
Appendix A Kernel Definitions

Here we provide the definition of each kernel with relation to the projection matrix W in terms of the
kernel and as a function of β = aWWTb.
Linear Kernel

k(xi, xj) = xTi WWTxj , f(β) = β. (8)

Polynomial Kernel

k(xi, xj) = (xTi WWTxj + c)p, f(β) = (β + c)p. (9)

Gaussian Kernel

k(xi, xj) = e−
(xi−xj)

TWWT (xi−xj)
2σ2 , f(β) = e−

β

2σ2 . (10)

Squared Kernel

k(xi, xj) = (xi − xj)TWWT (xi − xj), f(β) = β. (11)

Multiquadratic Kernel

k(xi, xj) =
√

(xi − xj)TWWT (xi − xj) + c2, f(β) =
√
β + c2. (12)

Appendix B Derivation for each Φ0

Using Eq. (106), we know that

Φ0 = sign(µ)
∑
i,j

Γi,jAi,j . (13)

If a and b are both defined as xi − xj , then

Φ0 = sign(4µ)XT (DΓ − Γ)X. (14)

However, if a and b are defined as (xi, xj), then

Φ0 = sign(2µ)XTΓX. (15)

Therefore, to compute Φ0, the key is to first determine the (a , b) based on the kernel and then find µ
to determine the sign.

Φ0 for the Linear Kernel: With a Linear Kernel, (a,b) uses (xi, xj), therefore Eq. (15) is use.
Since f(β) = β, the sign of the gradient with respect to β is

sign(2∇βf(β)) = sign(2) = 1. (16)

Therefore,
Φ0 = XTΓX. (17)

Φ0 for the Polynomial Kernel: With a Polynomial Kernel, (a,b) uses (xi, xj), therefore Eq. (15)
is use. Since f(β) = (β + c)p, the sign of the gradient with respect to β is

sign(2∇βf(β)) = sign(2p(β + c)p−1) = 1. (18)

Therefore,
Φ0 = XTΓX. (19)

Φ0 for the Gaussian Kernel: With a Gaussian Kernel, (a,b) uses xi − xj , therefore Eq. (14) is

use. Since f(β) = e−
β

2σ2 , the sign of the gradient with respect to β is

sign(4∇βf(β)) = sign(− 4

2σ2
e−

β

2σ2 ) = −1. (20)
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Therefore,
Φ0 = −XT (DΓ − Γ)X. (21)

Φ0 for the RBF Relative Kernel: With a RBF Relative Kernel, it is easier to start with the
Lagrangian once we have approximated relative Kernel with the 2nd order Taylor expansion as

L ≈ −
∑
i,j

Γi,j

[
1 + Tr(WT (− 1

σiσj
Ai,j)W )

]
− Tr

[
Λ(WTW − I)

]
. (22)

The gradient of the Lagrangian is therefore

∇WL ≈

∑
i,j

Γi,j(
2

σiσj
Ai,j)

W − 2WΛ. (23)

Setting the gradient to 0, we get ∑
i,j

(
1

σiσj
Γi,jAi,j)

W = WΛ. (24)

If we let Σi,j = 1
σiσj

and Ψ = Σ� Γ, then we end up with

4
[
XT (DΨ −Ψ)X

]
W = WΛ. (25)

This equation requires W to be the eigenvectors associated with the smallest eigenvalues. We flip the
sign so the most dominant eigenvectors are the solution. Therefore, we define Φ as

Φ = −XT (DΨ −Ψ)X (26)

Φ0 for the Squared Kernel: With a Squared Kernel, (a,b) uses xi − xj , therefore Eq. (14) is use.
Since f(β) = β, the sign of the gradient with respect to β is

sign(4∇βf(β)) = sign(4) = 1. (27)

Therefore,
Φ0 = XT (DΓ − Γ)X. (28)

Φ0 for the Multiquadratic Kernel: With a Multiquadratic Kernel, (a,b) uses xi − xj , therefore
Eq. (14) is use. Since f(β) =

√
β + c2, the sign of the gradient with respect to β is

sign(4∇βf(β)) = sign(
4

2
(β + c2)−1/2) = 1. (29)

Therefore,
Φ0 = XT (DΓ − Γ)X. (30)

Appendix C Derivation for each Φ

Using Eq. (6), we know that

Φ =
1

2

∑
i,j

Γi,j [∇βf(β)]Ai,j . (31)

If we let Ψ = Γi,j [∇βf(β)] then Φ can also be written as

Φ =
1

2

∑
i,j

Ψi,jAi,j . (32)

If a and b are both defined as xi − xj , then

Φ = 2XT (DΨ −Ψ)X. (33)

However, if a and b are defined as (xi, xj), then

Φ = XTΨX. (34)
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Therefore, to compute Φ, the key is to first determine the (a , b) based on the kernel and then find the
appropriate Ψ.

Φ for the Linear Kernel: With a Linear Kernel, (a,b) uses (xi, xj), therefore Eq. (34) is use.
Since f(β) = β, Φ becomes

Φ =
1

2

∑
i,j

Γi,j [∇βf(β)]Ai,j =
1

2

∑
i,j

Γi,jAi,j . (35)

Since, we are only interested in the eigenvectors of Φ only the sign of the constants are necessary.
Therefore,

Φ = sign(1)XTΓX = XTΓX. (36)

Φ for the Polynomial Kernel: With a Polynomial Kernel, (a,b) uses (xi, xj), therefore Eq. (34)
is use. Since f(β) = (β + c)p, Φ becomes

Φ =
1

2

∑
i,j

Γi,j [∇βf(β)]Ai,j =
1

2

∑
i,j

Γi,j [p(β + c)p−1]Ai,j . (37)

Since p is a constant, and KXW,p−1 = (β + c)p−1 is the polynomial kernel itself with power of
(p− 1), Ψ becomes

Ψ = Γ�KXW,p−1, (38)

and
Φ = sign(p)XTΨX = XTΨX (39)

Φ for the Gaussian Kernel: With a Gaussian Kernel, (a,b) uses xi − xj , therefore Eq. (14) is use.

Since f(β) = e−
β

2σ2 , Φ becomes

Φ =
1

2

∑
i,j

Γi,j [∇βf(β)]Ai,j =
1

2

∑
i,j

Γi,j [−
1

2σ2
e−

β

2σ2 ]Ai,j = − 1

4σ2

∑
i,j

Γi,j [KXW ]i,jAi,j .

(40)
If we let Ψ = Γ�KXW , then

Φ = sign(− 2

4σ2
)XT (DΨ −Ψ)X = −XT (DΨ −Ψ)X. (41)

Φ for the Squared Kernel: With a Squared Kernel, (a,b) uses xi − xj , therefore Eq. (14) is use.
Since f(β) = β, Φ becomes

Φ =
1

2

∑
i,j

Γi,j [∇βf(β)]Ai,j =
1

2

∑
i,j

Γi,jAi,j . (42)

Therefore,
Φ = sign(1)XT (DΓ − Γ)X = XT (DΓ − Γ)X. (43)

Φ for the Multiquadratic Kernel: With a Multiquadratic Kernel, (a,b) uses xi − xj , therefore
Eq. (14) is use. Since f(β) =

√
β + c2, Φ becomes

Φ =
1

2

∑
i,j

Γi,j [∇βf(β)]Ai,j =
1

2

∑
i,j

Γi,j [
1

2
(β + c2)−1/2]Ai,j =

1

4

∑
i,j

Γi,j [KXW ]
(−1)
i,j Ai,j .

(44)
If we let Ψ = Γ�K(−1)

XW , then

Φ = sign(
1

4
)XT (DΨ −Ψ)X = XT (DΨ −Ψ)X. (45)

Φ0 for the RBF Relative Kernel: With a RBF Relative Kernel, we start with the initial Lagrangian

L =
∑
i,j

Γi,je
−
Tr(WTAi,jW )

2σiσj − Tr(Λ(WTW − I)) (46)
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where the gradient becomes

∇WL = −
∑
i,j

1

σiσj
Γi,je

−
Tr(WTAi,jW )

2σiσj Ai,jW − 2WΛ. (47)

If we let Σi,j = 1
σiσj

then we get

∇WL = −
∑
i,j

Ψi,jAi,jW − 2WΛ, (48)

where Ψi,j = Σi,jΓi,jKXWi,j
. If we apply Appendix I and set the gradient to 0, then we get

−4
[
XT (DΨ −Ψ)X

]
W = 2WΛ. (49)

From here, we see that it has the same form as the Gaussian kernel, with Ψ defined as Ψ =
Σ� Γ�KXW .

This equation requires W to be the eigenvectors associated with the smallest eigenvalues. We flip the
sign so the most dominant eigenvectors are the solution. Therefore, we define Φ as

Φ = XT (DΨ −Ψ)X (50)

Appendix D Proof for Theorem 1

The main body of the proof is organized into two lemmas where the 1st lemma will prove the 1st
order condition and the 2nd lemma will prove the 2nd order condition. For convenience, we included
the 2nd Order Necessary Condition [32] in Appendix G. We also convert the optimization problem
into a standard minimization form where we solve

min
W
− Tr(ΓKXW ) s.t. WTW = I. (51)

The proof is initialized by manipulating the different kernels into a common form. If we let β =
a(xi, xj)WWT b(xi, xj), then the kernels in this family can be expressed as f(β). This common
form allows a universal proof that works for all kernels that belongs to the ISM family. Depending on
the kernel, the definition of f , a(xi, xj) and b(xi, xj) are listed in Table 6. Kernels in this form are
functions of the Grassmannian WWT .

Name f(β) a(xi, xj) b(xi, xj)
Linear β xi xj
Polynomial (β + c)p xi xj

Gaussian e
−β
2σ2 xi − xj xi − xj

Squared β xi − xj xi − xj
Table 6: Common components of different Kernels.

Lemma 1. Given L as the Lagrangian of Eq. (1), if W ∗ is a fixed point of Algorithm 1, and Λ∗ is a
diagonal matrix of its corresponding eigenvalues, then

∇WL(W ∗,Λ∗) = 0, (52)
∇ΛL(W ∗,Λ∗) = 0. (53)

Proof. Since Tr(ΓKXW ) =
∑
i,j Γi,jKXWi,j , where the subscript indicates the i, jth element of

the associated matrix. If we let a = a(xi, xj),b = b(xi, xj), the Lagrangian of Eq. (1) becomes

L(W,Λ) = −
∑
ij

Γijf(aTWWTb)− Tr[Λ(WTW − I)]. (54)

The gradient of the Lagrangian with respect to W is

∇WL(W,Λ) = −
∑
ij

Γijf
′(aTWWTb)(baT + abT )W − 2WΛ. (55)
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If we let Ai,j = baT + abT then setting∇WL(W,Λ) of Eq. (55) to 0 yields the relationship

0 =

−1

2

∑
ij

Γijf
′(aTWWTb)Ai,j

W −WΛ. (56)

Since f ′(aTWWTb) is a scalar value that depends on indices i, j, we multiply it by − 1
2Γi,j to form

a new variable Ψi,j . Then Eq. (56) can be rewritten as∑
ij

ΨijAi,j

W = WΛ. (57)

To match the form shown in Table 2, Appendix H further showed that if a and b is equal to xi and
xj , then ∑

ij

ΨijAi,j

 = 2XTΨX. (58)

From Appendix I, if a and b are equal to xi − xj , then∑
ij

ΨijAi,j

 = 4XT [DΨ −Ψ]X. (59)

If we let Φ =
[∑

ij ΨijAi,j

]
, it yields the relationship ΦW = WΛ where the eigenvectors of Φ

satisfies the 1st order condition of ∇WL(W ∗,Λ∗) = 0. The gradient with respect to Λ yields the
expected constraint

∇ΛL = WTW − I. (60)

Since the eigenvectors of Φ is orthonormal, the condition ∇ΛL = 0 = WTW − I is also satisfied.
Observing these 2 properties, Lemma 1 confirms that the eigenvectors of Φ also satisfies the 1st order
condition from Eq. (1).

Lemma 2. Given a full rank Φ, an eigengap defined by Eq. (80), and W ∗ as the fixed point of
Algorithm 1, then

Tr(ZT∇2
WWL(W ∗,Λ∗)Z) ≥ 0

for allZ 6= 0,with∇h(W ∗)TZ = 0.
(61)

Proof. To proof Lemma 2, we must relate the concept of eigengap to the conditions of

Tr(ZT∇2
WWL(W ∗,Λ∗)Z) ≥ 0 ∀ Z 6= 0 with ∇h(W ∗)TZ = 0 . (62)

Given the constraint h(W ) = WTW − I , we start by computing the constrain ∇h(W ∗)TZ = 0.
Given

∇h(W ∗)TZ =
lim
t→ 0

∂

∂t
h(W + tZ), (63)

the constraint becomes

∇h(W ∗)TZ = 0 =
lim
t→ 0

∂
∂t [(W + tZ)T (W + tZ)− I],

0 =
lim
t→ 0

∂
∂t [(W

TW + tWTZ + tZTW + t2ZTZ)− I],

0 =
lim
t→ 0

WTZ + ZTW + 2tZTZ.

(64)

By setting the limit to 0, an important relationship emerges as

0 = WTZ + ZTW. (65)
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Given a full rank operator Φ, its eigenvectors must span the completeRd space. If we let W and W̄
represent the eigenvectors chosen and not chosen respectively from Algorithm 1, and let B and B̄ be
scambling matrices, then the matrix Z ∈ Rd×q can be rewritten as

Z = WB + W̄ B̄. (66)

It should be noted that sinceW and W̄ are eigenvalues of the symmetric matrix Φ, they are orthogonal
to each other, i.e., WT W̄ = 0. Furthermore, if we replace Z in Eq. (65) with Eq. (66), we get the
condition

0 = WT (WB + W̄ B̄) + (WB + W̄ B̄)TW
0 = B +BT .

(67)

From Eq. (67), we observe that B must be a antisymmetric matrix because B = −BT . Next, we
work to compute the inequality of of Eq. (62) by noting that

∇2
WWL(W,Λ)Z =

lim
t→ 0

∂

∂t
∇L(W + tZ). (68)

Also note that Lemma 1 has already computed∇WL(W ) as

∇WL(W ) = −1

2

∑
i,j

Γi,jf
′(β)Ai,j

W −WΛ. (69)

Since we need ∇WL to be a function of W + tZ with t as the variable, we change β(W ) into
β(W + tZ) with

β(W + tZ) = a(W + tZ)(W + tZ)T b,
= aTWWT b + [aT (WZT + ZWT )b]t+ [aTZZT b]t2,
= β + c1t+ c2t

2,
(70)

where β, c1, and c2 are constants with respect to t. Using the β from Eq. (70) with∇WL, we get

∇2
WWL(W,Λ)Z =

lim
t→ 0

∂

∂t

−1

2

∑
i,j

Γi,jf
′(β + c1t+ c2t

2)Ai,j

 (W + tZ)− (W + tZ)Λ.

(71)
If we take the derivative with respect to t and then set the limit to 0, we get

∇2
WWL(W,Λ)Z =

−1

2

∑
i,j

Γi,jf
′′(β)c1Ai,j

W +

−1

2

∑
i,j

Γi,jf
′(β)Ai,j

Z − ZΛ. (72)

Next, we notice the definition of Φ = − 1
2

∑
Γi,jf

′(β)Ai,j from Lemma 1, the term
Tr(ZT∇2

WWL(W,Λ)Z) can now be expressed as 3 separate terms as

Tr(ZT∇2
WWL(W,Λ)Z) = T1 + T2 + T3, (73)

where

T1 = Tr

ZT
−1

2

∑
i,j

Γi,jf
′′(β)c1Ai,j

W
 , (74)

T2 = Tr(ZTΦZ), (75)

T3 = −Tr(ZTZΛ). (76)

Since T1 cannot be further simplified, the concentration will be on T2 and T3. If we let Λ̄ and Λ be
the corresponding eigenvlaue matrices associated with W̄ and W , by replacing Z in T2 from Eq. (75),
we get

Tr(ZTΦZ) = Tr((WB + W̄ B̄)TΦ(WB + W̄ B̄))
= Tr(BTWTΦWB + B̄T W̄TΦWB +BTWTΦW̄ B̄ + B̄T W̄TΦW̄ B̄)
= Tr(BTWTWΛB + B̄T W̄TWΛB +BTWT W̄ Λ̄B̄ + B̄T W̄T W̄ Λ̄B̄)
= Tr(BTΛB + 0 + 0 + B̄T Λ̄B̄)
= Tr(BTΛB + B̄T Λ̄B̄).
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By replacing Z from T3 from Eq. (76), we get

−Tr(ZTZΛ) = −Tr((WB + W̄ B̄)T (WB + W̄ B̄)Λ)
= −Tr(BTWTWBΛ + B̄T W̄TWBΛ +BTWT W̄ B̄Λ + B̄T W̄T W̄ B̄Λ)
= −Tr(BTBΛ + 0 + 0 + B̄T B̄Λ)
= −Tr(BΛBT + B̄ΛB̄T ).

The inequality that satisfies the 2nd order condition can now be written as

Tr(BTΛB) + Tr(B̄T Λ̄B̄)− Tr(BΛBT )− Tr(B̄ΛB̄T ) + T1 ≥ 0. (77)

Since B is an antisymmetric matrix, BT = −B, and therefore Tr(BΛBT ) = Tr(BTΛB). From
this Eq. (77) can be rewritten as

Tr(BTΛB)− Tr(BTΛB) + Tr(B̄T Λ̄B̄)− Tr(B̄ΛB̄T ) + T1 ≥ 0. (78)

With the first two terms canceling each other out, the inequality can be rewritten as

Tr(B̄T Λ̄B̄)− Tr(B̄ΛB̄T ) ≥ −T1. (79)

With this inequality, the terms can be further bounded by

Tr(B̄T Λ̄B̄) ≥ min
i

Λ̄i Tr(B̄B̄T )

Tr(B̄ΛB̄T ) ≤ max
j

Λj Tr(B̄T B̄)

Noting that since Tr(B̄B̄T ) = Tr(B̄T B̄), we treat it as a constant value of α. With this, the inequality
can be rewritten as (

min
i

Λ̄i −
max
j

Λj

)
≥ − 1

α
T1.

Here, since − 1
αT1 is simply a constant, we denote it as C to yield the final conclusion that(

min
i

Λ̄i −
max
j

Λj

)
≥ C. (80)

Eq. (80) concludes that to satisfy the 2nd order condition, the eigengap must be greater than C.
Therefore, given the choice of q eigenvectors, the eigengap is maximized when the eigenvectors
associated with the q smallest eigenvalues are chosen as W .

We note that it is customary for machine learning algorithms to look for the most dominant eigen-
vectors, crucially, many KDR algorithms follow this standard. Therefore, to maintain consistency,
the Φ defined within the paper is actually the negative Φ from the proof. By flipping the sign, the
eigenvectors associated with the smallest eigenvalues is now the most dominant eigenvectors. Hence,
Φ within the paper is defined as

Φ =
1

2

∑
ij

Γijf
′(aTWWTb)Ai,j . (81)

Appendix E Computing the Hessian for the Taylor Series

First we compute the gradient and the Hessian for β(W ) where

β(W ) = aTWWT b, (82)

β(W ) = Tr(WT baTW ), (83)

∇Wβ(W ) = [baT + abT ]W, (84)

∇W,Wβ(W ) = [baT + abT ], (85)

∇W,Wβ(W = 0) = [baT + abT ]. (86)
(87)
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Next, we compute the gradient and Hessian for f(β(W )) where

f(β(W )) = f(aTWWT b), (88)

f(β(W )) = f(Tr(WT baTW )), (89)

f ′(β(W )) = ∇βf(β(W ))[baT + abT ]W = ∇βf(β(W ))∇Wβ(W ) (90)

f ′′(β(W ) = ∇β,βf(β(W ))[baT + abT ]W (...) +∇βf(β(W ))[baT + abT ] (91)

f ′′(β(W = 0)) = 0 +∇βf(β(W ))∇W,Wβ(W = 0) (92)

f ′′(β(W = 0)) = ∇βf(β(W ))∇W,Wβ(W = 0) (93)

f ′′(0) = µAi,j . (94)

Using Taylor Series the gradient of the Lagrangian is approximately

∇WL ≈ −
∑
i,j

Γi,jf
′′(0)W − 2WΛ, (95)

∇WL ≈ −µ
∑
i,j

Γi,jAi,jW − 2WΛ. (96)

Setting the gradient of the Lagrangian to 0 and combining the constant 2 to µ, it yields the relationship−µ∑
i,j

Γi,jAi,j

W = WΛ. (97)

Here we note that µ is a constant. Therefore, only the sign will affect the eigenvector selection. With
this, it yields −sign(µ)

∑
i,j

Γi,jAi,j

W = WΛ. (98)

With this, the terms within the bracket become the initial Φ0 as

Φ0W = WΛ. (99)

Appendix F Derivation for Approximated Φ

We first convert the optimization problem into a standard minimization form where we solve

min
W
− Tr(ΓKXW ) s.t. WTW = I. (100)

Since the objective Lagrangian is non-convex, a solution can be achieved faster and more accurately
if the algorithm is initialized at an intelligent starting point. Ideally, we wish to have a closed-form
solution that yields the global optimal without any iterations. However, this is not possible since Φ is
a function of W . ISM circumvents this problem by approximating the kernel using Taylor Series
up to the 2nd order while expanding around 0. This approximation has the benefit of removing
the dependency of W for Φ, therefore, a global minimum can be achieved using the approximated
kernel. The ISM algorithm uses the global minimum found from the approximated kernel as the
initialization point. Here, we provide a generalized derivation for the ISM kernel functions that
are twice differentiable. First, we note that the 2nd order Taylor expansion for f(β(W )) around 0
is f(β(W )) ≈ f(0) + 1

2! Tr(WT f ′′(0)W ), where the 1st order expansion around 0 is equal to 0.
Therefore, the ISM Lagrangian can be approximated with

L = −
∑
i,j

Γi,j

[
f(0) +

1

2!
Tr(WT f ′′(0)W )

]
− Tr(Λ(WTW − I)), (101)

where the gradient of the Lagrangian is

∇WL = −
∑
i,j

Γi,jf
′′(0)W − 2WΛ. (102)
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Next, we look at the kernel function f(β(W )) more closely. The Hessian is computed as
f ′(β(W )) = ∇βf(β(W ))∇Wβ(W ), (103)

f ′′(β(W = 0)) = ∇βf(β(0))∇W,Wβ(0). (104)
Since we skipped several steps for the computation of the Hessian, refer to Appendix E for more
detail. Because∇βf(β(0)) is just a constant, we can bundle all constants into this term and refer to it
as µ. Since∇W,Wβ(0) = Ai,j , the Hessian is simply µAi,j regardless of the kernel. By combining
constants setting the gradient of Eq. (102) to 0, we get the expression− sign(µ)

∑
i,j

Γi,jAi,j

W = WΛ, (105)

where if we let Φ = − sign(µ)
∑
i,j Γi,jAi,j , we get a Φ that is not dependent on W . Therefore, a

closed-form global minimum of the second-order approximation can be achieved. It should be noted
that while the magnitude of µ can be ignored, the sign of µ cannot be neglected since it flips the sign
of the eigenvalues of Ψ. Following Eq. (105), the initial Φ0 for each kernel is shown in Table 1. We
also provide detailed proofs for each kernel in Appendix B.

It is important to note that based on proof of Theorem 1 in Appendix D, the Φ as defined from
Eq. (105) requires the optimal W to be the eigenvectors of Φ that is associated with the smallest
eigenvalues. This is equivalent to the most dominant eigenvectors of negative Φ. To maintain
consistency, the Φ defined with the paper is the negative Φ0 from this derivation, and therefore the
Φ0 defined within the paper is

Φ = sign(µ)
∑
i,j

Γi,jAi,j . (106)

Appendix G Theorem 12.5

Lemma 3 (Nocedal,Wright, Theorem 12.5 [32]). (2nd Order Necessary Conditions) Consider the
optimization problem: minW :h(W )=0 f(W ), where f : Rd×q → R and h : Rd×q → Rq×q are twice
continuously differentiable. Let L be the Lagrangian and h(W ) its equality constraint. Then, a local
minimum must satisfy the following conditions:

∇WL(W ∗,Λ∗) = 0, (107a)
∇ΛL(W ∗,Λ∗) = 0, (107b)

Tr(ZT∇2
WWL(W ∗,Λ∗)Z) ≥ 0

for allZ 6= 0,with∇h(W ∗)TZ = 0.
(107c)

Appendix H Derivation for
∑

i,j Ψi,jAi,j if Ai,j = xix
T
j + xjx

T
i

Since Ψ is a symmetric matrix and Ai,j = (xix
T
j + xjx

T
i ), we first note that while xixTj 6= xjx

T
i , it

still hold that ∑
i,j

Ψi,jxix
T
j =

∑
i,j

Ψi,jxjx
T
i . (108)

Therefore, we can rewrite the expression into∑
i,j

Ψi,jAi,j = 2

n∑
i,j

Ψi,jxix
T
j .

If we expand the summation for i = 1, we get
[Ψ1,1x1x

T
1 + . . .+ Ψ1,nx1x

T
n ] = x1[Ψ1,1x

T
1 + . . .+ Ψ1,nx

T
n ]

= x1

[
[ x1 . . . xn ]

[
Ψ1,1

.
Ψ1,n

]]T

= x1

[ Ψ1,1 . . . Ψ1,n ]

 xT1
.
xTn

 .
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Now if we sum up all i, we get

Ψi,jxix
T
j = x1

[ Ψ1,1 . . . Ψ1,n ]

 xT1
.
xTn

+ . . .+ xn

[ Ψn,1 . . . Ψn,n ]

 xT1
.
xTn

 ,
= [x1 [ Ψ1,1 . . . Ψ1,n ] + . . .+ xn [ Ψn,1 . . . Ψn,n ]]

 xT1
.
xTn

 ,
=

[
[ x1 . . . xn ]

[
Ψ1,1

.
Ψn,1

]
+ . . .+ [ x1 . . . xn ]

[
Ψ1,n

.
Ψn,n

]] xT1
.
xTn

 ,
= [ x1 . . . xn ]

[ [
Ψ1,1

.
Ψn,1

]
. . .

[
Ψ1,n

.
Ψn,n

] ] xT1
.
xTn

 .
Given that X = [ x1 . . . xn ]

T , the final expression becomes.

2

n∑
i,j

Ψi,jxix
T
j = 2XTΨX.

Appendix I Derivation for
∑

i,j Ψi,jAi,j if
Ai,j = (xi − xj)(xi − xj)

T + (xi − xj)(xi − xj)
T

Since Ψ is a symmetric matrix, and Ai,j = (xi − xj)(xi − xj)
T + (xi − xj)(xi − xj)

T =
2(xi − xj)(xi − xj)T , we can rewrite the expression into∑

i,j Ψi,jAi,j = 2
∑
i,j Ψi,j(xi − xj)(xi − xj)T

= 2
∑
i,j Ψi,j(xix

T
i − xjxTi − xixTj + xjx

T
j )

= 4
∑
i,j Ψi,j(xix

T
i − xjxTi )

=
[
4
∑
i,j Ψi,j(xix

T
i )
]
−
[
4
∑
i,j Ψi,j(xjx

T
i )
]
.

If we expand the 1st term where i = 1, we get

n∑
i=1,j

Ψ1,j(x1x
T
1 ) = Ψ1,1(x1x

T
1 ) + . . .+ Ψ1,n(x1x

T
1 ) =

 n∑
i=1,j

Ψ1,j

x1x
T
1 .

From here, we notice that
[∑n

i=1,j Ψ1,j

]
is the degree di=1 of Ψi=1. Therefore, if we sum up all i

values we get ∑
i,j

Ψi,j(xix
T
i ) = d1x1x

T
1 + . . .+ dnxnx

T
n .

If we let DΨ be the degree matrix of Ψ, then this expression becomes

4
∑
i,j

Ψi,j(xix
T
i ) = 4XTDΨX.

Since Appendix H has already proven the 2nd term, together we get

4
∑
i,j

Ψi,j(xix
T
i )− 4

∑
i,j

Ψi,j(xjx
T
i ) = 4XTDΨX − 4XTΨX = 4XT [DΨ −Ψ]X.
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Appendix J Dataset Details

Wine. This dataset has 13 features and 178 samples. The features are continuous and heavily
unbalanced in magnitude. During the experiments, the dimension is reduced down to 3 prior to
performing supervised or unsupervised tasks. The dataset can be downloaded at https://archive.
ics.uci.edu/ml/datasets/wine.

Cancer. This dataset has 9 features and 683 samples. The features are discrete and unbalanced
in magnitude. During the experiments, the dimension is reduced down to 2 prior to performing
supervised or unsupervised tasks. The dataset can be downloaded at https://archive.ics.uci.
edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic).

Face. This dataset consists of images of 20 people in various poses. The 624 images are vectorized
into 960 features. During the experiments, the dimension is reduced down to 20 prior to performing
supervised or unsupervised tasks. This dataset is commonly used for alternative clustering since it
can be clustered by the identity or the pose of the individuals. The dataset can be downloaded at
https://archive.ics.uci.edu/ml/datasets/CMU+Face+Images.

MNIST. This dataset consists of 10,000 images of 10 characters in various orientations. The images
are vectorized into 785 features. During the experiments, the dimension is reduced down to 10
prior to performing supervised or unsupervised tasks. The original MNIST dataset consists of
60,000 training samples and 10,000 test samples. We have decided to use the 10,000 test samples
as our dataset. Since ISM have a memory complexity of O(n2), storing matrix size of 60,000
× 60,000 was beyond our computer’s capability. We are actively conducting research into using
the concept of coresets to alleviate the memory bottleneck. The dataset can be downloaded at
http://yann.lecun.com/exdb/mnist/

Flower. The Flower image is a dataset that allows for alternative ways to perform image segmentation.
It is an image of 350x256 pixel. The RGB values of each pixel is taken as a single sample, with
repeated samples removed. This results in a dataset of 256 samples and 3 features. The image
is segmented into group of 2, represented by black and white. The dataset can be downloaded at
http://en.tessellations-nicolas.com/

Appendix K Proof of Reformulating Eq. (1) into Quadratic Optimization

Given

min
W

Tr(WTΦW ) s.t. WTW = I. (109)

Here we proof that the local minimum for Eq. (109) is equivalent to a local minimum for Eq. (1).
From Theorem 1, we establish that the q minimizing eigenvectors of Φ ∈ Rd×d is a local minimum
of Eq. (1). Therefore, the strategy of this proof is to show that the optimal solution for Eq. (109) is
also the minimizing eigenvectors of Φ.

Proof. Given Eq. (109), the Lagrangian of the objective is

L(W ) = Tr(WTΦW )− Tr
[
Λ(WTW − I)

]
. (110)

Therefore, given a symmetric Φ, the gradient of the Lagrangian becomes

∇WL(W ) = 2ΦW − 2WΛ. (111)

Here, by setting the gradient to 0, we arrive to the definition of eigenvector where

ΦW = WΛ, (112)

thereby proving that the eigenvector of Φ is also a stationary point for Eq. (109). The proof ends here
if W ∈ Rd×d, however, if W ∈ Rd×q where q < d, then we must also determine the appropriate q
eigenvectors to minimize the objective. Given W̄ ∈ Rd×d as the full set eigenvectors, we replace W
from Eq. (110) with W̄ to get

L(W̄ ) = Tr(W̄TΦW̄ )− Tr
[
Λ(W̄T W̄ − I)

]
. (113)
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Since W̄T W̄ = I and ΦW̄ = WΛ, we substitute these terms into Eq. (113) to get

L(W̄ ) = Tr(W̄T W̄Λ). (114)

If we let w1, w2, ..., wd be the set of individual eigenvectors of Φ within W̄ and λ1, λ2, ..., λd be their
corresponding eigenvalues, then Eq. (114) can be rewritten as

L(W̄ ) = λ1w
T
1 w1 + λ2w

T
2 w2 + ...+ λnw

T
d wd. (115)

Since the inner product of any eigenvector with itself (wTi wi) is always equal to 1, the Lagrangian
becomes the summation of its eigenvalues where

L(W̄ ) = λ1 + λ2 + ...+ λn. (116)

Therefore, the selection of a subset of eigenvectors is equivalent to keeping a subset of eigenvalues
while setting the rest to 0 in Eq. (116). To minimize the Lagrangian, therefore, implies that the
eigenvectors corresponding to the smallest eigenvalues should be chosen. Here, we have proven that
the minimizing eigenvectors of Φ is a local minimum for both Eq. (1) and (109).

Appendix L NMI Calculation

If we let U and L be two clustering assignments, NMI can be calculated with

NMI(L,U) =
I(L,U)√
H(L)H(U)

, (117)

where I(L,U) is the mutual information between L and U , and H(L) and H(U) are the entropies of
L and U respectively.

Appendix M Proof for Corollary 1

Proof. The optimization of Eq. (1) using a conic combination of m kernels becomes

min
W
− Tr (Γ[µ1K1 + µ2K2 + ...+ µmKm]) s.t. WTW = I. (118)

The trace term can be separated into dividual terms where

min
W
− Tr(µ1ΓK1)− Tr(µ2ΓK2)− ...− Tr(µmΓKm) s.t. WTW = I. (119)

Therefore, the Lagrangian can be written as

L = −Tr(µ1ΓK1)− Tr(µ2ΓK2)− ...− Tr(µmΓKm)−mTr(Λ[WTW − I]). (120)

From Lemma 1, we have shown that the gradient of the Lagrangian becomes

∇WL = [−µ1Φ1 − µ2Φ2 − ...− µmΦm]W −mWΛ, (121)

where each Φi is the Φ matrix corresponding to each kernel. Setting the gradient to 0, it yields the
relationship

1

m
[−µ1Φ1 − µ2Φ2 − ...− µmΦm]W = WΛ, (122)

Therefore, optimizing a conic combination of kernels for Eq. (1) is equivalent to using a conic
combination of the corresponding Φs with the same coefficients.

Appendix N An Overview on HSIC

Proposed by Gretton et al. [18], the Hilbert Schmidt Independence Criterion (HSIC) is a statistical
dependence measure between two random variables. HSIC is similar to mutual information (MI)
because given two random variables X and Y , they both measure the distance between the joint
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distribution PX,Y and the product of their individual distributions PXPY . While MI uses KL-
divergence to measure this distance, HSIC uses Maximum Mean Discrepancy [43]. Therefore,
when HSIC is zero, or PX,Y = PXPY , it implies independence between X and Y . Similar to MI,
HSIC score increases as PX,Y and PXPY move away from each other, thereby also increasing their
dependence. Although HSIC is similar to MI in its ability to measure dependence, it is easier to
compute as it removes the need to estimate the joint distribution.

Formally, given a set of N i.i.d. samples {(x1, y1), ..., (xN , yN )} drawn from a joint distribution
PX,Y . Let X ∈ RN×d and Y ∈ RN×c be the corresponding sample matrices where d and c denote
the dimensions of the datasets. We denote by KX ,KY ∈ RN×N the kernel matrices with entries
KXi,j = kX(xi, xj) and KYi,j = kY (yi, yj), where kX : Rd × Rd → R and kY : Rc × Rc → R
represent kernel functions. Furthermore, let H be a centering matrix defined as H = In − 1

n1n1Tn
where 1n is a column vector of ones. HSIC is computed empirically with

H(X,Y ) =
1

(n− 1)2
Tr(KXHKYH). (123)

Appendix O Proof for Proposition 1

Proof. For a kernel to belong to the ISM family, it must satisfy the following 3 conditions.

• The kernel function must be twice differentiable.

• The kernel function can be written in terms of f(β).

• The kernel matrix from f(β) must be symmetric positive semi-definite.

To satisfy the 1st condition, given a kernel K that is a conic combination of n ISM kernels where

K = µ1K1 + µ2K2 + ...+ µnKn. (124)

Since each kernel Ki is twice differentiable, the conic combination is still twice differentiable.
Therefore, K is a twice differentiable function.

To satisfy the 2nd condition, given a kernel K from Eq. (124) where each kernel is from the ISM
family, the trivial case of when β = a(xi, xj)WW tb(xi, xj) is defined identically between kernels:

K = µ1f1(β) + µ2f2(β) + ...+ µnfn(β). (125)

From Eq. (125), it is obvious that K itself can also be written in terms of β. However, in the cases
where the functions a(xi, xj) and b(xi, xj) are defined differently, β must be defined differently.
Here, we define the following

a(xi, xj) = Diag([a1(xi, xj), a2(xi, xj), .., an(xi, xj)]) (126)
b(xi, xj) = Diag([b1(xi, xj), b2(xi, xj), .., bn(xi, xj)]) (127)

W = Diag([W,W, ...,W ]) (128)

WT = Diag([WT ,WT , ...,WT ]) (129)

β = Diag([aT1 WWT b1, a
T
2 WWT b2, ..., a

T
nWWT bn]) (130)

where Diag puts the element of the vector on the diagonal of a matrix with both the upper and lower
triangle as 0s. Given β is a matrix, each kernel function can always multiply β by a one-hot vector on
both sides to choose the appropriate sub-β value. Therefore, the joint kernel K can always be written
in terms of β.

For the 3rd condition, we know that conic combinations of symmetric positive semi-definite matrices
are still symmetric positive semi-definite.

Appendix P Proof of Theorem 2

Proof. The original ISM leverages Bolzano-Weierstrass theorem to prove that a sequence generated
using the Gaussian kernel is bounded, therefore ISM has a convergent subsequence. Since the

24



generalized ISM extends the guarantee to other kernels, here we demonstrate that the extension of
ISM to other kernels does not have any effect on the convergence guarantee.

ISM over arbitrary kernels solves an optimization problem over the Grassmannian manifold G(n, d),
as parametized by the subspace WWT . The Grassmannian manifold is a quotient of the Stiefel
Manifold G(n, d) = V (n, d)/O(n). The Grassmann manifold inherits compactness and an induced
metric from the Stiefel manifold. For metric spaces, compact and sequentially compact topological
spaces are equivalent. Therefore, sequences {WWT }k will have convergent subsequences. While W
may not converge (choice of frame), its subspace description will. Termination criteria in Algorithm
1 is independent of the frame W .

Appendix Q Convergence Criteria

Since the objective is to discover a linear subspace, the rotation of the space does not affect the
solution. Therefore, instead of constraining the solution on the Stiefel Manifold, the manifold can be
relaxed to a Grassmann Manifold. This implies that Algorithm 1 can reach convergence as long as
the columns space spanned by W are identical. To identify the overlapping span of two spaces, we
can append the two matrices intoW = [WkWk+1] and observe the rank ofW . In theory, the rank
should equal to q, however, a hard threshold on rank often suffers from numerical inaccuracies.

One approach is to study the principal angles (‘angles between flats’) between the subspaces spanned
by Wk and Wk+1. This is based on the observation that if the maximal principal angle θmax = 0, then
the two subspaces span the same space. The maximal principal angle between subspaces spanned by
Wk and Wk+1 can be found by computing UΣV T = WT

k Wk+1 [44]. The cosines of the principal
angles between Wk and Wk+1 are the singular values of Σ, thus θmax = cos−1(σmin). Computation
of θmax requires two matrix multiplications to form V Σ2V T = (WT

k Wk+1)T (WT
k Wk+1) and then a

round of inverse iteration to find σ2
min. Although this approach confirms the convergence definitively,

in practice, we avoid this extra computation by using the convergence of eigenvalues (of Φ) between
iterations as a surrogate. Since eigenvalues are already computed during the algorithm, no additional
computations are required. Although tracking eigenvalue of Φ for convergence is vulnerable to
false positive errors, in practice, it works consistently well. Therefore, we recommend to use the
eigenvalues as a preliminary check before defaulting to principal angles.
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