
Generating Diverse High-Fidelity Images
with VQ-VAE-2

(Supplementary Material)

Ali Razavi∗
DeepMind

alirazavi@google.com

Aäron van den Oord∗

DeepMind
avdnoord@google.com

Oriol Vinyals
DeepMind

vinyals@google.com

A Architecture Details and Hyperparameters

A.1 Overall Training and Sampling Procedures

The overall procedure for training the multiple stages of VQ-VAE-2 is described in Algorithm 1.
We apply random cropping and flipping augmentations for Imagenet. For FFHQ, we additionally
perturb brightness with maximum delta of 0.08, random hue with maximum delta of 0.02, and add or
subtract 10% random saturation and contrast. We also, with 50% probability, add a Gaussian noise
with standard deviation of 0.02 to the whole image. Note that the training of the top and bottom priors
can be done in parallel as the bottom prior is conditioned on the top-level discrete codes of the ground
truth images in the dataset, which are obtained by running the pretrained encoder network. We used
Tensorflow v1.4 [1] to implement our models. We trained all models using Google Cloud TPUv3
(https://cloud.google.com/tpu). For VQ-VAE encoders and decoders of both FFHQ and Imagenet we
used 8 TPU cores, while prior networks are trained with 128 cores.

Algorithm 1 VQ-VAE training (stage 1)

Require: Functions Etop , Ebottom, D,
x (batch of training images)

1: htop ← Etop(x)

. quantize with top codebook eq 1.
2: etop ← Quantize(htop)

3: hbottom ← Ebottom(x, etop)

. quantize with bottom codebook eq
1.

4: ebottom ← Quantize(hbottom)

5: x̂← D(etop, ebottom)

. Loss according to eq 2.
6: θ ← Update(L(x, x̂))

Algorithm 2 Prior training (stage 2)

1: Ttop,Tbottom ← ∅ . training set
2: for x ∈ training set do
3: etop ← Quantize(Etop(x))
4: ebottom ← Quantize(Ebottom(x, etop))
5: Ttop ← Ttop ∪ etop
6: Tbottom ← Tbottom ∪ ebottom
7: end for
8: ptop = TrainPixelCNN(Ttop)
9: pbottom =

TrainCondPixelCNN(Tbottom,Ttop)

. Sampling procedure
10: while true do
11: etop ∼ ptop
12: ebottom ∼ pbottom(etop)
13: x← D(etop, ebottom)
14: end while

∗Equal contributions.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.



Top-Prior (32× 32) Bottom-Prior (64× 64)
Input size 32× 32 64× 64
Batch size 1024 512
Hidden units 512 512
Residual units 2048 1024
Layers 20 20
Attention layers 4 0
Attention heads 8 -
Conv Filter size 5 5
Dropout 0.1 0.1
Output stack layers 20 -
Conditioning stack residual blocks - 20
Training steps 1600000 754000
Polyak EMA decay 0.9999 0.9999

Table 1: Hyper parameters of autoregressive prior networks used for Imagenet-256 experiments.

A.2 PixelCNN Prior Networks

Our top-level prior network models 32× 32 latent variables. The residual gated convolution layers of
PixelCNN are interspersed with causal multi-headed attention every five layers. The details of the
architecture we used for the Gated layers are depicted in fig:pixelsnail-arch. To regularize the model,
we incorporate dropout after each residual block as well as dropout on the logits of each attention
matrix. We found that adding deep residual networks consisting of 1× 1 convolutions on top of the
PixelCNN stack further improves likelihood without slowing down training or increasing memory
footprint too much.

Our bottom-level conditional prior operates on latents with 64 × 64 spatial dimensions. This is
significantly more expensive in terms of required memory and computation cost. As argued before,
the information encoded in this level of the hierarchy mostly corresponds to local features, which do
not require large receptive fields as they are conditioned on the top-level prior. Therefore, we use a
less powerful network with no attention layers. We also find that using a deep residual conditioning
stack significantly helps at this level. The pseudo-code in the following provides the details of the
residual conditioning stack we use in the bottom prior.

Pseudo Code for Conditioning Stack

1 def resnet_block(h, num_hiddens, num_output_hiddens):
2 h = BatchNorm(h)
3 h = Relu(h)
4 h = Conv2D(num_hiddens, kernel_shape=[1, 1])(h)
5 h = Relu(h)
6 h = Conv2D(num_hiddens, kernel_shape=[3, 3])(h)
7 h = Relu(h)
8 h = Conv2D(num_output_hiddens, kernel_shape=[1, 1])(h)
9 return h

11 def conditioning_stack(h, num_conditioning_blocks):
12 h = Conv2D(1024, kernel_shape=[1, 1], stride=[1, 1])(h)
13 for _ in range(num_conditioning_blocks // 2):
14 h += resnet_block(h, 256, 1024)
15 h2 = Conv2D(2048, kernel_shape=[1, 1], stride=[2, 2])(h)
16 for _ in range(num_conditioning_blocks // 2):
17 h2 += resnet_block(h2, 512, 2048)
18 h3 = Conv2D(2048, kernel_shape=[1, 1], stride=[2, 2])(h2)
19 for _ in range(num_conditioning_blocks):
20 h3 += resnet_block(h3, 512, 2048)
21 h2 += Conv2DTranspose(2048, kernel_shape=(2, 2), stride=(2, 2))(h3)
22 for _ in range(num_conditioning_blocks // 2):
23 h2 += resnet_block(h2, 512, 2048)
24 h += Conv2DTranspose(1024, kernel_shape=(2, 2), stride=(2, 2))(h2)
25 for _ in range(num_conditioning_blocks // 2):
26 h += resnet_block(h, 256, 1024)

28 return h

2



Condtional GatedLayer

1 x 1
masked

1 x 1
masked

1 x n
masked

1 x n

n x 1
masked

pad&crop
1 row

1 x 1
masked 1 x 1

Inject Condition

Inject Condition

σ

X

tanh

Multihead
SelfAttention

LayerNorm

dropout

+
+

+

+

Cond

Cond

σ

X

tanh

1 x 1
masked

dropout

+
1 x 1

masked

Horizontal Path Vertical Path

x Num layers

+
1 x 1

masked
x Num_output_layers

Concat

.

.

.

Unsupervised Features

Figure 1: Architecture of PixelCNN prior.

Top-Prior Mid-Prior Bottom-Prior
Input Size 32× 32 64× 64 128× 128
Batch size 1024 512 256
hidden units 512 512 512
residual units 2048 1024 1024
layers 20 20 10
Attention layers 4 1 0
Attention heads 8 -
Conv Filter size 5 5 5
Dropout 0.5 0.3 0.25
Output stack layers 0 0 0
Conditioning stack residual blocks - 8 8
Training steps 237000 57400 270000
Polyak EMA decay 0.9999 0.9999 0.9999

Table 2: Hyper parameters of autoregressive prior networks used for FFHQ-1024 experiments.

We optimize all models with the Adam optimizer, and use a learning rate schedule with linear
warm-up and square root decay according to the following formulae:

LRimagenet−top,bottom = 0.18× h−0.5
d min(step_num−0.35, step_num× 16000−1.5)

LRFFHQ−top,mid = 0.324× h−0.5
d min(step_num−0.35, step_num× 16000−1.5)

LRFFHQ−bottom = 0.18× h−0.5
d min(step_num−0.35, step_num× 16000−1.5)

3



Where hd is the number of hidden units specified in Table 1 for ImageNet and in Table 2 for FFHQ.

A.3 VQ-VAE Encoder and Decoder

The details of hyper-parameters used for training the hierarchical encoder and decoder networks of
Imagenet and FFHQ experiments are reported in Table 3. All models are trained with the Adam
optimzer.

ImageNet FFHQ
Input size 256× 256 1024× 1024
Latent layers 32× 32, 64× 64 32× 32, 64× 64, 128× 128
β (commitment loss coefficient) 0.25 0.25
Batch size 128 128
Hidden units 128 128
Residual units 64 64
Layers 2 2
Codebook size 512 512
Codebook dimension 64 64
Encoder conv filter size 3 3
Upsampling conv filter size 4 4
Training steps 2207444 304741
Optimizer Adam Adam
Polyak EMA decay 0.9999 0.9999
Learning Rate 0.0002 0.0002

Table 3: Hyper parameters of VQ-VAE encoder and decoder used for ImageNet-256 and FFHQ-1024
experiments.

4



B Ablation Studies

We studied the effect of model size, batch size and the gains of using self-attention in our prior
architecture. The details of these ablations are reported in Table 4. We find that performance is
affected most by the number of hidden units in the model, followed by self-attention and finally batch
size. Though batch size appears not be decisive for the final performance of smaller models, using a
relatively large batch-size, when possible, linearly speeds up training time.

Batch Size Hidden Units Residual Size Num Attention NLL @64 epocchs
NLL@1M steps

64 64 256 0 3.62
3.62
64 64 256 2 3.60

3.60
64 128 512 0 3.56

3.56
64 128 512 2 3.54

3.54
64 256 1024 0 3.51

3.51
64 256 1024 2 3.49

3.49
128 64 256 0 3.62
3.62
128 64 256 2 3.60
3.60
128 128 512 0 3.56
3.55
128 128 512 2 3.54
3.53
128 256 1024 0 3.51
3.50
128 256 1024 2 3.49
3.48
256 64 256 0 3.63
3.61
256 64 256 2 3.61
3.59
256 128 512 0 3.57
3.55
256 128 512 2 3.55
3.53
256 256 1024 0 3.51
3.49
256 256 1024 2 3.50
3.47

1024 512 2048 4 3.49
3.42

Table 4: Ablation of top prior performance with respect to batch-size, number of hidden units and
attention. The rest of hyperparameters are the same as those listed in Table 1. All models are
trained on the same top level VQ-VAE latent space of 256× 256 Imagenet that is used in the main
experiments of the paper.

B.1 Ablation of Vector Quantization

In this section we report on our experiments to study the role of the VQ-VAE algorithm in enabling
high resolution, realistic samples. As described in Section 3, our method leverages VQ-VAE as a

5



lossy compression information bottleneck to map the high-dimensional, high-entropy input image
to a smaller, compressed latent space where much of the imperceptible information in the image is
removed. Unlike the original pixel space, the density of this compressed, discrete latent space is
amenable to effective modeling with autoregressive PixelCNN architectures. To demonstrate the
necessity of the information-bottleneck stage, we replace VQ-VAE with unregularized autoencoders
of various dimensions, and use the same prior architecture to estimate the density of the resulting
latent spaces of these autoencoders. For simplicity and closer control, we run these experiments on
128×128 Imagenet, and use a single latent layer with spatial dimensionality of 32×32. The employed
PixelCNN architecture has 256 hidden units and two attention layers, and is trained with batch-size of
256. Similar to [5], we used a discretized mixture of logistics distributions with 10 components and
causal linear dependencies on the output dimensions to estimate the likelihood of continuous latent
vectors of the unregularized autoencoders. The results of these experiments are reported in Table 5.
As expected, the autoencoders are able to achieve very low distortion even with small number of
latent dimensions, but at the cost of an extremely poor density estimation performance of the latent
space. Unlike the VQ space, the latent spaces resulting from these unregularized autoencoders have
high entropy and are overly complex to be modeled effectively with the PixelCNN priors networksw.

Latent Dimension Distortion PSNR (dB) NLL (bits per Image)
Unregularized AutoEncoders

8 32.41 36933
16 37.33 62047
32 45.92 115231
64 49.80 196484

VQ-VAE 512 codes, 64 dimensions 27.19 4919
Table 5: Ablation of the necessity of lossy compression.

6



C Nearest Neighbour Training Examples

In this section we report the nearest neighbours of a number of samples obtained from our Imagenet
model in the training subset of Imagenet. Fig. 2 presents nearest neighbours computed in the feature
space obtained from a pretrained VGG-16 [6] Imagenet classifier. We use activations of the second
fully connected layer in the network. As can be seen in Fig. 2, VGG is remarkably effective in
retrieving perceptually and semantically close examples. Nevertheless, while the samples share
semantic properties with the nearby training examples, they are all distinctly novel. For the sake of
completeness, we also demonstrate the closest neighbours based on the Euclidean distance computed
in the pixel space in Fig. 3. Note that the poor performance of this method for retrieval is well
understood (see for example [7]) as is evident in comparison to the VGG neighbours in Fig. 2.

Figure 2: Nearest Neighbours in the VGG feature space ordered by ascending distance to the
VQVAE-2 sample on the first column.

7



Figure 3: Nearest Neighbours in Pixel space ordered by ascending distance to the VQ-VAE2 sample
on the first column.

D On sample interpolations

Many generative models – such as Variational Autoencoders, Generative Adversarial Networks and
Flow-based models – allow for interpolation between a set of generated samples. This is usually done
by first interpolating, linearly or otherwise, between the latent vectors and then generating the image
from the interpolated latents.

For VQ-VAE2, there exists no equivalent or similarly straightforward way to interpolate between
samples. One problem is that naively interpolating two quantized latent vectors in general may result
in a latent vector that resides outside of the codebook. The second problem is that the PixelCNN
prior plays a crucial role in generating good samples in the latent space (contrary to sampling from
the uniform prior in the VQ space) and there is no commonly known way of interpolating between
PixelCNN samples over discrete inputs.

E On log-likelihoods in the image domain

VQ-VAE2 is inspired by lossy-compression where performance is usually characterized with rate-
distortion curves. The VQ encoder and decoder minimize the mean square error (MSE) reconstruction

8



cost as the distortion metric, while a PixelCNNs (a likelihood based method) is applied in the
compressed lossy space. This lossy compression stage relieves the prior networks from modeling
the imperceptible details in images. Optimizing for rate-distortion rather than rate (log-likelihood)
brings further benefits like faster sampling and training speed as well as global coherence in samples
(due to the fact that prior network capacity is not wasted on modeling invisible artifacts). As such,
we follow the established convention in the lossy compression literature and report the distortion
in MSE and log-likelihood (rate) in Table 1 in the main text. Note that VQ-VAE retains the crucial
advantage of likelihood based methods: a clear objective to compare models, track progress and
measure overfitting and mode coverage (the properties that result in diverse samples). However, using
rate-distortion optimization also entails foregoing strong log-likelihood in the image domain. This
design choice yields models with inferior log-likelihood in the pixel domain precisely because the
model will be punished for discarding imperceptible details in the reconstruction, the very reason
that the resulting latent space is tractable for for density estimation. In practical terms, a possible
way of getting log-likelihoods would be to train another PixelCNN as part of the decoder of the
VQ-VAE. This, however, would defeat the purpose of the proposed method. There is also no reason
to believe that this combination of autoregressive decoders conditioned on vector quantized latents
would result in better log-likelihood performance than training a fully visible PixelCNN variant
directly on pixels without using latent variables. To summarize, we argue that the proper model
comparison methodology in this paradigm is to compare the rate-distortion curves of models on
regions of interest or desired fixed operating points.

F On Sampling Speed

One advantage that GANs and flow models have over autoregressive models is their considerably
faster sampling times. In these models, all the dimensions of the sample are computed in parallel
in a single forward pass, whereas for autoregressive models, sampling in principle needs as many
forward passes through the network as the number of dimensions. Concretely, we measured that
sampling a single 256× 256 image from BigGAN Deep takes about 100ms on a modern GPU. In
contrast, naively sampling our autoregressive priors position-by-position takes about 4.5 minutes
and 42 minutes for our 32 × 32-top and 64 × 64-bottom priors, respectively. However, this time
can be reduced by an order of magnitude using incremental sampling techniques [2, 4] which cache
and reuse intermediate activations of the network for each pixel. With such an implementation, total
sampling time for a single image (in a batch of size 1) is reduced to about 4 minutes. This gets
amortized down to about 3 minutes per image when using larger batches. Further speed improvement
is possible by engineering custom kernels that better exploit the accelerator architectures as described
for example in [3].

9



G Additional Samples

We here present additional samples from our model trained on ImageNet. All these samples are taken
without any cherry-picking.

Figure 4: Random samples from class 22 Bald Eagle in ImageNet.

10



Figure 5: Random samples from class 11 Gold Finch in ImageNet.

11



Figure 6: Random samples from class 24 Grey Owl in ImageNet

12



VQ-VAE (Proposed) BigGAN deep

Figure 7: Sample diversity comparison for the proposed method and BigGan Deep for Tinca-Tinca
(1st ImageNet class) and Ostrich (10th ImageNet class). BigGAN samples were taken with the
truncation level 1.0, to yield its maximum diversity. There are several kinds of samples such as top
view of the fish or different kinds of poses such as a close up ostrich absent from BigGAN’s samples.
Please zoom into the pdf version for more details and refer to the Supplementary material for diversity
comparison on more classes.

13



htop htop, hbottom Original

Figure 8: Reconstructions from a hierarchical VQ-VAE with two latent maps (top and bottom)
trained on ImageNet. The rightmost image is the original. Each latent map adds extra detail to the
reconstruction. These latent maps are approximately 192x and 48x smaller than the original image
(respectively).

Figure 9: BigGan deep samples with truncation level 0.02 which trades diversity for sample quality.

14



Top 1% Top 10%

Top 30% Top 50%

Top 75% Top 100%

Figure 10: Temperature 0.9 samples selected by our classifier rejection sampling technique from the
mortar class (ImageNet class 666). Each grid is uniformly sampled from the shown percentage of top
scoring samples out of 10000 total.

15



Figure 11: Representative samples from FFHQ-1024. Our model is able to capture the diversity
present in the dataset while producing realistic high resolution samples. This can be noticed in the
variety of age, gender, skin and hair colour, pose, facial expressions as well as the presence or absence
of accessories and facial hair. Our model is able to capture the relatively rare cases of multiple
persons in photos.

16



Figure 12: More representative samples from FFHQ-1024. Notice that, thanks to autoregressive
modelling in the spatially compressed latent space, our model is quite effective in capturing longer-
range dependencies in these high-resolution images and produce symmetric features such as matching
eye colours or symmetric shapes of glasses and bone structure in faces.

17



Figure 13: Full resolution sample from FFHQ-1024

18



Figure 14: Full resolution sample from FFHQ-1024

19



Figure 15: Full resolution sample from FFHQ-1024

20



Figure 16: Full resolution sample from FFHQ-1024

21



Figure 17: Full resolution sample from FFHQ-1024

22



Figure 18: Full resolution sample from FFHQ-1024

23



References
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin,

Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry
Moore, Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan
Yu, and Xiaoqiang Zheng. Tensorflow: A system for large-scale machine learning. In Proceedings of the
12th USENIX Conference on Operating Systems Design and Implementation, OSDI’16, pages 265–283,
Berkeley, CA, USA, 2016. USENIX Association.

[2] Tom Le Paine, Pooya Khorrami, Shiyu Chang, Yang Zhang, Prajit Ramachandran, Mark A. Hasegawa-
Johnson, and Thomas S. Huang. Fast wavenet generation algorithm. CoRR, abs/1611.09482, 2016.

[3] Brian Pharris. Nv-wavenet: Better speech synthesis using gpu-enabled wavenet inference. 2018.

[4] Prajit Ramachandran, Tom Le Paine, Pooya Khorrami, Mohammad Babaeizadeh, Shiyu Chang, Yang Zhang,
Mark A. Hasegawa-Johnson, Roy H. Campbell, and Thomas S. Huang. Fast generation for convolutional
autoregressive models. CoRR, abs/1704.06001, 2017.

[5] Tim Salimans, Andrej Karpathy, Xi Chen, and Diederik P Kingma. PixelCNN++: Improving the PixelCNN
with Discretized Logistic Mixture Likelihood and Other Modifications. pages 1–9, 2017.

[6] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recogni-
tion. In International Conference on Learning Representations, 2015.

[7] L. Theis, A. van den Oord, and M. Bethge. A note on the evaluation of generative models. In International
Conference on Learning Representations, Apr 2016.

24


	Architecture Details and Hyperparameters
	Overall Training and Sampling Procedures
	PixelCNN Prior Networks
	VQ-VAE Encoder and Decoder

	Ablation Studies
	Ablation of Vector Quantization

	Nearest Neighbour Training Examples
	On sample interpolations
	On log-likelihoods in the image domain
	On Sampling Speed
	Additional Samples

