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Abstract

In this paper, we study large-scale convex optimization algorithms based on the
Newton method applied to regularized generalized self-concordant losses, which
include logistic regression and softmax regression. We first prove that our new
simple scheme based on a sequence of problems with decreasing regularization
parameters is provably globally convergent, that this convergence is linear with a
constant factor which scales only logarithmically with the condition number. In
the parametric setting, we obtain an algorithm with the same scaling than regular
first-order methods but with an improved behavior, in particular in ill-conditioned
problems. Second, in the non-parametric machine learning setting, we provide
an explicit algorithm combining the previous scheme with Nyström projection
techniques, and prove that it achieves optimal generalization bounds with a time
complexity of order O(ndfλ), a memory complexity of order O(df2λ) and no
dependence on the condition number, generalizing the results known for least-
squares regression. Here n is the number of observations and dfλ is the associated
degrees of freedom. In particular, this is the first large-scale algorithm to solve
logistic and softmax regressions in the non-parametric setting with large condition
numbers and theoretical guarantees.

1 Introduction

Minimization algorithms constitute a crucial algorithmic part of many machine learning methods,
with algorithms available for a variety of situations [10]. In this paper, we focus on finite sum
problems of the form

min
x∈H

fλ(x) = f(x) +
λ

2
‖x‖2, with f(x) =

1

n

n∑
i=1

fi(x),

where H is a Euclidean or a Hilbert space, and each function is convex and smooth. The running-
time of minimization algorithms classically depends on the number of functions n, the explicit (for
Euclidean spaces) or implicit (for Hilbert spaces) dimension d of the search space, and the condition
number of the problem, which is upper bounded by κ = L/λ, where L characterizes the smoothness
of the functions fi, and λ the regularization parameter.

In the last few years, there has been a strong focus on problems with large n and d, leading to first-
order (i.e., gradient-based) stochastic algorithms, culminating in a sequence of linearly convergent
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algorithms whose running time is favorable in n and d, but scale at best in
√
κ [15, 22, 14, 4].

However, modern problems lead to objective functions with very large condition numbers, i.e., in
many learning problems, the regularization parameter that is optimal for test predictive performance
may be so small that the scaling above in

√
κ is not practical anymore (see examples in Sect. 5).

These ill-conditioned problems are good candidates for second-order methods (i.e., that use the
Hessians of the objective functions) such as Newton method. These methods are traditionally
discarded within machine learning for several reasons: (1) they are usually adapted to high precision
results which are not necessary for generalization to unseen data for machine learning problems [9],
(2) computing the Newton step ∆λ(x) = ∇2fλ(x)−1∇fλ(x) requires to form the Hessian and solve
the associated linear system, leading to complexity which is at least quadratic in d, and thus prohibitive
for large d, and (3) the global convergence properties are not applicable, unless the function is very
special, i.e., self-concordant [24] (which includes only few classical learning problems), so they often
are only shown to converge in a small area around the optimal x.

In this paper, we argue that the three reasons above for not using Newton method can be circumvented
to obtain competitive algorithms: (1) high absolute precisions are indeed not needed for machine
learning, but faced with strongly ill-conditioned problems, even a low-precision solution requires
second-order schemes; (2) many approximate Newton steps have been designed for approximating
the solution of the associated large linear system [1, 27, 25, 8]; (3) we propose a novel second-
order method which is globally convergent and which is based on performing approximate Newton
methods for a certain class of so-called generalized self-concordant functions which includes logistic
regression [6]. For these functions, the conditioning of the problem is also characterized by a more
local quantity: κ` = R2/λ, where R characterizes the local evolution of Hessians. This leads
to second-order algorithms which are competitive with first-order algorithms for well-conditioned
problems, while being superior for ill-conditioned problems which are common in practice.

Contributions. We make the following contributions:

(a) We build a global second-order method for the minimization of fλ, which relies only on
computing approximate Newton steps of the functions fµ, µ ≥ λ. The number of such
steps will be of order O(c log κ` + log 1

ε ) where ε is the desired precision, and c is an
explicit constant. In the parametric setting (H = Rd), c can be as bad as

√
κ` in the

worst-case but much smaller in theory and practice. Moreover in the non-parametric/kernel
machine learning setting (H infinite dimensional), c does not depend on the local condition
number κ`.

(b) Together with the appropriate quadratic solver to compute approximate Newton steps,
we obtain an algorithm with the same scaling as regular first-order methods but with an
improved behavior, in particular in ill-conditioned problems. Indeed, this algorithm matches
the performance of the best quadratic solvers but covers any generalized self-concordant
function, up to logarithmic terms.

(c) In the non-parametric/kernel machine learning setting we provide an explicit algorithm
combining the previous scheme with Nyström projections techniques. We prove that it
achieves optimal generalization bounds with O(ndfλ) in time and O(df2λ) in memory,
where n is the number of observations and dfλ is the associated degrees of freedom. In
particular, this is the first large-scale algorithm to solve logistic and softmax regression in
the non-parametric setting with large condition numbers and theoretical guarantees.

1.1 Comparison to related work

We consider two cases forH and the functions fi that are common in machine learning: H = Rd with
linear (in the parameter) models with explicit feature maps, andH infinite-dimensional, corresponding
in machine learning to learning with kernels [32]. Moreover in this section we first consider the
quadratic case, for example the squared loss in machine learning (i.e., fi(x) = 1

2 (x>zi − yi)2 for
some zi ∈ H, yi ∈ R). We first need to introduce the Hessian of the problem, for any λ > 0, define

H(x) := ∇2f(x), Hλ(x) := ∇2fλ(x) = H(x) + λI,

in particular we denote by H (and analogously Hλ) the Hessian at optimum (which in case of squared
loss corresponds to the covariance matrix of the inputs).
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Quadratic problems and H = Rd (ridge regression). The problem then consists in solving a
(ill-conditioned) positive semi-definite symmetric linear system of dimension d× d. Methods based
on randomized linear algebra, sketching and suitable subsampling [17, 18, 11] are able to find the
solution with precision ε in time that isO((nd+min(n, d)3) log(L/λε)), so essentially independently
of the condition number, because of the logarithmic complexity in λ.

Quadratic problems and H infinite-dimensional (kernel ridge regression). Here the problem
corresponds to solving a (ill-conditioned) infinite-dimensional linear system in a reproducing kernel
Hilbert space [32]. Since however the sum defining f is finite, the problem can be projected on a
subspace of dimension at most n [5], leading to a linear system of dimension n × n. Solving it
with the techniques above would lead to a complexity of the order O(n2), which is not feasible on
massive learning problems (e.g., n ≈ 107). Interestingly these problems are usually approximately
low-rank, with the rank represented by the so called effective-dimension dfλ [13], counting essentially
the eigenvalues of the problem larger than λ,

dfλ = Tr(HH−1
λ ). (1)

Note that dfλ is bounded by min{n,L/λ} and in many cases dfλ � min(n,L/λ). Using suitable
projection techniques, like Nyström [34] or random features [26] it is possible to further reduce the
problem to dimension dfλ, for a total cost to find the solution ofO(ndf2λ). Finally recent methods [29],
combining suitable projection methods with refined preconditioning techniques, are able to find the
solution with precision compatible with the optimal statistical learning error [13] in time that is
O(ndfλ log(L/λ)), so being essentially independent of the condition number of the problem.

Convex problems and explicit features (logistic regression). When the loss function is self-
concordant it is possible to leverage the fast techniques for linear systems in approximate Newton
algorithms [25] (see more in Sec. 2), to achieve the solution in essentially O(nd + min(n, d)3)
time, modulo logarithmic terms. However only few loss functions of interest are self-concordant,
in particular the widely used logistic and soft-max losses are not self-concordant, but generalized-
self-concordant [6]. In such cases we need to use (accelerated/stochastic) first order optimization
methods to enter in the quadratic convergence region of Newton methods [2], which leads to a
solution in O(dn + d

√
nL/λ + min(n, d)3) time, which does not present any improvement on a

simple accelerated first-order method. Globally convergent second-order methods have also been
proposed to solve such problems [21], but the number of Newton steps needed being bounded only
by L/λ, they lead to a solution in O(L/λ (nd + min(n, d)3)). With λ that could be as small as
10−12 in modern machine learning problems, this makes both these kind of approaches expensive
from a computational viewpoint for ill-conditioned problems. For such problems, with our new
global second-order scheme, the algorithm we propose achieves instead a complexity of essentially
O((nd+ min(n, d)3) log(R2/λε)) (see Thm. 1).

Convex problems and H infinite-dimensional (kernel logistic regression). Analogously to the
case above, it is not possible to use Newton methods profitably as global optimizers on losses that
are not self-concordant as we see in Sec. 3. In such cases by combining projecting techniques
developped in Sec. 4 and accelerated first-order optimization methods, it is possible to find a
solution in O(ndfλ + dfλ

√
nL/λ) time. This can still be prohibitive in the very small regularization

scenario, since it strongly depends on the condition number L/λ. In Sec. 4 we suitably combine our
optimization algorithm with projection techniques achieving optimal statistical learning error [23] in
essentially O(ndfλ log(R2/λ)).

First-order algorithms for finite sums. In dimension d, accelerated algorithms for strongly-
convex smooth (not necessarily self-concordant) finite sums, such as K-SVRG [4], have a running time
proportional O((n+

√
nL/λ)d). This can be improved with preconditioning to O((n+

√
dL/λ)d)

for large n [2]. Quasi-Newton methods can also be used [20], but typically without the guarantees
that we provide in this paper (which are logarithmic in the condition number in natural scenarios).

2 Background: Newton methods and generalized self concordance

In this section we start by recalling the definition of generalized self concordant functions and motivate
it with examples. We then recall basic facts about Newton and approximate Newton methods, and
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present existing techniques to efficiently compute approximate Newton steps. We start by introducing
the definition of generalized self-concordance, that here is an extension of the one in [6].

Definition 1 (generalized self-concordant (GSC) function). LetH be a Hilbert space. We say that f
is a generalized self-concordant function on G ⊂ H, when G is a bounded subset of H and f is a
convex and three times differentiable mapping onH such that

∀x ∈ H, ∀h, k ∈ H, ∇(3)f(x)[h, k, k] ≤ supg∈G |g · h| ∇2f(x)[k, k].

We will usually denote by R the quantity supg∈G ‖g‖ <∞ and often omit G when it is clear from
the context (for simplicity think of G as the ball in H centered in zero and with radius R > 0,
then supg∈G |g · h| = R‖h‖). The globally convergent second-order scheme we present in Sec. 3
is specific to losses which satisfy this generalized self-concordance property. The following loss
functions, which are widely used in machine learning, are generalized-self-concordant, and motivate
this work.

Example 1 (Application to finite-sum minimization). The following loss functions are generalized
self-concordant functions, but not self-concordant:
(a) Logistic regression: fi(x) = log(1 + exp(−yiw>i x)), where x,wi ∈ Rd and yi ∈ {−1, 1}.
(b) Softmax regression: fi(x) = log

(∑k
j=1 exp(x>j wi)

)
− x>yiwi, where now x ∈ Rd×k and

yi ∈ {1, . . . , k} and xj denotes the j-th column of x.
(c) Generalized linear models with bounded features (see details in [7, Sec. 2.1]), which include
conditional random fields [33].
(d) Robust regression: fi(x) = ϕ(yi − w>i x) with ϕ(u) = log(eu + e−u).

Note that these losses are not self-concordant in the sense of [25]. Moreover, even if the losses fi are
self-concordant, the objective function f is not necessarily self-concordant, making any attempt to
prove the self-concordance of the objective function f almost impossible.

Newton method (NM). Given x0 ∈ H, the Newton method consists in doing the following update:

xt+1 = xt −∆λ(xt), ∆λ(xt) := H−1
λ (xt)∇fλ(xt). (2)

The quantity ∆λ(x) := H−1
λ (x)∇fλ(x) is called the Newton step at point x, and x−∆λ(x) is the

minimizer of the second order approximation of fλ around x. Newton methods enjoy the following
key property: if x0 is close enough to the optimum, the convergence to the optimum is quadratic and
the number of iterations required to a given precision is independent of the condition number of the
problem [12].

However Newton methods have two main limitations: (a) the region of quadratic convergence can be
quite small and reaching the region can be computationally expensive, since it is usually done via
first order methods [2] that converge linearly depending on the condition number of the problem, (b)
the cost of computing the Hessian can be really expensive when n, d are large, and also (c) the cost
of computing ∆λ(xt) can be really prohibitive. In the rest of the section we recall some ways to deal
with (b) and (c). Our main result of Sec. 3 is to provide globalization scheme for the Newton method
to tackle problem (a), which is easily integrable with approximate techniques to deal with (b) ans (c),
to make second-order technique competitive.

Approximate Newton methods (ANM) and approximate solutions to linear systems. Comput-
ing exactly the Newton increment ∆λ(xt), which corresponds essentially to the solution of a linear
system, can be too expensive when n, d are large. A natural idea is to approximate the Newton
iteration, leading to approximate Newton methods,

xt+1 = xt − ∆̃λ(xt), ∆̃λ ≈ ∆λ(xt). (3)

In this paper, more generally we consider any technique to compute ∆̃λ(xt) that provides a relative
approximation [16] of ∆λ(xt) defined as follows.

Definition 2 (relative approximation). Let ρ < 1, let A be an invertible positive definite Hermitian
operator onH and b inH. We denote by LinApprox(A, b, ρ) the set of all ρ-relative approximations
of z∗ = A−1b, i.e., LinApprox(A, b, ρ) = {z ∈ H | ‖z − z∗‖A ≤ ρ‖z∗‖A}.
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Sketching and subsampling for approximate Newton methods. Many techniques for approxi-
mating linear systems have been used to compute ∆̃λ, in particular sketching of the Hessian matrix
via fast transforms and subsampling (see [25, 8, 2] and references therein). Assuming for simplicity
that fi = `i(w

>
i x), with `i : R→ R and wi ∈ H, it holds:

H(x) =
1

n

n∑
i=1

`
(2)
i (w>i x)wiw

>
i = V >x Vx, (4)

with Vx ∈ Rn×d = DxW , where Dx ∈ Rn×n is a diagonal matrix defined as (Dx)ii =

(`
(2)
i (w>i x))1/2 and W ∈ Rn×d defined as W = (w1, . . . , wn)>.

Both sketching and subsampling methods approximate z∗ = Hλ(x)−1∇fλ(x) with z̃ =

H̃λ(x)−1∇fλ(x), in particular, in the case of subsampling H̃(x) =
∑Q
j=1 pjwijw

>
ij

where

Q � min(n, d), (pj)
n
j=1 are suitable weights and (ij)

Q
j=1 are indices selected at random from

{1, . . . , n} with suitable probabilities. Sketching methods instead use H̃(x) = Ṽ >x Ṽx, with
Ṽx = ΩVx with Ω ∈ RQ×n a structured matrix such that computing Ṽx has a cost in the order
of O(nd log n); to this end usually Ω is based on fast Fourier or Hadamard transforms [25]. Note that
essentially all the techniques used in approximate Newton methods guarantee relative approximation.
In particular the following results can be found in the literature (see Lemmas 28 and 29 in Appendix I
and [25], Lemma 2 for more details).

Lemma 1. Let x, b ∈ H and assume that `(2)
i ≤ a for a > 0. With probability 1− δ the following

methods output an element in LinApprox(Hλ(x), b, ρ), inO(Q2d+Q3 +c) time, O(Q2 +d) space:
(a) Subsampling with uniform sampling (see [27, 28]), where Q = O(ρ−2a/λ log 1

λδ ) and c = O(1).
(b) Subsampling with approximate leverage scores [27, 3, 28]), whereQ = O(ρ−2 ¯dfλ log 1/λδ), c =

O(min(n, a/λ) ¯dfλ
2
) and ¯dfλ = Tr(W>W (W>W + λ/aI)−1) [30]. Note that ¯dfλ ≤ min(n, d).

(c) Sketching with fast Hadamard transform [25], where Q = O(ρ−2 ¯dfλ log a/λδ), c = O(nd log n).

3 Globally convergent scheme for ANM algorithms on GSC functions

The algorithm is based on the observation that when fλ is generalized self concordant, there exists
a region where t steps of ANM converge as fast as 2−t. Our idea is to start from a very large
regularization parameter λ0, such that we are sure that x0 is in the convergence region and perform
some steps of ANM such that the solution enters in the convergence region of fλ1

, with λ1 = qλ0

with q < 1, and to iterate this procedure until we enter the convergence region of fλ. First we define
the region of interest and characterize the behavior of NM and ANM in the region, then we analyze
the globalization scheme.

Preliminary results: the Dikin ellipsoid. We consider the following region that we prove to be
contained in the region of quadratic convergence for the Newton method and that will be useful to
build the globalization scheme. Let c,R > 0 and fλ be generalized self-concordant with coefficientR,
we call Dikin ellipsoid and denote by Dλ(c) the region

Dλ(c) :=
{
x | νλ(x) ≤ c

√
λ/R

}
, with νλ(x) := ‖∇fλ(x)‖H−1

λ (x),

where νλ(x) is usually called the Newton decrement and ‖x‖A stands for ‖A1/2x‖.
Lemma 2. Let λ > 0, c ≤ 1/7, let fλ be generalized self-concordant and x ∈ Dλ(c). Then it
holds: 1

4νλ(x)2 ≤ fλ(x) − fλ(x?λ) ≤ νλ(x)2. Moreover Newton method starting from x0 has
quadratic convergence, i.e., let xt be obtained via t ∈ N steps of Newton method in Eq. (2), then
νλ(xt) ≤ 2−(2t−1)νλ(x0). Finally, approximate Newton methods starting from x0 have a linear
convergence rate, i.e., let xt given by Eq. (3), with ∆̃t ∈ LinApprox(Hλ(xt),∇fλ(xt), ρ) and
ρ ≤ 1/7, then νλ(xt) ≤ 2−tνλ(x0).

This result is proved in Lemma 11 in Appendix B.3. The crucial aspect of the result above is that
when x0 ∈ Dλ(c), the convergence of the approximate Newton method is linear and does not depend
on the condition number of the problem. However Dλ(c) itself can be very small depending on√
λ/R. In the next subsection we see how to enter in Dλ(c) in an efficient way.
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Entering the Dikin ellipsoid using a second-order scheme. The lemma above shows that Dλ(c)
is a good region where to use the approximate Newton algorithm on GSC functions. However the
region itself is quite small, since it depends on

√
λ/R. Some other globalization schemes arrive to

regions of interest by first-order methods or back-tracking schemes [2, 1]. However such approaches
require a number of steps that is usually proportional to

√
L/λmaking them non-beneficial in machine

learning contexts. Here instead we consider the following simple scheme where ANMρ(fλ, x, t) is the
result of a ρ-relative approximate Newton method performing t steps of optimization starting from x.

The main ingredient to guarantee the scheme to work is the following lemma (see Lemma 13 in
Appendix C.1 for a proof).
Lemma 3. Let µ > 0, c < 1 and x ∈ H. Let s = 1 +R‖x‖/c, then for q ∈ [1− 2/(3s), 1)

Dµ(c/3) ⊆ Dqµ(c).

Now we are ready to show that we can guarantee the loop invariant xk ∈ Dµk(c). Indeed assume that
xk−1 ∈ Dµk−1

(c). Then νµk−1
(xk−1) ≤ c

√
µk−1/R. By taking t = 2, ρ = 1/7, and performing

xk = ANMρ(fµk−1
, xk−1, t), by Lemma 2, νµk−1

(xk) ≤ 1/4νµk−1
(xk−1) ≤ c/4

√
µk−1/R, i.e.,

xk ∈ Dµk−1
(c/4). If qk is large enough, this implies that xk ∈ Dqkµk−1

(c) = Dµk(c), by Lemma 3.
Now we are ready to state our main theorem of this section.

Proposed Globalization Scheme
Phase I: Getting in the Dikin ellispoid of fλ

Start with x0 ∈ H, µ0 > 0, t, T ∈ N and (qk)k∈N ∈ (0, 1].
For k ∈ N

xk+1 ← ANMρ(fµk , xk, t)
µk+1 ← qk+1µk

Stop when µk+1 < λ and set xlast ← xk.
Phase II: reach a certain precision starting from inside the Dikin ellipsoid

Return x̂← ANMρ(fλ, xlast, T )

Fully adaptive method. The scheme presented above converges with the following parameters.
Theorem 1. Let ε > 0. Set µ0 = 7R‖∇f(0)‖, x0 = 0, and perform the globalization scheme above
for ρ ≤ 1/7, t = 2, and qk = 1/3+7R‖xk‖

1+7R‖xk‖ , T = dlog2

√
1 ∨ (λε−1/R2)e. Then denoting by K the

number of steps performed in the Phase I, it holds:
fλ(x̂)− fλ(x?λ) ≤ ε, K ≤ b(3 + 11R‖x?λ‖) log(7R‖∇f(0)‖/λ)c .

Note that the theorem above (proven in Appendix C.3) guarantees a solution with error ε with K steps
of ANM each performing 2 iterations of approximate linear system solving, plus a final step of ANM
which performs T iterations of approximate linear system solving. In case of fi(x) = `i(w

>
i x), with

`i : R → R, wi ∈ H with `(2)
i ≤ a, for a > 0, the final runtime cost of the proposed scheme to

achieve precision ε, when combined with of the methods for approximate linear system solving from
Lemma 1 (i.e. sketching), is O(Q2 + d) in memory and

O
(

(nd log n+ dQ2 +Q3)
(
R‖x?λ‖ log

R

λ
+ log

λ

Rε

))
in time, Q = O

(
¯dfλ log

1

λδ

)
,

where ¯dfλ, defined in Lemma 1, measures the effective dimension of the correlation matrix W>W
withW = (w1, . . . , wn)> ∈ Rn×d, corresponding essentially to the number of eigenvalues ofW>W
larger than λ/a. In particular note that ¯dfλ ≤ min(n, d, rank(W ), ab2/λ), with b := maxi ‖wi‖,
and usually way smaller than such quantities.
Remark 1. The proposed method does not depend on the condition number of the problem L/λ, but
on the term R‖x?λ‖ which can be in the order of R/

√
λ in the worst case, but usually way smaller.

For example, it is possible to prove that this term is bounded by an absolute constant not depending
on λ, if at least one minimum for f exists. In the appendix (see Proposition 7), we show a variant of
this adaptive method which can leverage the regularity of the solution with respect to the Hessian,
i.e., depending on the smaller quantity R

√
λ‖x?λ‖H−1

λ (x?λ) instead of R‖x?λ‖.

Finally note that it is possible to use qk = q fixed for all the iterations and way smaller than the one
in Thm. 1, depending on some regularity properties of H (see Proposition 8 in Appendix C.2).

6



4 Application to the non-parametric setting: Kernel methods

In supervised learning the goal is to predict well on future data, given the observed training dataset.
Let X be the input space and Y ⊆ Rp be the output space. We consider a probability distribution P
over X × Y generating the data and the goal is to estimate g∗ : X → Y solving the problem

g∗ = arg min
g:X→Y

L(g), L(g) = E[`(g(x), y)], (5)

for a given loss function ` : Y × Y → R. Note that P is not known, and accessible only via the
dataset (xi, yi)

n
i=1, with n ∈ N, independently sampled from P . A prototypical estimator for g∗ is

the regularized minimizer of the empirical risk L̂(g) = 1
n

∑n
i=1 `(g(xi), yi) over a suitable space of

functions G. Given φ : X → H a common choice is to select G as the set of linear functions of φ(x),
that is, G = {w>φ(·) | w ∈ H}. Then the regularized minimizer of L̂, denoted by ĝλ, corresponds to

ĝλ(x) = ŵ>λ φ(x), ŵλ = arg min
w∈H

1
n

∑n
i=1 fi(w) + λ‖w‖2, fi(w) = `(w>φ(xi), yi). (6)

Learning theory guarantees how fast ĝλ converges to the best possible estimator g∗ with respect
to the number of observed examples, in terms of the so called excess risk L(ĝλ) − L(g∗). The
following theorem recovers the minimax optimal learning rates for squared loss and extend them to
any generalized self-concordant loss function.

Note on dfλ. In this section, we always denote with dfλ the effective dimension of the problem in
Eq. (5). When the loss belongs to the family of generalized linear models (see Example 1) and if the
model is well-specified, then dfλ is defined exactly as in Eq. (1) otherwise we need a more refined
definition (see [23] or Eq. (30) in Appendix D).
Theorem 2 (from [23], Thm. 4). Let λ > 0, δ ∈ (0, 1]. Let ` be generalized self-concordant with
parameter R > 0 and supx∈X ‖φ(x)‖ ≤ C < ∞. Assume that there exists g∗ minimizing L.
Then there exists c0 not depending on n, λ, δ, dfλ, C, g∗, such that if

√
dfλ/n, bλ ≤ λ1/2/R, and

n ≥ C/λ log(δ−1C/λ) the following holds with probability 1− δ:

L(ĝλ)− L(g∗) ≤ c0
(dfλ
n

+ b2
λ

)
log(1/δ), bλ := λ‖g∗‖H−1

λ (g∗). (7)

Under standard regularity assumptions of the learning problems [23], i.e., (a) the capacity condition
σj(H(g∗)) ≤ Cj−α, for α ≥ 1, C > 0 (i.e., a decay of eigenvalues σj(H(g∗)) of the Hessian at the
optimum), and (b) the source condition g∗ = H(g∗)rv, with v ∈ H and r > 0 (i.e., the control of the
optimal g∗ for a specific Hessian-dependent norm), dfλ ≤ C ′λ−1/α and b2

λ ≤ C ′′λ1+2r, leading to
the following optimal learning rate,

L(ĝλ)− L(g∗) ≤ c1n−
1+2rα

1+α+2rα log(1/δ), when λ = n−
α

1+α+2rα . (8)
Now we propose an algorithmic scheme to compute efficiently an approximation of ĝλ that achieves
the same optimal learning rates. First we need to introduce the technique we are going to use.

Nyström projection. It consists in suitably selecting {x̄1, . . . , x̄M} ⊂ {x1, . . . , xn}, withM � n
and computing ḡM,λ, i.e., the solution of Eq. (6) overHM = span{φ(x̄1), . . . , φ(x̄M )} instead ofH.
In this case the problem can be reformulated as a problem in RM as

ḡM,λ = ᾱ>M,λT
−1v(x), ᾱM,λ = arg min

α∈RM
f̄λ(α), f̄(α) =

1

n

n∑
i=1

f̄i(α) + λ‖α‖2, (9)

where f̄i(α) = `(v(xi)
>T−1α, yi) and v(x) ∈ RM , v(x) = (k(x, x̄1), . . . , k(x, x̄M )) with

k(x, x′) = φ(x)>φ(x′) the associated positive-definite kernel [32], while T is the upper trian-
gular matrix such that K = T>T, with K ∈ RM×M with Kij = k(x̄i, x̄j). In the next theorem
we characterize the sufficient M to achieve minimax optimal rates, for two standard techniques of
choosing the Nyström points {x̄1, . . . , x̄M}.
Theorem 3 (Optimal rates for learning with Nyström). Let λ > 0, δ ∈ (0, 1]. Assume the conditions
of Thm. 2. Then the excess risk of ḡM,λ is bounded with prob. 1− 2δ as in Eq. (7) (with c′1 ∝ c1),
when

(1) Uniform Nyström method [28, 29] is used and M ≥ C1/λ log(C2/λδ).
(2) Approximate leverage score method [3, 28, 29] is used and M ≥ C3 dfλ log(C4/λδ).

Here C,C1, C2, C4 do not depend on λ, n,M, dfλ, δ.
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Thm. 3 generalizes results for learning with Nyström and squared loss [28], to GSC losses. It is
proved in Thm. 6, in Appendix D.4. As in [28], Thm. 3 shows that Nyström is a valid technique
for dimensionality reduction. Indeed it is essentially possible to project the learning problem on a
subspace HM of dimension M = O(c/λ) or even as small as M = O(dfλ) and still achieve the
optimal rates of Thm. 2. Now we are ready to introduce our algorithm.

Proposed algorithm. The algorithm conceptually consists in (a) performing a projection step with
Nyström, and (b) solving the resulting optimization problem with the globalization scheme proposed
in Sec. 3 based on ANM in Eq. (3). In particular, we want to avoid to apply explicitly T−1 to each
v(xi) in Eq. (9), which would require O(nM2) time. Then we will use the following approximation
technique based only on matrix vector products, so we can just apply T−1 to α at each iteration,
with a total cost proportional only to O(nM +M2) per iteration. Given α,∇f̄λ(α), we approximate
z∗ = H̄λ(α)−1∇f̄λ(α), where H̄λ is the Hessian of f̄λ(α), with z̃ defined as

z̃ = prec-conj-gradt(H̄λ(α),∇f̄λ(α)),

where prec-conj-gradt corresponds to performing t steps of preconditioned conjugate gradi-
ent [19] with preconditioner computed using a subsampling approach for the Hessian among the ones
presented in Sec. 2, in the paragraph starting with Eq. (4). The pseudocode for the whole procedure
is presented in Alg. 1, Appendix E. This technique of approximate linear system solving has been
studied in [29] in the context of empirical risk minimization for squared loss.

Lemma 4 ([29]). Let λ > 0, α, b ∈ RM . The previous method, applied with t = O(log 1/ρ), outputs
an element of LinApprox(H̄λ(α), b, ρ), with probability 1− δ with complexity O((nM +M2Q+
M3 + c)t) in time and O(M2 + n) in space, with Q = O(C1/λ log(C1/λδ)), c = O(1) if uniform
sub-sampling is used or Q = O(C2dfλ log(C1/λδ)), c = O(df2λ min(n, 1

λ )) if sub-sampling with
leverage scores is used [30].

A more complete version of this lemma is shown in Proposition 12 in Appendix D.5.1. We conclude
this section with a result proving the learning properties of the proposed algorithm.

Theorem 4 (Optimal rates for the proposed algorithms). Let λ > 0 and ε < λ/R2. Under the
hypotheses of Thm. 3, if we set M as in Thm. 3, Q as in Lemma 4 and setting the globalization
scheme as in Thm. 1, then the proposed algorithm (Alg. 1, Appendix E) finishes in a finite number of
newton steps Nns = O(R‖g∗‖ log(C/λ) + log(C/ε)) and returns a predictor gQ,M,λ of the form
gQ,M,λ = α>T−1v(x). With probability at least 1− δ, this predictor satisfies:

L(gQ,M,λ)− L(g∗) ≤ c0
(dfλ
n

+ b2
λ + ε

)
log(1/δ), bλ := λ‖g∗‖H−1

λ (g∗). (10)

The theorem above (see Proposition 14, Appendix D.6 for exacts quantifications) shows that the
proposed algorithm is able to achieve the same learning rates of plain empirical risk minimization as
in Thm. 2. The total complexity of the procedure, including the cost of computing the preconditioner,
the selection of the Nyström points via approximate leverage scores and also the computation of the
leverage scores [30] is then

O
(
R‖g∗‖ log(R2/λ)

(
n dfλ log(Cλ−1δ−1) cX + + df3λ log3(Cλ−1δ−1) + min(n,C/λ) df2λ

))
in time and O(df2λ log2(Cλ−1δ−1)) in space, where cX is the cost of computing the inner product
k(x, x′) (in the kernel setting assumed when the input space X is X = Rp it is c = O(p)).
As noted in [30], under the standard regularity assumptions on the learning problem seen above,
df2λ ≤ dfλ/λ ≤ n when the optimal λ is chosen. So the total computational complexity is

O
(
R log(R2/λ) log3(Cλ−1δ−1) ‖g∗‖ · n · dfλ · cX

)
in time, O(df2λ·log2(Cλ−1δ−1)) in space.

First note, the fact that due to the statistical properties of the problem the complexity does not depend
even implicitly on

√
C/λ, but only on log(C/λ), so the algorithm runs in essentially O(ndfλ),

compared to O(dfλ
√
nC/λ) of the accelerated first-order methods we develop in Appendix F and

the O(ndfλ
√
C/λ) of other Newton schemes (see Sec. 1.1). To our knowledge, this is the first

algorithm to achieve optimal statistical learning rates for generalized self-concordant losses and with
complexity only Õ(ndfλ). This generalizes similar results for squared loss [29, 30].
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Figure 1: Training loss and test error as as function of the number of passes on the data for our
algorithm vs. K-SVRG. on the (left) Susy and (right) Higgs data sets.

5 Experiments

The code necessary to reproduce the following experiments is available on GitHub at https:
//github.com/umarteau/Newton-Method-for-GSC-losses-.

We compared the performances of our algorithm for kernel logistic regression on two large scale
classification datasets (n ≈ 107), Higgs and Susy, pre-processed as in [29]. We implemented the
algorithm in pytorch and performed the computations on 1 Tesla P100-PCIE-16GB GPU. For Susy
(n = 5 × 106, p = 18): we used Gaussian kernel with k(x, x′) = e−‖x−x

′‖2/(2σ2), with σ = 5,
which we obtained through a grid search (in [29], σ = 4 is taken for the ridge regression); M = 104

Nyström centers and a subsampling Q = M for the preconditioner, both obtained with uniform
sampling. Analogously for Higgs (n = 1.1× 107, p = 28): , we used a Gaussian kernel with σ = 5
and M = 2.5× 104 and Q = M , using again uniform sampling. To find reasonable λ for supervised
learning applications, we cross-validated λ finding the minimum test error at λ = 10−10 for Susy
and λ = 10−9 for Higgs (see Figs. 2 and 3 in Appendix F) for such values our algorithm and the
competitor achieve an error of 19.5% on the test set for Susy, comparable to the state of the art (19.6%
[29]) and analogously for Higgs (see Appendix F). We then used such λ’s as regularization parameters
and compared our algorithm with a well known accelerated stochastic gradient technique Katyusha
SVRG (K-SVRG) [4], tailored to our problem using mini batches. In Fig. 1 we show the convergence
of the training loss and classification error with respect to the number of passes on the data, of our
algorithm compared to K-SVRG. It is possible to note our algorithm is order of magnitude faster in
achieving convergence, validating empirically the fact that the proposed algorithm scales as O(ndfλ)

in learning settings, while accelerated first order methods go as O((n +
√
nL/λ)dfλ). Moreover,

as mentioned in the introduction, this highlights the fact that precise optimization is necessary to
achieve a good performance in terms of test error. Finally, note that since a pass on the data is much
more expensive for K-SVRG than for our second order method (see Appendix F for details), the
difference in computing time between the second order scheme and K-SVRG is even more in favour
of our second order method (see Figs. 4 and 5 in Appendix F).
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