provide qualitative intuitions, and the differences between our
methods and other methods may be more significant for harder tasks with higher feature dimension.
(For example, here the accuracies of re-weighting and LDAM are very similar, whereas for large-scale
datasets with higher feature dimensions, the gap is significantly larger.)

Table 4: Validation error on imbalanced Tiny ImageNet with different loss functions and training
schedules.

Imbalance Type long-tailed step

Imbalance Ratio 100 10 100 10

Loss Schedule Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

ERM SGD 66.19 42.63 50.33 26.68 63.82 44.09 50.89 27.06
CB SM SGD 72.72 52.62 51.58 28.91 74.90 59.14 54.51 33.23
ERM DRW 64.57 40.79 50.03 26.19 62.36 40.84 49.17 25.91

LDAM SGD 64.04 40.46 48.08 24.80 62.54 39.27 49.08 24.52
LDAM DRW 62.53 39.06 47.22 23.84 60.63 38.12 47.43 23.26

image or its horizontal flip. We train the network for 90 epochs with an initial learning rate of 0.1.
We anneal the learning rate at epoch 30 and 60. For our two-stage training schedule, we rebalance the
training data starting from epoch 60. We tune C to normalize ∆j so that the largest enforced margin
is 0.3.

C Additional Results

C.1 Feature visualization

To have a better understanding of our proposed LDAM loss, we use a toy example to visualize
feature distributions trained under different schemes. We train a 7-layer CNN as adopted in [39]
on MNIST [30] with step imbalance setting (ρ = 100, µ = 0.5). For a more intuitive visualization,
we constrain the feature dimension to 3 and normalize the feature before feeding it into the final
fully-connected layer, allowing us to scatter the features on a unit hyper-sphere in a 3D frame. The
visualization is shown in Figure 5 with additional discussion in the caption.

15



0-F 1-F 2-F 3-F 4-F 5-M 6-M 7-M 8-M 9-M
class

0.0

0.1

0.2

0.3

0.4

0.5

er
ro

r

method
ERM
RS
RW

Figure 6: In the setting of training mbalanced CIFAR-10 dataset with step imbalance of ρ = 100, µ =
0.5, to test the quality of the features obtained by the ERM, RW and RS before annealing the learning
rate, we use a subset of the balanced validation dataset to train linear classifiers on top of the features,
and evaluate the per-class validation error on the rest of the validation data. (Little over-fitting in
training the linear classifier is observed.) The left-5 classes are frequent and denoted with -F. The
features obtained from ERM setting has the strongest performance, confirming our intuition that the
second stage of DRW starts from better features. In the second stage, DRW re-weights the example
again, adjusting the decision boundary and locally fine-tuning the features.

C.2 Visual Recognition on imbalanced Tiny ImageNet

In addition to artificial imbalanced CIFAR, we further verify the effectiveness of our method on
artificial imbalanced Tiny ImageNet. The Tiny ImageNet dataset has 200 classes. Each class has
500 training images and 50 validation images of size 64× 64. We use the same strategy described
above to create long-tailed and step imbalance versions of Tiny ImageNet. The results are presented
in Table 4. While Class-Balanced Softmax performs worse than the ERM baseline, the proposed
LDAM and DRW demonstrate consistent improvements over ERM.

C.3 Comparing feature extractors trained by different schemes

As discussed in Section 4.4, we train a linear classifier on features extracted by backbone filters
pretrained under different schemes. We could conclude that for highly imbalanced settings (step
imbalance with ρ = 100, µ = 0.5), backbone networks trained by ERM learns the most expressive
feature embedding compared with the other two methods, as shown in Figure 6.

C.4 Comparing DRW and DRS

Our proposed deferred re-balancing optimization schedule can be combined with either re-weighting
or re-sampling. We use re-weighting as the default choice in the main paper. Here we demonstrate
through Table 5 that re-weighting and re-sampling exhibit similar performance when combined with
deferred re-balancing scheme. This result could be explained by the fact that the second stage does
not move the weights far. Re-balancing in the second stage mostly re-adjusts the decision boundary
and thus there is no significant difference between using re-weighting or re-sampling for the second
stage.

C.5 Imbalanced Test Label Distributions

Though the majority of our experiments follow the uniform test distribution setting, it could be
extended to imbalanced test distribution naturally. Suppose the number of training examples in class
i is denoted by ni and the number of test examples in class i is denoted by n′i, then we could adapt

16



Table 5: Top-1 validation error of ResNet-32 trained with different training schedules on imbalanced
CIFAR-10 and CIFAR-100.

Dataset Name Imbalanced CIFAR-10 Imbalanced CIFAR-100

Imbalance Type long-tailed step long-tailed step

Imbalance Ratio 100 10 100 10 100 10 100 10

ERM 29.64 13.61 36.70 17.50 61.68 44.30 61.05 45.37
DRW 25.14 13.12 28.40 14.49 59.34 42.68 58.86 42.78
DRS 25.50 13.28 27.97 14.83 59.67 42.74 58.65 43.21

0 1 2 3 4 5 6 7 8 9
class

0

1000

2000

3000

4000

5000

co
un

t

(a) train set distribution

0 1 2 3 4 5 6 7 8 9
class

0

200

400

600

800

1000

co
un

t

(b) val set distribution 1

0 1 2 3 4 5 6 7 8 9
class

0

200

400

600

800

1000

co
un

t

(c) val set distribution 2

Figure 7: Example distributions when train and test distributions are both imbalanced. As discussed
in C.5 we run two random seeds for generating test distributions. Here Figure 7b denotes the left
column in Table 6.

the LDAM simply by encouraging the margin ∆i for class i with

∆j ∝
(
n′i
ni

)1/4

(15)

To complement our main result, In Table 6, we demonstrate that this extended algorithm can also
work well when the test distribution is imbalanced. We use the same rule as described in Section 4 to
generate imbalanced test label distribution and then permute randomly the frequency of the labels (so
that the training label distribution is very different from the test label distribution.). For example, in
the experiment shown in Figure 6, the training label distribution of the column of "long-tailed with
ρ = 100" follows Figure 7a (which is the same as Figure 4b) whereas the test label distribution is
shown in Figure 7b and Figure 7c. For each of the settings reported in Table 6, we have run it with
two different random seeds for generating the test label distribution, and we see qualitatively similar
results. We refer to our code for the precise label distribution generated in the experiments.3

3Code available at https://github.com/kaidic/LDAM-DRW.

Table 6: Top-1 validation error of ResNet-32 on imbalanced training and imbalanced validation
scheme for CIFAR-10. See Section C.5 for details.

Imbalance Type long-tailed step

Imbalance Ratio Train 100 10 100 10

Imbalance Ratio Val 100 100 10 10 100 100 10 10

ERM 30.99 28.45 13.08 13.12 24.55 28.63 10.34 11.67
CB-RW 20.86 26.19 10.70 11.93 35.76 31.35 9.82 11.02

LDAM-DRW 14.40 12.95 10.12 10.62 10.30 9.54 7.51 7.82

17

https://github.com/kaidic/LDAM-DRW

	Missing Proofs and Derivations in Section 3.1
	Implementation details
	Additional Results
	Feature visualization
	Visual Recognition on imbalanced Tiny ImageNet
	Comparing feature extractors trained by different schemes
	Comparing DRW and DRS
	Imbalanced Test Label Distributions


