
We thank all the reviewers for their careful readings and constructive comments.1

Reviewer #1: Many thanks for appreciating our work.2

Reviewer #2 (Re. Motivation behind the Regret definitions):3

Note that following the RUM interpretation of MNL model (please see response to Rev. #3 for details), the score4

parameter θi of each item i ∈ [n] essentially represents the mean utility/reward of item i, which in turn governs its5

preference relation w.r.t. the other items (based on the "Feedback type", Sec. 2.1). Thus our regret definitions (i.e.6

both Winner and Top-k regret, Sec 2.2), simply penalize the learner for pulling any suboptimal set in terms of the7

sub-optimality in its average utility-score w.r.t. that of the optimal set (which is a∗ for Winner regret, and S(k) for Top-k8

regret) — an intuitive quantification of loss/value of a subset in terms of the underlying utility scores of its items.9

Re. Applications: As discussed in the Introduction, some motivating applications of our problem lies in various kind of10

partial monitoring frameworks, e.g. launching new products, recommender systems, crowdsourcing etc., where value11

of a subset is measured in terms of the average utility-scores (θis) of its items, but the learner only gets to observe a12

preference feedback of the selected items drawn according to the MNL(θ) model, θ = (θ1, . . . , θn).13

Moreover, as we clarified in Rem. 1 and 2, for the special case of only two-sized subsets (i.e. when k = 2), our regret14

definition simply boils down to that of ‘Dueling Bandit’ problem – an extensively studied and well accepted notion of15

regret in bandit-literature (Ref. [5,12,40-47]), which too is based on the concept of penalizing every subset (i.e. pair of16

items as k = 2) in terms sub-optimality of average item scores. In fact, the very few recent works that extends Dueling17

Bandits to subsetwise feedback (Multi-Dueling bandits), also use the same notion of regret as ours (see Ref. [11,39]).18

Reviewer #3 (Re. Assumptions of the proposed models and practical relevance):19

We have assumed Multinomial Logit (MNL) (alternatively known as Plackett Luce) McFadden and Train [2000], Luce20

[1959] as our subsetwise feedback model which is a widely used preference model in econometrics and social choice21

theory literature (Ref. [7],Soufiani et al. [2013]), specially for assortment selection problems (Refs. [2,3,4]), as well as22

in machine learning community, be that offline batch optimization (Ref. [23,29,39]), or online learning setting (Ref.23

[17,35, 40]) etc. In fact, even for the special case when subsetsize k = 2, the model is extensively studied as Bradley24

Terry Luce (BTL) model Negahban et al. [2012], Rajkumar and Agarwal [2014], Shah and Wainwright [2015], and its25

various extensions have also been considered Wen and Koppelman [2001], Yan et al. [2019] — thus MNL model is26

indeed one of the most well studied preference model, which has natural applications to various real world scenarios,27

e.g. customer preferences, recommender systems, voting methods, or more generally any application which aims to28

aggregate information from preferences over discrete choices. (see response to Rev. #2 for more applications).29

For a more theoretical interpretation of MNL feedback model (Def. 1): MNL model belongs to the class of Random30

Utility Models(RUM), which assumes an underlying utility scores of the items θ′i ∈ R for each item i ∈ [n], and assigns31

a conditional distribution Di(·|θ′i) for scoring item i. Upon receiving any subset S ⊆ [n], the environment first draws a32

random utility score Xi ∼ Di(xi|θ′i) for each item i ∈ St, and selects the winner item J = j with probability of Xj33

being the maximum among all the scores of items in S, i.e. Winner Feedback: Pr(J = j) ∼ Pr(Xj > Xj′ ∀j′ ∈34

S \ {j}) ∀j ∈ S. Now it can be shown that when D′is are Gumbel(θi, 1) distributions (Ref. [7],Soufiani et al. [2013]),35

i.e. Di(xi|θ′i) = e(xj−θ
′
j)e−e

(xj−θ
′
j) , then Pr(i|St) := Pr(Xi > Xj ∀j ∈ St \ {i}) = eθ

′
i∑

j∈St
e
θ′
j

— which precisely36

gives rise to the MNL choice model. (We used θi = eθ
′
i , ∀i ∈ [n]. Unfortunately due to space constraints we could not37

include this RUM interpretation of MNL model, which really sheds light into its specific mathematical form.)38

We sincerely request the reviewers to kindly reconsider their scores based on the above clarifications.39
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