
Tensor Programs I:
Wide Feedforward or Recurrent Neural Networks of

Any Architecture are Gaussian Processes

Greg Yang∗
Microsoft Research AI

gregyang@microsoft.com

Abstract

Wide neural networks with random weights and biases are Gaussian processes, as
originally observed by Neal (1995) and more recently by Lee et al. (2018) and
Matthews et al. (2018) for deep fully-connected networks, as well as by Novak
et al. (2019) and Garriga-Alonso et al. (2019) for deep convolutional networks.
We show that this Neural Network-Gaussian Process correspondence surprisingly
extends to all modern feedforward or recurrent neural networks composed of multi-
layer perceptron, RNNs (e.g. LSTMs, GRUs), (nD or graph) convolution, pooling,
skip connection, attention, batch normalization, and/or layer normalization. More
generally, we introduce a language for expressing neural network computations,
and our result encompasses all such expressible neural networks. This work serves
as a tutorial on the tensor programs technique formulated in Yang (2019) and
elucidates the Gaussian Process results obtained there. We provide open-source im-
plementations of the Gaussian Process kernels of simple RNN, GRU, transformer,
and batchnorm+ReLU network at github.com/thegregyang/GP4A.

1 Introduction

Motivated to understand the Bayesian prior in neural networks (NNs), Neal [41] theoretically showed
that infinitely wide, shallow neural networks with random weights and biases are Gaussian processes
(GPs). He empirically explored this phenomenon over deep networks as well, but this was not proven
rigorously until recently [37, 40, 43, 18], with concrete progress made over the intervening years
[56, 34, 22, 13]. This neural network-Gaussian process correspondence (NN-GP correspondence) has
not only allowed one to transform the implicit prior of NNs into explicit priors that can be understood
analytically [46, 49, 63, 59, 65], but has also created new state-of-the-art kernels by converting from
deep neural networks [37, 43]. Yet, so far the focus has dwelled entirely on multilayer perceptrons
(MLPs) or simple convolutional neural networks (CNNs). As new architectures are created with
blistering speed, a question starts to emerge and reverberate:

Do all infinitely wide, randomly initialized neural networks correspond to Gaussian processes?

Even if the answer is yes, at the current rate where each new architecture warrants its own NN-GP
correspondence paper, theory will never catch up to practice. On a more basic level, what does this
question even mean for recurrent neural networks?

Our Contributions In this paper, we formulate the notion of a Gaussian process with variable-
dimensional output (see Definition 2.1), and show that feedforward and recurrent neural networks
of standard architectures converge to Gaussian processes in this sense as their widths or number
∗Please see https://arxiv.org/abs/1910.12478 for the full version of this paper.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

github.com/thegregyang/GP4A
https://arxiv.org/abs/1910.12478

of channels go to infinity, when their weights and biases are randomized. By standard architecture
we mean any architecture that is some composition of multilayer perceptrons (MLPs), recurrent
neural networks (RNNs) (e.g., Long-Short Term Memory (LSTM) [26] or Gated Recurrent Unit
(GRU) [10]), skip connections [24, 27], convolutions [16, 17, 47, 35, 36] or graph convolutions
[8, 25, 15, 38, 14, 31], pooling [35, 36], batch normalization (batchnorm) [28], layer normalization
[1] and/or attention [2, 55]. Even more broadly, we design a new language, NETSOR , for expressing
neural network computations, and show the GP convergence for all such expressible networks. By
demonstrating that NETSOR can implement any network of standard architectures, we obtain the
aforementioned results as a corollary. The results for RNNs, batchnorm, layernorm, attention, and
their combination with other layers are new. We open-source reference implementations2 for the GP
kernels of simple RNN, GRU, transformer, and feedforward batchnorm network; see Fig. 3 for an
illustration.

Relation of This Paper with [60] This paper serves several purposes. 1) Introduce the reader
to the tensor programs technique formulated in [60], using the Neural Network-Gaussian Process
Correspondence as motivation. 2) Promote a redesigned set of notations for tensor programs that
hopefully makes the understanding and the application of this technique easier. 3) Prove a more
general version of the Gaussian Process results first presented in [60]. 4) Provide example calculations
and reference implementations2 of the GP kernels for several architectures like the vanilla RNN,
GRU, batchnorm network, and transformers.

We assume the reader has not read [60] and seek to explain all results in elementary terms. However,
we will provide commentary in footnotes throughout the paper on differences from [60].

Regarding 1), this paper will be the first in a series to explain the tensor programs technique, each
covering a more powerful type of tensor programs, and each motivated by specific theorems that can
be proved or calculations made possible by these new tensor programs. In particular, here we will
only talk about tensor programs without matrix transposes. Regarding 3), the results presented here
will supersede all results in [60] concerning Gaussian Processes, with one caveat that here we will
not cover architectures using both a weight W and its transpose W> in its forward pass (but this
result will come for free in a later paper in this series).

2 Gaussian Process with Variable-Dimensional Output

We first clarify the notion of a Gaussian process with variable dimension output.
Definition 2.1 (Gaussian Process). We say a random function f : X → Rm (with fixed dimen-
sional output) is a Gaussian process if for any finite subset {x1, . . . , xk} ⊆ X , the random vector
(f(x1), . . . , f(xk)) ∈ Rm×k is distributed as a km-dimensional Gaussian. If f has variable dimen-
sional output (e.g. f is an RNN), such as when f(x) ∈ Rl(x) for some length function l : X → N 3,
then we say f is a Gaussian process if for any finite subset {x1, . . . , xk} ⊆ X , the random vector
(f(x1), . . . , f(xk)) is distributed as a (

∑
i l(x

i))-dimensional Gaussian.

To illustrate a GP with variable-dimensional output, consider a simple RNN that runs on two input
sequences given by the GloVe embeddings [44] 4 of the words of the two sentences

sentence 1 (7 words): “The brown fox jumps over the dog.”
sentence 2 (9 words): “The quick brown fox jumps over the lazy dog.”

(?)

A pseudocode is given in Program 2 in Section 4 (ignore the type annotations like G(n),H(n),A(n)
for now). The RNN emits a single scalar after reading each token (in Program 2, this is v>sia/

√
n,

where sia is the RNN state after reading the ith token of the ath sentence, and v is the readout layer);
this number takes into account all of the word embeddings read so far. Thus, it will output a total of 7
scalars after reading sentence 1, and a total of 9 scalars after reading sentence 2. To say that this RNN
is a GP would imply that all 7 + 9 = 16 scalars are jointly Gaussian-distributed (corresponding to a
16× 16 kernel), over the randomness of the weights and biases imbued during initialization. This

2github.com/thegregyang/GP4A
3i.e. f :

∏
x∈X Rl(x) is a dependent function

4The embedding associates each word to a real vector of 100 dimensions such that semantically similar
words are mapped to closer vectors

2

github.com/thegregyang/GP4A

is indeed the empirical phenomenon with a width-1000 RNN, and Fig. 2(E) visualizes the the joint
distribution of the last scalars output by the RNN at the end of each sentence. It clearly exhibits a
Gaussian nature, and perfectly fits the theoretically predicted Gaussian distribution (dashed ovals),
which we shall describe in Corollary 5.5.

3 Recap: GP Behavior of a Multilayer Perceptron (MLP)

Before explaining our main results, we first review the argument from prior works [37, 40, 43]
for the GP convergence of a wide MLP with randomly initialized weights and biases, and we also
demonstrate why such an argument is inadequate for RNNs. Consider an MLP with widths {nl}l,
weight matrices {W l ∈ Rnl×nl−1}l, and biases {bl ∈ Rnl}l, where l ranges among the layer
numbers of the MLP. Its computation is given recursively as

h1(x) = W 1x+ b1 and hl(x) = W lφ(hl−1(x)) + bl for l ≥ 2. (1)

At initialization time, suppose W l
αβ ∼ N (0, σ2

w/n
l−1) for each α ∈ [nl], β ∈ [nl−1], and

blα ∼ N (0, σ2
b). Consider two inputs x, x′. Conditioned on hl−1(x) and hl−1(x′), iid for each

α, (hl(x)α, h
l(x′)α) is distributed as

N
(

0,
σ2
w

nl−1

(
‖φ(hl−1(x))‖2 φ(hl−1(x)) · φ(hl−1(x′))

φ(hl−1(x)) · φ(hl−1(x′)) ‖φ(hl−1(x′))‖2
)

+ σ2
b .

)
If (hl−1(x)α, h

l−1(x′)α) is distributed as N (0,Σl−1), iid for each α, then by a law of large number
argument, the covariance matrix above converges to a deterministic limit

Σl
def
= σ2

w E
(z,z′)∼N (0,Σl−1)

(
φ(z)2 φ(z)φ(z′)

φ(z)φ(z′) φ(z′)2

)
+ σ2

b

as the width nl−1 → ∞, making (hl(x)α, h
l(x′)α) Gaussian distributed as N (0,Σl). Iteratively

applying this argument for each l yields the result for a deep MLP. A similar logic works for
feedforward CNNs.

Unfortunately, this argument breaks down if the weights {W l}l are tied, i.e. all W l are equal to a
common matrix W , as in the case of an RNN. In this case, when we condition on the preactivations
hl−1(x), hl−1(x′) of the previous layer, W is no longer conditionally an iid random Gaussian matrix,
and all subsequent reasoning breaks down. We can repair this situation for RNNs in an ad hoc way
via the Gaussian conditioning technique (Lemma G.7), but we prefer to set our sights wider, and deal
with all standard architectures, and more, in one fell swoop. To this end, we develop a framework
based on our new NETSOR language.

4 NETSOR : Language for Expressing Neural Network Computation

To show that networks of all standard architectures converge to GPs, we first show that they can be
expressed by the following very general NETSOR language (see Programs 1 and 2 for examples)5,
and then show that any computation expressed this way exhibits GP behavior when its dimensions
are large.
Definition 4.1. 6 NETSOR programs are straight-line programs, where each variable follows one
of three types, G,H, or A (such variables are called G-vars, H-vars, and A-vars), and after input
variables, new variables can be introduced by one of the rules MatMul, LinComb, Nonlin to be
discussed shortly. G and H are vector types and A is a matrix type; intuitively, G-vars should be
thought of as vectors that are asymptotically Gaussian, H-vars are images of G-vars by coordinatewise
nonlinearities, and A-vars are random matrices with iid Gaussian entries. Each type is annotated by
dimensionality information:

• If x is a (vector) variable of type G (or H) and has dimension n, we write x : G(n) (or
x : H(n)).

5NETSOR is a specific kind of tensor program; for other variants, see Appendix E.
6We keep the definition here informal in terms of programming language convention to be accessible to the

general machine learning audience. For those with PL background, see Appendix J.

3

NETSOR program 1 MLP Computation on Network Input x

Input: W 1x : G(n1) . layer 1 embedding of input
Input: b1 : G(n1) . layer 1 bias
Input: W 2 : A(n2, n1) . layer 2 weights
Input: b2 : G(n2) . layer 2 bias
Input: v : G(n2) . readout layer weights

1: h1 := W 1x+ b1 : G(n1) . layer 1 preactivation; LinComb
2: x1 := φ(h1) : H(n1) . layer 1 activation; Nonlin
3: h̃2 := W 2x1 : G(n2) . MatMul

4: h2 := h̃2 + b2 : G(n2) . layer 2 preactivation; LinComb
5: x2 := φ(h2) : H(n2) . layer 2 activation; Nonlin

Output: v>x2/
√
n2

• If A is a (matrix) variable of type A and has size n1 × n2, we write A : A(n1, n2).

G is a subtype of H, so that x : G(n) implies x : H(n). A NETSOR program consists of the following
three parts.

Input A set of input G- or A-vars.

Body New variables can be introduced and assigned via the following rules (with intuition in italics)

MatMul if A : A(n1, n2) and x : H(n2), we can form a G-var via matrix-vector product:

Ax : G(n1), “random iid matrix times a vector is roughly a Gaussian vector.”7

LinComb Suppose x1, . . . , xk : G(n) are G-vars with the same dimension and a1, . . . ak ∈
R are constants. Then we can form their linear combination as a G-var:

n∑
i=1

aix
i : G(n), “linear combination of Gaussian vectors is Gaussian.”

Nonlin If x1, . . . , xk : G(n) are G-vars with the same dimension n and φ : Rk → R, then

φ(x1, . . . , xk) : H(n), “image of Gaussian vector is not always Gaussian”

where φ acts coordinatewise.

Output For the purpose of this paper8, the output of a NETSOR program can be any tuple of scalars,
(v1>y1/

√
n1, . . . , v

k>yk/
√
nk), where v1 : G(n1); . . . ; vk : G(nk) are some input G-vars

not used elsewhere (and possibly with duplicates vi = vj), and y1 : H(n1); . . . ; yk : H(nk)
are some H-vars (possibly with duplicates yi = yj).

Examples Program 1 gives an example of a NETSOR program representing an MLP computation.
Note that we account for the input x through its embedding W 1x, not x itself. This is because 1) our
theorems concern the case where all input G-vars are random; in the context of expressing neural
network computation, x is a deterministic input, while W 1x is a Gaussian vector when W 1 has iid
Gaussian entries; 2) x has a fixed dimension, while we intend all dimensions (like n1, n2) in the
NETSOR program to tend to infinity, as we’ll describe shortly. Similarly, Program 2 expresses in
NETSOR the computation of a simple RNN on two separate input sequences; computation on more
input sequences follows the same pattern. Note how weight-sharing is easily expressed in NETSOR
because we can re-use A-vars arbitrarily. Appendix A shows more examples of standard architectures
in NETSOR and NETSOR+ .

More generally, we can allow the nonlinearities in Nonlin to depend on parameters; this will be
necessary to express layernorm and attention (see Appendix A). We capture this idea in a new rule:

7Beware: in a later paper (and in [60], tensor program general case), we will introduce matrix transpose as
a valid operation, and in that case, Ax can be very far from a Gaussian, and this intuition is no longer correct.
Thus, this intuition is more subtle than it might seem at face value.

8In general, the output of a tensor program need not be defined, as most of the time we are concerned with
how the H-vars produced over the course of the program interact with each other.

4

NETSOR program 2 Simple RNN Computation on Two Input Sequences

// Embeddings of two inputs sequences
Input: Ux11, . . . , Uxt1 : G(n)
Input: Ux12, . . . , Uxr2 : G(n)

// Weight and bias
Input: W : A(n, n)
Input: b : G(n)

// Readout weights
Input: v : G(n)

// Computation on sequence 1
h11 := Ux11 + b : G(n)
s11 := φ(h11) : H(n)

h̃21 := Ws11 : G(n)

h21 := h̃21 + Ux21 + b : G(n)
s21 := φ(h21) : H(n)
...

h̃t1 := Wst−1,1 : G(n)

ht1 := h̃t1 + Uxt1 + b : G(n)
st1 := φ(ht1) : H(n)
// Computation on sequence 2
h12 := Ux12 + b : G(n)
s12 := φ(h12) : H(n)

h̃22 := Ws12 : G(n)

h22 := h̃22 + Ux22 + b : G(n)
s22 := φ(h22) : H(n)
...
h̃r2 := Wsr−1,2 : G(n)

hr2 := h̃r2 + Uxr2 + b : G(n)
sr2 := φ(hr2) : H(n)

Output: (v>s11/
√
n, . . . , v>st1/

√
n,

v>s12/
√
n, . . . , v>sr2/

√
n)

Nonlin+ Suppose x1, . . . , xk : G(n) are G-vars with the same dimension n and θ1, . . . , θt ∈ R
possibly depend on G-vars already defined. If φ(−;−) : Rk × Rt → R, then

φ(x1, . . . , xk; θ1, . . . , θt) : H(n),

where φ acts coordinatewise.

Definition 4.2. NETSOR+ programs are NETSOR programs allowing Nonlin+ rules.

NETSOR and NETSOR+ specify different kinds of tensor programs; in Appendix E we discuss other
kinds that are semantically equivalent. In a future paper, we shall study the effect of allowing matrix
transposes as an operation on A-vars.
Remark 4.3. In this paper, in Nonlin+, we will only instantiate θj with continuous functions of
“empirical moments” of the form n−1

∑n
i=1 ψ(y1, . . . , yr) for some set of G-vars {yi}i. A key

consequence of our scaling limit result is that these “empirical moments” converge almost surely
to a deterministic limit under very general conditions (Theorems 5.4 and C.4), so that φ(−; Θ) is,
under suitable smoothness conditions (Definition C.1), approximately a fixed nonlinearity when n is
large. Thus, we should intuitively treat Nonlin+ as Nonlin but with the nonlinearity determined
automatically by the NETSOR program itself.

Nonlin+ expands the expressible computation quite broadly, but to keep the main text lean and
focused on the key ideas behind tensor programs, we relegate a more thorough discussion of Nonlin+

in the appendix (see Appendices C, D and I).

5 Computing the GP Kernel from a NETSOR Encoding of a Neural Network

For readers who wish to be convinced that NETSOR (or NETSOR+) can express standard architectures,
see Appendix A. In this section, we show that any architecture expressible in NETSOR and satisfies
some mild conditions will exhibit Gaussian Process behavior in the large width limit.

In this section, we make the following simplifying assumption on the dimensions of the program and
the randomness of the variables.

Assumption 5.1. Fix a NETSOR program. For simplicity, assume all dimensions in the program are
equal to n. Suppose for each A-var W : A(n, n), we sample Wαβ ∼ N (0, σ2

W /n) for some σ2
W > 0,

and for each α ∈ [n], we sample, i.i.d., {xα : x is input G-var} ∼ N (µin,Σin) for some mean µin

and (possibly singular) covariance Σin over input G-vars.

5

The constraint on the dimensions can be removed easily; see Appendix F. This sampling induces
randomness in all variables created in the program, and we shall characterize this randomness shortly.
We first review some notation that will be used immediately.

Notation In this paper, a kernel Σ on a set X is a symmetric function Σ : X ×X → R such that
m∑
i=1

m∑
j=1

cicjΣ(xi, xj) ≥ 0

holds for any m ∈ N, x1, . . . , xm ∈ X , and c1, . . . , cm ∈ X . Given a kernel Σ on a set of G-vars,
we will both treat it as matrix and as a function, depending on the context. Function Notation As
a function, Σ(g, g′) is the value of Σ on the pair of G-vars (g, g′). If G = {g1, . . . , gk} is a set of
G-vars, then we also denote by Σ(g,G) the row vector {Σ(g, g1), . . . ,Σ(g, gk)}. Likewise Σ(G, g)
is the column vector with the same values. If G′ = {g1′, . . . , gl′} is another set of G-vars (possible
with overlap with G), then Σ(G,G′) is the matrix {Σ(gi, gj ′) : i ∈ [k], j ∈ [l]}. Restriction
Notation We also use the “restriction” notation Σ|G to denote the square matrix Σ(G,G) in a more
concise way. Matrix Notation When an association of indices to G-vars is clear from context, we
will also write Σij for the corresponding value of Σ on the pair of ith and jth G-vars. Juxtaposition
implies matrix multiplication, e.g. ΣΩ means matrix product if Ω is a matrix of appropriate size.
Indices Notation We will both use superscripts and subscripts for indices. We will never multiply in
subscript or superscript, so juxtaposition of indices like W ib

αβ is the same as W i,b
α,β . H-vars as Both

Symbols and Vectors An H-var will be considered both as a symbol (like in Σ(g, g′) above) as well
as the corresponding length n vector (like in Theorem 5.4 below), depending on the context.
Definition 5.2. In the setting of Assumption 5.1, we extend µin and Σin to µ and Σ that resp. take
a single and a pair of G-vars and both output to R. Intuitively, µ specifies the mean coordinate of
a G-var, and Σ specifies the coordinatewise covariance of a pair of G-vars; this is formalized in
Theorem 5.4 below. Index all the G-vars in the program as g1, . . . , gM (including input G-vars), in
the order of appearance in the program. For any pair of G-vars g, g′ (among g1, . . . , gM), we define
recursively

µ(g) =


µin(g) if g is input∑
i aiµ(yi) if g =

∑
i aiy

i, introduced by LinComb

0 otherwise
,

Σ(g, g′) =



Σin(g, g′) if g, g′ are inputs∑
i aiΣ(yi, g′) if g =

∑
i aiy

i, introduced by LinComb∑
i aiΣ(g, yi) if g′ =

∑
i aiy

i, introduced by LinComb

σ2
W EZ φ(Z)φ̄(Z) if g = Wh, g′ = Wh′, introduced by MatMul w/ same A-var W

0 otherwise
(2)

where

• yi are G-vars for all i

• (h : H(n)) was introduced by the Nonlin with h := φ(g1, . . . , gM), h′ was introduced by
Nonlin with h′ := φ̄(g1, . . . , gM) (where WLOG we have padded the input slots of φ and
φ̄ to account for all G-vars)

• Z ∼ N (µ,Σ) is a random Gaussian vector with 1 entry for each G-var in the program.

Note that since φ and φ̄ only depends on entries ofZ corresponding to previous G-vars, the expectation
EZ φ(Z)φ̄(Z) only depends on entries of µ and Σ already defined, so there is no circular logic in
this recursive definition of µ and Σ. See Appendix B.1.1 for a simple, worked-out example of how to
recursively compute µ and Σ for Program 1.

For our main theorems, we isolate a very general class of nonlinearities that we are concerned with.
Definition 5.3. We say a function φ : Rk → R is controlled if |φ(x)| is bounded by a function of the
form eC‖x‖

2−ε+c with C, c, ε > 0

6

𝑔1 𝑔2 𝑔3 𝑔𝑀

𝑛
→
∞

𝜓

𝜓

𝜓

𝜓

𝜓

𝜓

(

Average

1

𝑛
෍

1

𝑛 (

(

(

(

(

)

)

)

)

)

)

𝔼
𝑍 ~ 𝑁 𝜇,Σ

𝜓 ()𝑍𝑔
1

𝑍𝑔
2

𝑍𝑔
3

𝑍𝑔
𝑀

𝑎. 𝑠.

Figure 1: An illustration of the NETSOR Master Theorem Theorem 5.4.

Controlled functions can explode faster than exponential but are still L1 and L2-integrable against
Gaussian measures. Additionally, there is no constraint on the smoothness of φ here. Thus this
definition captures almost all functions we would care about in practice.

The metric structure of the final layer representations of inputs under a deep neural network often
reveals semantical information about the inputs. This structure is reflected in the inner products
between pairs of such representations, e.g. st1>sr2/n for st1 and sr2 in Program 2. The following
Master Theorem allows one to compute such inner products, and much more, for a wide network at
initialization time (take ψ below to be ψ(z1, . . . , zM)

def
= zM−1zM).

Theorem 5.4 (NETSOR Master Theorem). 9 Fix any NETSOR program satisfying Assumption 5.1
and with all nonlinearities controlled. If g1, . . . , gM are all of the G-vars in the entire program,
including all input G-vars, then for any controlled ψ : RM → R, as n→∞,

1

n

n∑
α=1

ψ(g1
α, . . . , g

M
α)

a.s.−−→ E
Z∼N (µ,Σ)

ψ(Z) = E
Z∼N (µ,Σ)

ψ(Zg
1

, . . . , Zg
M

),

where a.s.−−→ means almost sure convergence, Z = (Zg
1

, . . . , Zg
M

) ∈ RM , and µ = {µ(gi)}Mi=1 ∈
RM and Σ = {Σ(gi, gj)}Mi,j=1 ∈ RM×M are given in Eq. (2). See Fig. 1 for an illustration.

Intuitively, Theorem 5.4 says, for each α, (g1
α, . . . , g

M
α) ≈ N (µ,Σ) in the large n limit, and each

α-slice appears to be “iid” from the point of view of the empirical average by any controlled function
ψ. The proof of Theorem 5.4 is given in Appendix H.

Combining Theorem 5.4 with Proposition G.4, we can straightforwardly calculate the output distri-
bution of a NETSOR program.
Corollary 5.5 (Computing the GP Kernel). Adopt the same assumptions and notations as in
Theorem 5.4. If the program outputs (v>x1/

√
n, . . . , v>xk/

√
n), where

• v : G(n), vα ∼ N (0, σ2
v), is an input G-var not used elsewhere in the program and is

sampled independently from all other G-vars, and

• xi was introduced as xi := φi(g1, . . . , gM)

then the output vector converges in distribution to N (0,K) where

Kij = σ2
v E
Z∼N (µ,Σ)

φi(Z)φj(Z), with µ,Σ defined in Eq. (2). (3)

Intuitively, this corollary follows from the fact that, for any finite n, the output vector is some
Gaussian N (0, K̃) conditioned on x1, . . . , xk, and the covariance K̃ converges to a deterministic
covariance K, causing the output vector to converge in distribution to N (0,K) as well. The case

9Difference with [60, Thm 4.3]: We have gotten rid of the “rank convergence” assumption by showing that it
comes for free. See CoreSet and Lemma H.4 in Appendix H.

7

Th
e

br
ow

n
fo

x
ju

m
ps

ov
er th
e

do
g

Th
e

qu
ick

br
ow

n
fo

x
ju

m
ps

ov
er th
e

la
zy do
g

sent1 sent2

The
brown

fox
jumps

over
the
dog
The

quick
brown

fox
jumps

over
the

lazy
dog

se
nt

2

 se
nt

1

(A)

GloVe correlations

0.0

0.2

0.4

0.6

0.8

1.0

Th
e

br
ow

n
fo

x
ju

m
ps

ov
er th
e

do
g

Th
e

qu
ick

br
ow

n
fo

x
ju

m
ps

ov
er th
e

la
zy do
g

sent1 sent2(B)

randRNN correlations (theory)

0.0

0.2

0.4

0.6

0.8

1.0

Th
e

br
ow

n
fo

x
ju

m
ps

ov
er th
e

do
g

Th
e

qu
ick

br
ow

n
fo

x
ju

m
ps

ov
er th
e

la
zy do
g

sent1 sent2(C)

randRNN covariances (theory)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Th
e

br
ow

n
fo

x
ju

m
ps

ov
er th
e

do
g

Th
e

qu
ick

br
ow

n
fo

x
ju

m
ps

ov
er th
e

la
zy do
g

sent1 sent2(D)

randRNN covariance std (empirical)

0.006

0.008

0.010

0.012

0.014

0.016

0.018

0.020

2 1 0 1 2
randRNN("...lazy dog")

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

ra
nd

RN
N(

"..
.th

e
do

g"
)

(E)

randRNN: Theory vs Empirics
theory

Figure 2: Infinite-width theory is highly predictive for simple RNN (Program 2) with 1000 neurons and
erf activation. We pass two sentences (“The brown fox jumps over the dog” and “The quick brown
fox jumps over the lazy dog”) by their word GloVe embeddings into randomly initialized simple
RNNs. (A) Cosine distances between each pair of word GloVe embeddings. (B) Correlation matrix of
the limiting Gaussian that Program 2 output vector converges to. Each row/column corresponds to an
embedding of of the sentence up to that word. (C) Covariance matrix of the same. See Appendix B.2
for algorithm to compute this covariance. (D) Entrywise standard deviation of empirical covariance
around (C), as measured from 100 random simple RNNs. Note the deviations are at least an order of
magnitude smaller than the limiting values (C), for 1000 neurons. (E) Visualizing the joint distribution
of the final outputs of the RNN at the end of each sentence, i.e. (v>st1/

√
n, v>sr2/

√
n) in Program 2.

We sampled 100,000 simple RNNs and plotted the 2d histogram as a heatmap. Simultaneously, we
plot the limiting Gaussian level curves predicted by our theory, which fit the simulations perfectly.

when we have multiple distinct vi (allowed by Definition 4.1) can be obtained easily as well (see
Proposition G.4).

Following Corollary 5.5 and its extensions below, the convergence of standard architectures to
Gaussian Processes becomes obvious: Express the marginal of the distribution on every finite set
of inputs as a NETSOR (or NETSOR+) program, and then apply Corollary 5.5. We summarize the
result below.

Corollary 5.6. If its nonlinearities are controlled (Definition 5.3), then a (possibly recurrent) neural
network of standard architecture converges to a Gaussian process in finite-dimensional distribu-
tion 10 in the sense of Definition 2.1 as its widths go to infinity and each of its weights W and
biases b are randomized as Wαβ ∼ N (0, σ2

W /n), bα ∼ N (µb, σ
2
b) for a collection of sampling

hyperparameters {σW }W , {µb, σb}b. If its nonlinearities are more generally parametrized and are
parameter-controlled (Definition C.1), such as in the case of attention models or where layernorm is
involved, then the same result holds as long as Assumption C.3 also holds.

An Empirical Demonstration Despite being about infinite width, our theory is highly predictive
for finite-width networks, as shown in Fig. 2. As in Section 2, we randomly initialize a simple
RNN (Program 2) with 1000 neurons and erf activation (we choose erf instead of tanh because it
simplifies kernel calculations; see Appendix B.2 for the derivation of the algorithm to compute the
kernel). We pass the two sentences in (?) to the random RNN by their GloVe embeddings. After
processing each token, the RNN outputs a scalar, as before, and over the two input sequences, the
RNN outputs 7 + 9 = 16 scalars in total. Our result Corollary 5.5 implies that, as the width of the
RNN grows to infinity, these 16 scalars are distributed jointly as a Gaussian. Fig. 2(E) illustrates
this is indeed the case for the marginal on 2 scalars, as discussed in Section 2. We also compare
our theoretically derived, infinite-width covariance of the 16 scalars (Fig. 2(C)) with the empirical
finite-width covariance obtained from multiple random initializations. We find that the empirical
covariance, as predicted, concentrates around the theoretical, and the entrywise standard deviation is
typically at least an order of magnitude lower than the values themselves (Fig. 2(D)) (with width 1000
RNNs). The random RNN is clearly doing nontrivial context embedding, as seen by comparing the
correlation matrix of the 16 scalars Fig. 2(B) (context-sensitive) with the matrix of cosine distances
(i.e. correlations) between the GloVe embeddings Fig. 2(A) (context-insensitive). A tell-tale sign is
the entry corresponding to (“lazy”, “dog”): even though as words, they are not semantically similar

10Stronger convergence results, such as convergence in distribution with respect to some topology on functions
on Rd, would be available if one can show additionally the tightness of the random neural networks under this
topology. However, here we are content with convergence of finite-dimensional marginals of the stochastic
processes.

8

Th
e

br
ow

n
fo

x
ju

m
ps

ov
er th
e

do
g

Th
e

qu
ic

k
br

ow
n

fo
x

ju
m

ps
ov

er th
e

la
zy do
g

sent1 sent2

The
brown

fox
jumps

over
the

dog
The

quick
brown

fox
jumps

over
the

lazy
dog

se
nt

2

 s
en

t1

(A)

RNN correlations (theory)

0.0

0.2

0.4

0.6

0.8

1.0

Th
e

br
ow

n
fo

x
ju

m
ps

ov
er th
e

do
g

Th
e

qu
ic

k
br

ow
n

fo
x

ju
m

ps
ov

er th
e

la
zy do
g

sent1 sent2(B)

GRU correlations (theory)

0.80

0.85

0.90

0.95

1.00

Th
e

br
ow

n
fo

x
ju

m
ps

ov
er th
e

do
g

Th
e

qu
ic

k
br

ow
n

fo
x

ju
m

ps
ov

er th
e

la
zy do
g

sent1 sent2(C)

transformer correlation (theory)

0.5

0.6

0.7

0.8

0.9

1.0

0 20 40 60
CIFAR10 sample id

(D)

BN+relu fc net correlations (theory)

0.2

0.4

0.6

0.8

1.0

4 6 8 10 12
log2width

12

10

8

6

4

2

2l
og

2(
|K

si
m

K t
h| F

/|K
th

| F)

(E)

relative deviation from theory

model
BN
GRU
transformer
simpleRNN

log2width

Figure 3: Infinite-width GP kernels (more precisely, their correlation matrices) for which we provide
reference implementations, and the deviation of finite-width simulations from the corresponding
infinite-width limits. (A) – (C) The correlation matrices of the GP kernels for the simple RNN
(same as in Fig. 2; see Program 2 for the architecture and Appendix B.2 for derivation), GRU
(Program 5; Appendix B.5), and transformer (Program 10; Appendix D.3), with input sequences
given by the GloVe embeddings of (?). (D) The correlation matrix of the GP kernel for a feedforward,
fully-connected network with batchnorm+ReLU (batchnorm followed by ReLU) as nonlinearity (see
Appendix B.3 for derivation). The inputs are the first 64 CIFAR10 images, split into two batches of
32 each. The red lines indicate the batch split. (E) For each architecture above, we independently
randomly initialize 100 networks for each width among [25, 26, . . . , 213]. We calculate the empirical
kernel of the network outputs and plot its (relative) Frobenius distance to the infinite-width kernel.
This Frobenius distance drops like 1/

√
width as one would expect from a central limit intuition. See

our code2 for Python implementations of these kernels and the code for generating this figure.

(so that the entry in Fig. 2(A) is small), the random RNN understands that the two sentences resp.
up to “lazy” and “dog” have been very similar (so that the entry in Fig. 2(B) is large). Given the
precision of our theoretical predictions, we expect analyses of the equations derived here will lead to
many nontrivial insights about recurrent (and other) neural network behavior in practice, which we
leave for future work.

Examples and Extensions: A Brief Guide to the Appendix Appendix B contains a plethora of
worked-out examples of the kernel computation for different architectures, starting from the known
case of MLP to the new results of RNN (as shown in Fig. 2), GRU, batchnorm, and others. At this
point, we recommend the reader to follow along some of those examples to solidify the understanding
of Theorem 5.4.

A Master Theorem for NETSOR+ can be similarly proved. This is stated in Appendix C and can be
proved easily given the proof of Theorem 5.4; see Appendix I. Appendix D works out examples of
kernel computations for layernorm and transformer, which can only be expressed through NETSOR+ .
Fig. 3 illustrates the kernels of simple RNN, GRU, transformer, and a batchnorm+ReLU network,
and confirms that the finite width simulations tend to the infinite-width, theoretical kernels.

We also discuss different variants of NETSOR and NETSOR+ in Appendix E which trade off syntacti-
cal simplicity with ease of use, but are semantically equivalent to NETSOR or NETSOR+ . Appendix F
discusses the case when the dimensions of a program need not be equal. With the appropriate setup,
a Master Theorem in this case can be proved similarly (Theorem F.4).

6 Related Works

NN-GP Correspondence Many works have observed the neural network-Gaussian process corre-
spondence (NN-GP correspondence) for subsets of standard architectures [56, 34, 22, 13, 37, 40, 43].
Others have exploited this NN-GP correspondence implicitly or explicitly to build new models
[11, 33, 12, 57, 58, 7, 54, 32, 4, 6, 18, 43]. In particular, by directly converting NN to GP using this
correspondence, Lee et al. [37] constructed the state-of-the-art (SOTA) permutation-invariant GP on
MNIST, and Novak et al. [43] was until recently SOTA on CIFAR10 for any GP with untrainable
kernel. Additionally, the NN-GP correspondence has led to new understanding of neural network
training and generalization [42, 53, 61].

In this paper, we generalized the NN-GP correspondence to standard architectures and very general
nonlinearities (controlled functions; see Definition 5.3). In contrast, Matthews et al. [40] requires φ to
be linearly bounded in norm; Daniely et al. [13] requires φ be twice-differentiable with |φ|, |φ′|, |φ′′|

9

all bounded, or that φ = ReLU; and a sufficient condition given in Novak et al. [43] is that φ′ exists
and is bounded by exp(O(x2−ε)), though it is unclear how the more general set of 3 conditions given
there (in their section E.4) compares with ours.

Signal Propagation in Neural Networks A long line of work starting with Glorot and Bengio
[20] and He et al. [23] studies the effect of initialization in deep neural networks [46, 50, 63, 62, 21,
9, 64, 45], for example, what is the best initialization scheme to avoid gradient vanishing? These
works apply the same calculations of covariances as we do for calculating Σ here, though in a much
more restricted set of architectures, and they are typically more concerned with the dynamics of such
covariances with depth.

Reservoir Computing In reservoir computing [30, 39, 51], sequence processing is typically done
by a randomly initialized recurrent neural network. A sequence of inputs is fed step by step into
the network, and a final readout layer transforms the random RNN’s state into an output. The only
trainable parameters are the readout layer, but not the random RNN itself. Thus, in the infinite-width
limit, reservoir computing corresponds exactly to GP inference with the RNN kernel computed in
Appendix B.2.

7 Conclusion

We formulated the notion of Gaussian process with variable-dimensional outputs and showed that
randomly initialized, wide feedforward and recurrent neural networks of standard architectures
converge in distribution to Gaussian processes in such a sense. This significantly generalizes prior
work on the NN-GP correspondence. We did so by introducing NETSOR , a language for expressing
computation common in deep learning, including neural networks of standard architecture, along
with a theorem (Theorem 5.4) characterizing the behavior of a NETSOR program as its tensors are
randomized and their dimensions tend to infinity; many examples and extensions are exhibited in
the appendix. Finally, we empirically verified our theory for simple RNN, GRU, transformer, and
batchnorm (Fig. 3) and open-sourced implementations of the corresponding infinite-width limit
kernels at github.com/thegregyang/GP4A. In the next paper in this series, we will introduce a
more powerful version of tensor program that allows matrix transposes, and use this tool to compute
Neural Tangent Kernel [29] for any architecture.

10

github.com/thegregyang/GP4A

