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Abstract

We study the performance of the certainty equivalent controller on Linear Quadratic
(LQ) control problems with unknown transition dynamics. We show that for both
the fully and partially observed settings, the sub-optimality gap between the cost
incurred by playing the certainty equivalent controller on the true system and the
cost incurred by using the optimal LQ controller enjoys a fast statistical rate, scaling
as the square of the parameter error. To the best of our knowledge, our result is the
first sub-optimality guarantee in the partially observed Linear Quadratic Gaussian
(LQQG) setting. Furthermore, in the fully observed Linear Quadratic Regulator
(LQR), our result improves upon recent work by Dean et al. [11], who present an
algorithm achieving a sub-optimality gap linear in the parameter error. A key part
of our analysis relies on perturbation bounds for discrete Riccati equations. We
provide two new perturbation bounds, one that expands on an existing result from
Konstantinov et al. [25], and another based on a new elementary proof strategy.

1 Introduction

One of the most straightforward methods for controlling a dynamical system with unknown transitions
is based on the certainty equivalence principle: a model of the system is fit by observing its time
evolution, and a control policy is then designed by treating the fitted model as the truth [6]. Despite
the simplicity of this method, it is challenging to guarantee its efficiency because small modeling
errors may propagate to large, undesirable behaviors on long time horizons. As a result, most work
on controlling systems with unknown dynamics has explicitly incorporated robustness against model
uncertainty [11, 12, 23, 30, 41, 42].

In this work, we show that for the standard baseline of controlling an unknown linear dynamical
system with a quadratic objective function known as Linear Quadratic (LQ) control, certainty
equivalent control synthesis achieves better cost than prior methods that account for model uncertainty.
Our results hold for both the fully observed Linear Quadratic Regulator (LQR) and the partially
observed Linear Quadratic Gaussian (LQG) setting. For offline control, where one collects some
data and then designs a fixed control policy to be run on an infinite time horizon, we show that the
gap between the performance of the certainty equivalent controller and the optimal control policy
scales quadratically with the error in the model parameters for both LQR and LQG. To the best of
our knowledge, we provide the first sub-optimality guarantee for LQG. Moreover, in the LQR setting
our work improves upon the recent result of Dean et al. [11], who present an algorithm that achieves
a sub-optimality gap linear in the parameter error. In the case of online LQR control, where one
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adaptively improves the control policy as new data comes in, our offline result implies that a simple,
polynomial time algorithm using e-greedy exploration suffices for nearly optimal O (/T regret.

2 Main Results for the Linear Quadratic Regulator

An instance of the linear quadratic regulator (LQR) is defined by four matrices: two matrices
A, € R™" and B, € R™*? that define the linear dynamics and two positive semidefinite matrices
QeR"™ and R € R%*4 that define the cost function. Given these matrices, the goal of LQR is to
solve the optimization problem

min lim E th Qx: +u, TRu,| s.t. Xt11 = Avxy + Boug + wy, (1

up,uy,... '—-oo

where x;, u; and w; denote the state, input (or action), and noise at time ¢, respectively. The
expectation is over the initial state xg ~ A(0,I,,) and the i.i.d. noise w; ~ N(0,021,). When
the problem parameters (A, By, @, R) are known the optimal policy is given by linear feedback,
u; = K,x;, where K, = —(R + B, P,B,) !B P, A, where P, is the (positive definite) solution
to the discrete Riccati equation

P*:AIP*A*_AIP*B*(R_FBIP*B*)ilBIP*A*+Q (2)

and can be computed efficiently [4, see e.g.]. Problem (1) considers an average cost over an infinite
horizon. The optimal controller for the finite horizon variant is also static and linear, but time-varying.
The LQR solution in this case can be computed efficiently via dynamic programming.

In this work we are interested in the control of a linear dynamical system with unknown transition
parameters (A,, B,) based on estimates (A, B). The cost matrices ) and R are assumed known.

We analyze the certainty equivalence approach: use the estimates (g, §) to solve the optimization
problem (1) while disregarding the modeling error, and use the resulting controller on the true system
(A,, By). We interchangeably refer to the resulting policy as the certainty equivalent controller

or, following Dean et al. [11], the nominal controller. We denote by P the solution to the Riccati

equation (2) associated with the parameters (/Al B ) and let K be the corresponding controller. We
denote by J (A B, K) the cost (1) obtained by using the actions u; = Kx; on the system (A, B),

and we use .J and J, to denote J(Ay, By, K ) and J(A,, By, K, ), respectively.

Lete > 0 such that | A, — A|| < e and || B, — B|| < e. (Here and throughout this work we use ||| to
denote the Euclidean norm for vectors as well as the spectral (operator) norm for matrices.) Dean et al.
[11] introduced a robust controller that achieves J — J, < C}(Ay, By, @, R)e for some complexity
term 01 (A, By, Q, R) that depends on the problem parameters. We show that the nominal controller

- K X; achieves J— Ji < Co(Ay, By, Q, R)e Both results require ¢ to be sufficiently small
(as a function of the problem parameters) and it is important to note that € must be much smaller for
the nominal controller to be guaranteed to stabilize the system than for the robust controller proposed
by Dean et al. [11]. However, our result shows that once the estimation error ¢ is small enough,
the nominal controller performs better: the sub-optimality gap scales as O(g?) versus O(e). Both
the more stringent requirement on € and better performance of nominal control compared to robust
control, when the estimation error is sufficiently small, were observed empirically by Dean et al. [11].

Before we can formally state our result we need to introduce a few more concepts and assumptions.
It is common to assume that the cost matrices () and R are positive definite. Under an additional
observability assumption, this condition can be relaxed to () being positive semidefinite.

Assumption 1. The cost matrices (Q and R are positive definite. Since scaling both () and R does
not change the optimal controller K, we can assume without loss of generality that c(R) > 1, where
o (+) denotes the minimum singular value.

A square matrix M is stable if its spectral radius p(M) is (strictly) smaller than one. Recall that
the spectral radius is defined as p(M) = max{|A| : A is an eigenvalue of M }. A linear dynamical
system (A, B) in feedback with K is fully described by the closed loop matrix A + BK. More
precisely, in this case x;+1 = (A + BK)x; + w. For a static linear controller u; = Kx; to achieve
finite LQR cost it is necessary and sufficient that the closed loop matrix is stable.



In order to quantify the growth or decay of powers of a square matrix M, we define
(M, p) := sup { ||M"||p™": k> 0}. (3)

In other words, 7(M, p) is the smallest value such that || M*|| < 7(M, p)p* for all & > 0. We note
that (M, p) might be infinite, depending on the value of p, and it is always greater or equal than
one. If p is larger than p(M ), we are guaranteed to have a finite 7(M, p) (this is a consequence of
Gelfand’s formula). In particular, if M is a stable matrix, we can choose p < 1 such that 7(M, p) is
finite. Also, we note that 7(M, p) is a decreasing function of p; if p > || M|, we have 7(M, p) = 1.
At a high level, the quantity 7(M, p) measures the degree of transient response of the linear system
X¢41 = M=x¢ + wy. In particular, when M is stable, (M, p) can be upper bounded by the H ,-norm
of the system defined by M, which is the /5 to /5 operator norm of the system and a fundamental
quantity in robust control [see 40, for more details].

Throughout this work we use the quantities I'y := 1 + max{||A. ||, || B«ll; | Pell; || K«||} and Ly :=
A, + B,K,. We use I, as a uniform upper bound on the spectral norms of the relevant matrices for
the sake of algebraic simplicity. We are ready to state our meta theorem. The proofs for all the results
can be found in the full version of the paper [28].

Theorem 1. Suppose d < n. Let v > 0 such that p(L,) < v < 1. Also, let ¢ > 0 such that
|A— Al < eand||B — By| < e and assume |P — P.|| < f(e) for some function f such that

f(e) > e. Then, under Assumption 1 the certainty equivalent controller uy = K X achieves
(L*a 7)2 2
———fe) “)

~ T
J = Je < 20007, dT5 = i
as long as f(e) is small enough so that the right hand side is smaller than o

w

2 .

In Section 4 we present two upper bounds f(g) on |P — P,||: one based on a proof technique
proposed by Konstantinov et al. [25] and one based on our direct approach. Both of these upper
bounds satisfy f(e) = O(e) for ¢ sufficiently small. For simplicity, in this section we only specialize
our meta-theorem (Theorem 1) using the perturbation result from our direct approach.

To state a specialization of Theorem 1 we need a few more concepts. A linear system (A, B) is
called controllable when the controllability matrix [B AB A’B ... A”_lB} has full row
rank. Controllability is a fundamental concept in control theorys; it states that there exists a sequence
of inputs to the system (A, B) that moves it from any starting state to any final state in at most n steps.
In this work we quantify how controllable a linear system is. We denote, for any integer ¢ > 1, the
matrix C; := [B- AB ... A‘"!'B] and call the system (¢, v)-controllable if the n-th singular

value of Cy is greater or equal than v, i.e. ¢(C¢) = 1/ Amin (CzC;) > v. Intuitively, the larger v is,
the less control effort is needed to move the system between two different states.
Assumption 2. We assume the unknown system (A, By) is (£, v)-controllable, with v > 0.

Assumption 2 was used in a different context by Cohen et al. [9]. For any controllable system and any
¢ > n there exists v > 0 such that the system is (¢, v)-controllable. Therefore, (¢, v)-controllability
is really not much stronger of an assumption than controllability. As ¢ grows minimum singular value
a(Cy) also grows and therefore a larger v can be chosen so that the system is still (¢, v) controllable.

Note that controllability is not necessary for LQR to have a well-defined solution: the weaker
requirement is that of stabilizability, in which there exists a feedback matrix K so that A, + B, K is

stable. The result of Dean et al. [11] only requires stabilizability. While our upper bound on ||16 —P.|
requires controllability, the result of Konstantinov et al. [25] only requires stabilizability. However,

our upper bound on ||13 — P,|| is sharper for some classes of systems (see Section 4). A direct plug
in of our perturbation result, presented in Section 4, into Theorem 1 yields the following guarantee.

Theorem 2. Suppose that d < n. Let p and v be two real values such that p(A,) < p and

p(L,) < v < 1. Also, let ¢ > 0 such that ||A — A,|| < ¢ and |B — B,|| < ¢ and define
B = max{1,em(As, p) + p}. Under Assumptions 1 and 2, the certainty equivalent controller

u; = Kx; satisfies the suboptimality gap

~ 2 1515 6 pa(—1) T(Le,)? max{|QI, | R} 1\* ,
J—=J, <O00)o,,d°T,°1(As, p)°p =2 min{o(Q)% o(R)7} 1—|—V e”, (9

as long as the right hand side is smaller than o2 Here, O(1) denotes a universal constant.




The exact form of Equation 5, such as the polynomial dependence on ¢, 'y, etc, can be improved at
the expense of conciseness of the expression. In our proof we optimized for the latter. The factor
max{[|Q||?, | R||*}/ min {c(Q)?, o(R)?*} is the squared condition number of the cost function, a
natural quantity in the context of the optimization problem (1), which can be seen as an infinite

dimensional quadratic program with a linear constraint. The term M quantifies the rate at which

the optimal controller drives the state towards zero. Generally speakmg, the less stable the optimal
closed loop system is, the larger this term becomes.

An interesting trade-off arises between the factor ¢°34“~1) (which arises from upper bounding
perturbations of powers of A, on a time interval of length ¢) and the factor v (the lower bound on
(Cy)), which is increasing in £. Hence, the parameter ¢ should be seen as a free-parameter that can
be tuned to minimize the right hand side of (5). Now, we specialize Theorem 2 to a few cases.

Case: A, is contractive, i.e. ||A,|| < 1. Inthis case, we can choose p = || A,|| and £ small enough
so thate < 1 — || A4||. Then, (5) simplifies to:

- L,,7)? max{||Q|% [|R|*} 1)
—J, <001 2 5F15T( i ) 14 = 2
J—J, <01)do? T 172 min{o(Q) o(RE) +-) e

Case: B, hasrank n.. In this case, we can choose ¢ = 1. Then, (5) simplifies to:

T_ o2 15, 6T (L, ) max{||Q||2 2%} ? 2
J—J, <O0)do; I',’1(As, p) =72 min{o(Q )Q,G(R)}(1+ ) e“.

2.1 Comparison to Theorem 4.1 of Dean et al. [11].

Dean et al. [11] show that when their robust synthesis procedure is run with estimates (21\, ﬁ)
satisfying max{|| A — A, ||, | B — B.||} < e < [5(1 + || K,||)¥,] ", the resulting controller satisfies:

J = J, 10(1 + || K, |)W, Jue + O(?) . 6)

Here, the quantity W, := sup,cp||(21,, — L)~ !|| is the Hoo-norm of the optimal closed loop system
L. In order to compare Equation 6 to Equatlon 5, we upper bound the quantity \I'* in terms of
7(Ly,) and . In particular, by a infinite series expansion of the inverse (21, — L,)~! we can show

v, < (L* 7) . Also, we have J, = a tr(P,) < awnF*. Therefore, Equation 6 gives us that:

fLSOO)2W5L7k+O@y
We see that the dependence on the parameters T, and 7(Ly, ) is significantly milder compared
to Equation 5. Furthermore, this upper bound is valid for larger € than the upper bound given in
Theorem 2. Comparing these upper bound suggests that there is a price to pay for obtaining a fast rate,
and that in regimes of moderate uncertainty (moderate size of ), being robust to model uncertainty is
important. This observation is supported by the empirical results of Dean et al. [11].

A similar trade-off between slow and fast rates arises in the setting of first-order convex stochastic
optimization. The convergence rate O(1/+/T) of the stochastic gradient descent method can be
improved to O(1/T') under a strong convexity assumption. However, the performance of stochastic
gradient descent, which can achieve a O(1/T) rate, is sensitive to poorly estimated problem parame-
ters [29]. Similarly, in the case of LQR, the nominal controller achieves a fast rate, but it is much
more sensitive to estimation error than the robust controller of Dean et al. [11].

End-to-end guarantees. Theorem 2 can be combined with finite sample learning guarantees
(e.g. [11, 15, 33, 34]) to obtain an end-to-end guarantee similar to Proposition 1.2 of Dean et al.
[11]. In general, estimating the transition parameters from N samples yields an estimation error
that scales as O(1/v/N). Therefore, Theorem 2 implies that J — J, < O(1/N) instead of the
J—J, < O(1/+/N) rate from Proposition 1.2 of Dean et al. [11]. This is similar to the case of

linear regression, where O(1/+/N) estimation error for the parameters translates to a O(1/N) fast
rate for prediction error. Furthermore, Simchowitz et al. [34] and Sarkar and Rakhlin [33] showed



that faster estimation rates are possible for some linear dynamical systems. Theorem 2 translates such
rates into control suboptimality guarantees in a transparent way.

Our result explains the behavior observed in Figure 4 of Dean et al. [11]. The authors propose
two procedures for synthesizing robust controllers for LQR with unknown transitions: one which
guarantees robustness of the performance gap J — J,, and one which only guarantees the stability of
the closed loop system. Dean et al. [11] observed that the latter performs better in the small estimation
error regime, which happens because the robustness constraint of the synthesis procedure becomes
inactive when the estimation error is small enough. Then, the second robust synthesis procedure
effectively outputs the certainty equivalent controller, which we now know to achieve a fast rate.

2.2 Nearly optimal 1) (\/T) regret in the adaptive setting

The regret formulation of adaptive LQR was first proposed by Abbasi-Yadkori and Szepesvari [1].
The task is to design an adaptive algorithm {u, };>( to minimize regret, as defined by Regret(T) :=

Zthl x;] Qx; + u/ Ru; — T.J,. Abbasi-Yadkori and Szepesviri [1] study the performance of

optimism in the face of uncertainty (OFU) and show that it has (5(ﬁ ) regret, which is nearly
optimal for this problem formulation. However, the OFU algorithm requires repeated solutions to a
non-convex optimization problem for which no known efficient algorithm exists.

To deal with the computational issues of OFU, Dean et al. [12] propose to analyze the behavior of e-
greedy exploration using the suboptimality gap results of Dean et al. [11]. In the context of continuous
control, e-greedy exploration refers to the application of the control law w; = 7(x¢, X¢—1, ..., X0) + 1
with 7, ~ N(0, afmld), where 7 is the policy, updated in epochs, and O‘%}t is the variance of the

exploration noise. Dean et al. [12] set the variance of the exploration noise as 0727’,5 ~ /3,
and show that their method achieves O (T 2/ 3) regret. They use epochs of size 2¢ and decompose
the regret roughly as Regret(7) = O (T(j —Jo)+ TU%T). Since the estimation error of the

model parameters scales as O((c,, 7v/T) '), and since the suboptimality gap J — J, of the robust

controller is linear in the estimation error, we have Regret(T) = O (% + Ta?7 T). Then, setting
” ,

o2, ~ t~/3 balances these two terms and yields O(T?/3) regret. However, Theorem 2, which states
that the gap J — J, for the nominal controller depends quadratically on the estimation rate, implies

L4 TO'?LT). Here, the optimal

3
0T

that online certainty equivalent control achieves Regret(7') = O

variance of the exploration noise scales as O’%’t ~ t~1/2  yielding (5(\/?) regret. We note that the

observation that certainty equivalence coupled with e-greedy exploration achieves o (\/T ) regret was
first made by Faradonbeh et al. [16].

Corollary 1. (Informal) e-greedy exploration with exploration schedule Ufm ~ t=1/2 combined with

certainty equivalent control yields an adaptive LOR algorithm with regret bounded as 6(ﬁ ).

3 Main Results for the Linear Quadratic Gaussian Problem

Now we consider partially observable systems. In this case the system dynamics have the form:

Xi+1 = AXe + Bowg +wy, wy ~ N(0,021), (72)

w

yi = C.x¢ +vi, vi ~N(0,021). (7b)
In (7), only the output process y; is observed. The LQG problem is defined as':
T

. . 1
rmlmETZﬂwﬁ@%thmm. (8)

up,u,... '—-oo
t=0

"Note that many texts define the LQG cost in terms of x; Qx; instead of y; Qy:. We choose the latter
because we do not want the cost to be tied to a particular (unknown) state representation.



Here, the input u, is allowed to depend on the history2 H; = (ug, ..., Ut—1,¥0, -, Yt—1). The opti-
mal solution to (8) is to set u; = K,X;, with K, the optimal LQR solution to (A, B,, CTQC,, R)
and X; := E[x;|H;]. The MSE estimate X; can be solved efficiently via Kalman filtering:

Xep1 = AKX + Boug + Lo (yr — CuXy) (9a)
L,.=-Ax.Cclox.cl+v) L, (9b)
Y, = AN Al + 21— Ax,Cl(C.2,CT 4+ 627108, AT . (9¢)

There is an inherent ambiguity in the dynamics (7a)-(7b) which makes LQG more delicate than
LQR. In particular, for any invertible 7', the LQG problem (8) with parameters (A, By, Cs, @, R) is
equivalent to the LQG problem with parameters (T A, T~!, TB,,C,T~1,Q, R) and appropriately

rescaled noise processes. To deal with this ambiguity, we assume that we have estimates (/T, B , C , E)
such that there exists an unitary 7" such that:

max{||A = TAT |, || B = TB,|,IC = C.T |, | L = TL.[|} < <. (10)

Recent work [32, 35, 38] has shown how to obtain this style of estimates with guarantees from
input/output data. As in Section 2, we assume that the cost matrices (@, R) are known. Then, we
study the performance of the certainty equivalence controller defined by:

Rip1 = AR + Bu, + L(y; — C%,), uw, = K%,, K =LQR(A,B,CTQC,R). (11)
Similarly to Theorem 1 for LQR, we state a meta theorem for LQG. Unlike Theorem 1, however,
we need a stronger type of Riccati perturbation guarantee which also allows for perturbation of the
(2 matrix. Spec1ﬁcally, we suppose there exists ~yy such that for any 1y < vp and (A B Q) with
max{||[A — A|,| B - B|, ||Q Q||} < ~ the solutions P and P of the Riccati equations with
parameters (A, B, Q, R) and (A, B, Q, R) satisfy

|P—P| < f(v), (12)

for an increasing function f with f(y) > +. The constant vy and function f are allowed
to depend on the parameters (A, B,Q, R). In Section 4, we present a perturbation bound
(Proposition 1) that satisfies these properties. Similarly to Section 2, we define I', = 1 +
max{|| Axl, | Bslls |Cslls | K%l |1 Lsl5 || Pl }- The following theorem is our main result for LQG.

Theorem 3. Suppose that (A, By) is stabilizable, (Cy, A,) is observable, and that Assumption 1
holds. Let ¢ be an upper bound on ||A — TA, T~ B C U, and |L —
TL,|| for some unitary transformation T. Suppose that assumption (12) holds with parameters
(TA,T~',TB,, T‘TCTQC T~Y, R) and that ¢ is sufficiently small so that 3||C, ||+ ||Q|l+c < Yo

FB|CL2 Q] +e)- Let K be defined as in (11), and define N, as

and € < 1, where € .= U(R

A, JrB K, B, K,
A, —L,C,

where the pair (K, L) is optimal for the LOG problem defined by (A, B.,Cy,Q, R). Let v > 0
be such that p(N,) <y < 1. Then as long as € < ﬁ(?\hv)’ the interconnection of (11) with (7)

N, = (13)

~ oA A A A ~N A A A A~

using (A, B,C, K, L) is stable. Furthermore, the cost J(A, B,C, K, L) satisfies:
AAAAA 7'6(N* ’Y)
J(A,B,C,K,L) — J, <O(1)max{c?,c2}(tr(CTQC,) + tr (R))mFEEQ.

The proof of Theorem 3 appears in Appendix F. We note that such a +y exists since p(N,) < 1;
by the stability and observability assumptions in Theorem 3, we have that both A, + B, K, and
A, — L, C, are stable (c.f. Appendix E of Kailath et al. [24]). Theorem 3 is a meta-theorem showing
how perturbation bounds on the solution of Riccati equations translates into suboptimality bounds on
the performance of certainty equivalent control. Combining Theorem 3 with Proposition 1, we have
the following explicit result, an analogue of Theorem 2 for LQG. To simplify notation we denote by
dare(A, B, @, R) the solution to the discrete algebraic Riccati equation defined by the parameters A,
B, @, and R.

The one step delay in y; is a standard assumption in controls which slightly simplifies the Kalman filtering
expressions. Our results generalize to the setting where the history also contains the current observation y;.



Theorem 4. Suppose that (A, B,) is stabilizable, (Cy, A,) is observable, and that Assumption 1
holds. Let € be an upper bound on ||A—TA,T~||, || B—TB,|, |C —C.T~!|, and |L — TL,|| for
some unitary transformation T. Let P, = dare(A,, By, C]QC,, R) and suppose that ¢(P,) > 1.
Let N, be as in (13) and fix v such that p(N,) < v < 1. As long as € satisfies ¢ < 7(41(71\7*27)5) pylﬂQH:
we have the following sub-optimality bound:

||Q||2 FzﬁTlo(N*ﬁ)gz
a(R)? " (1=72)

J(A,B,C,K,L) - J, <O(1)max{c?, 2} (tr(CTQC,) + tr(R))

w v

Several remarks are in order. First, the assumption that o(P,) > 1 is without loss of generality, since
we can always rescale () and R without affecting the control solution. Next, we compare our results
here to a classic result from Doyle [13], which states that there are no gain margins for LQG. We
remark that the notion of a gain margin is a robustness property that holds uniformly over a class
of perturbations of varying degree. Our results do not hold uniformly; we use quantities such as
7(Ny,y) and T, to quantify how much mismatch a given LQG instance can tolerate.

4 Riccati Perturbation Theory

As discussed in Sections 2 and 3, a key piece of our analysis is bounding the solutions to discrete
Riccati equations as we perturb the problem parameters. Specifically, we are interested in quantities
b, L such that | P — P,|| < Le if ¢ < b, where ¢ represents a bound on the perturbation. We note
that it is not possible to find universal values b, L. Consider the systems (A, B,) = (1,¢) and

(A, B) = (1,0); the latter system is not stabilizable and hence P does not even exist. Therefore, b
and L must depend on the system parameters.

While there is a long line of work analyzing perturbations of Riccati equations, we are not aware
of any result that offers explicit and easily interpretable b and L for a fixed (4, B,, @, R); see
Konstantinov et al. [26] for an overview of this literature. In this section, we present two new
results for Riccati perturbation which offer interpretable bounds. The first one expands upon the
operator-theoretic proof of Konstantinov et al. [25]; its proof can be found in Appendix B.1. In this
result we assume the cost matrix () can also be perturbed, which is needed for our LQG guarantee. In

order to be consistent we denote the true cost by function by @), and the estimated one by Q.

Proposition 1. Let v > p(L,) and also let € such that ||A — A,||, || B — B,||, and ||Q — Q.|| are at

most €. Let |||+ = ||| + 1. We assume that R = 0, (A, B,) is stabilizable, (Q'/?, A,) observable,
and o(P,) > 1.

~ T(Ly,7)? -~
1P - Pl < 0 e E TR A IR B IR
as long as
e <o) A B2 B P R min L 22 P
= sl 7Bl 4 + wll 7 14 -

T(L*a 7)4

We note that the assumption o(P,) > 1 can be made without loss of generality when the other
assumptions are satisfied. Since R = 0 and (Q'/2, A) observable, the value function matrix P is
guaranteed to be positive definite. Then, by rescalling @ and R we can ensure that ¢(P,) > 1.

We now present our direct approach, which uses Assumption 2 to give a bound which is sharper for
some systems (A, By ) then the one provided by Proposition 1. Recall that any controllable system
is always (¢, v)-controllable for some ¢ and v.

Proposition 2. Let p > p(A,) and also let € > 0 such that ||A — A,|| < e and | B — B,|| < ¢. Let
B :=max{1,e7(Ay, p) + p}. Under Assumptions 1 and 2 we have

max{||Q|], || ]|}
min{o(R),c(Q)}’

as long as ¢ is small enough so that the right hand side is smaller or equal than one.

~ . 1
1P = P < 326 600 0550 (14 1) 1+ B2



The proof of this result is deferred to Appendix B.2. We note that Proposition 2 can also be extended
to handle perturbations in the cost matrix (). Proposition 2 requires an (¢, v)-controllable system
(A, By), whereas Proposition 1 only requires a stabilizable system, which is a milder assumption.
However, Proposition 2 can offer a sharper guarantee. For example, consider the linear system

with two dimensional states (n = 2) given by A, = 1.01 - I and B, = (1) g} Both Q and

R are chosen to be the identity matrix I5. This system (A,, B, ) is readily checked to be (1, 3)-
controllable. It is also straightforward to verify that as 5 tends to zero, Proposition 1 gives a bound of

|P — P,|| = O(c/B*), whereas Proposition 2 gives a sharper bound of ||[P — P,|| = O(¢/8%).

5 Related Work

For the offline LQR batch setting, Fiechter [18] proved that the sub-optimality gap J — J, scales
as O(e) for certainty equivalent control. A crucial assumption of his analysis is that the nominal
controller stabilizes the true unknown system. We give bounds on when this assumption is valid.
Recently, Dean et al. [11] proposed a robust controller synthesis procedure which takes model
uncertainty into account and whose suboptimality gap scales as O(e). Tu and Recht [39] show

that the gap J— J, of certainty equivalent control scales asymptotically as O(s2); we provide a
non-asymptotic analogue of this result. Fazel et al. [17] and Malik et al. [27] analyze a model-free
approach to policy optimization for LQR, in which the controller is directly optimized from sampled
rollouts. Malik et al. [27] showed that, after collecting N rollouts, a derivative free method achieves
a discounted cost gap that scales as O(1/v/N) or O(1/N), depending on the oracle model used.

In the online LQR adaptive setting it is well understood that using the certainty equivalence principle
without adequate exploration can result in a lack of parameter convergence [see e.g. 5]. Abbasi-
Yadkori and Szepesvdri [1] showed that optimism in the face of uncertainty (OFU), when applied to
online LQR, yields O(\/T ) regret. Faradonbeh et al. [14] removed some un-necessary assumptions
of the previous analysis. Ibrahimi et al. [22] showed that when the underlying system is sparse,
the dimension dependent constants in the regret bound can be improved. The main issue with
OFU for LQR is that there are no known computationally tractable ways of implementing it. In
order to deal with this, both Dean et al. [12] and Abbasi-Yadkori et al. [2] propose polynomial time

algorithms for adaptive LQR based on e-greedy exploration which achieve o (T?/3) regret. Only
recently progress has been made on offering O(+/T)) regret guarantees for computationally tractable

algorithms. Abeille and Lazaric [3] show that Thompson sampling achieves (5(\/T) (frequentist)
regret for the case when the state and inputs are both scalars. In a Bayesian setting Ouyang et al. [31]

showed that Thompson sampling achieves o (V/T) expected regret. Faradonbeh et al. [16] argue that

certainty equivalence control with an epsilon-greedy-like scheme achieves o (v/T) regret, though
their work does not provide any explicit dependencies on instance parameters. Finally, Cohen et al.

[10] also give an efficient algorithm based on semidefinite programming that achieves o (V/T) regret.
Their main result requires the initial parameter error to scale as O(1/ TY 4). While they propose a
(’)(\/T ) length warmup period to get around this, our analysis of e-greedy control does not require
or (1) accuracy of the initial parameters. Moreover, there are specialized algorithms for solving
Riccati equations that are more efficient than general semidefinite programming solvers.

The literature for LQG is less complete, with most of the focus on the estimation side. Hardt et al.
[19] show that gradient descent can be used to learn a model with good predictive performance, under
strong technical assumptions on the A matrix. A line of work [20, 21] has focused on using spectral
filtering techniques to learn a predictive model with low regret. Beyond predictive performance,
several works [32, 35, 38] show how to learn the system dynamics up to a similarity transform
from input/output data. Finally, we remark that Boczar et al. [8] give sub-optimality guarantees for
output-feedback of a single-input-single-output (SISO) linear system with no process noise.

A key part of our analysis involves bounding the perturbation of solutions to the discrete algebraic
Riccati equation. While there is a rich line of work studying perturbations of Riccati equations
[25, 26, 36, 37], the results in the literature are either asymptotic in nature or difficult to use and
interpret. We clarify the operator-theoretic result of Konstantinov et al. [25] and provide an explicit
upper bound on the perturbation based on their proof strategy. Also, we take a new direct approach



and use an extended notion of controllability to give a constructive and simpler result. While the
result of Konstantinov et al. [25] applies more generally to systems that are stabilizable, we give
examples of linear systems for which our new perturbation result is tighter.

Finally, while we focus on a continuous control problem, we note that the performance of certainty
equivalence had been studied in the context of tabular MDPs, e.g. Azar et al. [7] derived matching
upper and lower bounds on the performance of value-iteration and policy-iteration that use estimated
transition probabilities.

6 Conclusion

Though a naive Taylor expansion suggests that the fast rates we derive here must be achievable,
precisely computing such rates has been open since the 80s. All of the pieces we used here have existed
in the literature for some time, and perhaps it has just required a bit of time to align contemporary
rate-analyses in learning theory with earlier operator theoretic work in optimal control. There remain
many possible extensions to this work. The robust control approach of Dean et al. [11] applies to
many different objective functions besides quadratic costs, such as H., and £; control. It would be
interesting to know whether fast rates for control are possible for other objective functions. Finally,
determining the optimal minimax rate for both LQR and LQG would allow us to understand the
tradeoffs between nominal and robust control at a more fine grained level.
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A Proof of Theorem 1

In this section we prove our meta theorem; we show how an upper bound ||]3 — P.|| < f(e) canbe
used to quantify the mismatch between the performance of the the nominal controller and the optimal

controller. First, we upper bound || K — K, || and offer a condition on this mismatch size so that

A, + B,K is a stable matrix. The next two optimization results are helpful in proving ||I/(\' — K, is
small.

Lemma 1. Let f1, fo be two u-strongly convex twice differentiable functions. Let x; =
arg miny f1(x) and xz = arg miny f2(x). Suppose ||V f1(x2)|| < €, then ||x1 — X2 < £.

Proof. Taylor expanding V f1, we have:
Vi(x2) = Vfi(x1) + V2 fi(R)(x2 = x1) = V2 f1(X)(x2 — x1) -
for x = txy + (1 — t)x2 with some ¢ € [0, 1]. Therefore:
plixr = x|l < [V2fi()(x2 = x1) | = [V fa(x2)]| < €.
O
Lemma 2. Define f;(u;x) = %uTRu—&—%(Aix—i—Biu)TPi(Aix—l—Biu)fori =1,2, with R, Py, and
Py positive definite matrices. Let K; be the unique matrix such that u; := arg min,, f;(u;x) = K;x

for any vector x. Also, denote T := 1 + max{||A1]|, | B1ll, || P11, | K1]|}. Suppose there exists €
suchthar0 < e < land | A1 — As|| < e, ||B1 — Ba|| < ¢, and ||P, — P2|| < €. Then, we have

K1 — Ko < ——
o

Proof. We first compute the gradient V f;(u; x) with respect to u:

Vfi(u;x) = (B PiB; + R)ju + B/ P, A;x .
Now, we observe that:

|BI PiB; — B PyBs|| < TT'%¢ and | B PiA; — B] PyAs|| = TT'2%.

Hence, for any vector x with ||x|| < 1, we have

IV £1 (%) = V fo(wyx) || < 7T%(|[u]] +1).
We can bound ||uy || < || K1 ||||x]] < ||K1||. Then, from Lemma 1 we obtain

o(R)|[(Ky — K2)x|| = o(R)|[uy — uaf| < 7T7%.

Recall that T', := 1 + max{||A|l, || B«ll, | Pl [| K || }- Now, we upper bound HIA( — K, ||

Proposition 3. Let ¢ > 0 such that | A — A,|| < e and | B — B,|| < e. Also, let |P — P,|| < f(¢)
Sor some function f such that f(e) > €. Then, under Assumption 1 we have

IK — K.|| < 7T f (o). (14)

Let 7y be a real number such that p(L,) < v < 1. Then, if f(e) is small enough so that the right hand
side of (14) is smaller than %, we have

1
T (A* + B*Ka ;’Y) < T(L*57>'

Proof. By our assumptions || A— A, ||, ||[B— B,||, and | P— P, || are smaller than f(c), and o(R) > 1.

Then, Lemma 2 ensures that

s

1K — K| <709 f(e).

Finally, when ¢ is small enough so that the right hand side of (14) is smaller or equal than

m, we can alzply Lemma 5, presented in Section B, to guarantee that || (A, + B*IA( | <
7(As + B.K,,v) (2)" forall k > 0. O
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In order to finish the proof of Theorem 1 we need to quantify the suboptimality gap J—J, in

terms of the controller mismatch X — K «. For a stable matrix L and a symmetric matrix M, we let
dlyap(L, M) denote the solution X to the Lyapunov equation LT X L — X + M = 0. The following
lemma offers a useful second order expansion of the average LQR cost.

Lemma 3 (Lemma 12 of Fazel et al. [17]). Let K be an arbitrary static linear controller that
stabilizes (A, B,). Denote ¥(K) := dlyap((A, + B,K)",021,) the covariance matrix of the
stationary distribution of the closed loop system A, + B, K. We have that:

J(A,, B,,K) — J, = tr(3(K)(K — K,)"(R+ Bl P,B,)(K — K,)) . (15)

Now, we have the necessary ingredients to complete the proof of Theorem 1. Equation 15 implies:

J(As, Ba, K) = Jo < |SE)||IR + BI P.B. ||| K — K[ -

Proposition 3 states that K stabilizes the system (A,, B,) when the estimation error is small enough.
More precisely, under the assumptions of Theorem 1, we have 7 (A* + B*IA( , HT”) < 7(Lyy ).

When L = A, + B, K is a stable matrix we know that 2(K) = o2 > iso(LT) LY. Then, by the
triangle inequality we can bound

HE(K)H < O-'?UT(L*v'Y)Q < 40"5)7-([’*7’7)2
Cee)y s

Recalling that T, := 1 + max{||A. |, || Bsl, | Pcll, || K«||}, we have | R + B] P, B,|| < T'®. Then,

L 2
J(K) — J, < 4afur377(1 *’72) 1K — K. |
-
L 2
< 40 minfn, )1 g2
-
2 9T(L*7V)2 2
< QOOO'wdF ﬁf(cf) s

where we used Proposition 3 and the assumption on f ().

B Perturbation of the discrete algebraic Riccati equation

B.1 Proof of Proposition 1

Given parameters (A4, B, Q) (R is assumed fixed throughout; () is assumed positive semidefinite
throughout) we denote by F(X, A, B, ) the matrix expression

F(X,A,B,Q)=X-A"XA+A"XB(R+B'"XB)"'B"XA-Q
=X-ATX(I+BR'B'X)" A-Q. (16)

Then, solving the Riccati equation associated with (A, B, Q) corresponds to finding the unique
positive definite matrix X such that F'(X, A, B, Q) = 0. We denote by P, the solution of the Riccati

equation corresponding to the true system parameters (A,, B,) and we denote by P the solution
associated with (A, B, Q). Our goal is to upper bound || P — P,|| in terms of &, where € > 0 such
that ||[A — Au|| <&, ||B— Byl <e,and ||Q — Q4] < e.

We denote Ap = P - P,. The proof strategy goes as follows. Given the identities

F(P,,A,,By,Q+) = 0 and F(]37 E,E,Q) = 0 we construct an operator ¢ such that Ap is
its unique fixed point. Then, we show that the fixed point of & must have small norm when ¢ is
sufficiently small.

We denote S, = B,R™'B,” and S = BR-!BT. Also, recall that L, = A, + B, K. For any matrix
X such that I + S, (P, + X) is invertible we have

F(P.,+X,A,,B.,Q.) =X L] XL, +L] X[I+8,(P,+X)] " 8XL,. (17)
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To check this identity one needs to add F'(P;, A,, B,, @), which is equal to zero, to the right hand
side of (17) and use the identity (I + B,R~'B] P,)~*A, = A, + B, K,. This last identity can be
checked by recalling K, = —(R + B P,B,)"!B] P, A, and using the matrix inversion formulat.

To write (17) more compactly we define the following two matrix operators
T(X)=X—-L]XL, and H(X)=L]X (I +S,(P. + X)) 'S, XL,.

Then, Equation 17 becomes F(P, +X, A, B,, Q,) = T(X)+H(X). Since Equation 17 is satisfied
by any matrix X with I 4+ S, (P, + X) invertible, the matrix equation

F(P.+X,A,,B,,Q.) — F(P, + X, A, B,Q) = T(X) + H(X) (18)

has a unique symmetric solution X such that P, + X > 0. That solution is X = Ap because any
solution of (18) must satisfy F'(P, + X, A, B, Q) = 0.

The linear map 7: X — X — L] XL, has eigenvalues equal to 1 — \;\;, where ); and \; are
eigenvalues of the closed loop matrix L,. Since L, is a stable matrix, the linear map 7 must be
invertible. Now, we define the operator

o(X) =T~ (F(P, + X, A, B.,Q)) — F(P. + X, A, B,Q) - #(X)).

Then, solving for X in Equation 18 is equivalent to finding X satisfying P, + X > 0 such that
X = ®(X). Hence,  has a unique symmetric fixed point X such that P, + X > 0 and that is
X = Ap. Now, we consider the set

S, ={X:|X|<v,X=X",P,+X =0}

and we show that for an appropriately chosen v the operator & maps S, into itself and is also a
contraction over the set S,,. If we show these two properties, ® is guaranteed to have a fixed point in
the set S,. However, since A p is the only possible fixed point of ® in a set S, we find ||Ap|| < v.

We denote A4 = A-— A, Ag = B - B,, Ag = @ — Qy,and Ag = S — S,. By assumption we
have |A4|| < e, |Ag| <&, ||Ag| < e. Then, |Ag|| < 3||B.||||[R||e because £ < || By||.
Lemma 4. Suppose the matrices X, X1, Xy belong to S,,, with v < min{1, ||S,||~*}. Furthermore,

we assume that ||A4ll < ¢, ||Ag|| < ¢ and ||Agl|| < e with e < min{l, ||B,||}. Finally, let
o(P,) > 1. Then

T(L*a 7)2

P(X)|| <
(0] <377

LIS + el APl Ball 1R+

(L., v)? f _
[®(X1) — @(X2)| < 321_*772 IZalPSell + el Al PN BLAZNRTHIE] 1 X1 — Xa-

The proof of this lemma is defered to Appendix E. Now, we choose

T(L*v 7)2

=6
v € =2

AN PRI Bl 1R+ (19)

Since ¢ is assumed to be small enough, we know

. 1-92 - 1}
v < min NS« 1’7 ’
e I e NS

Then, the operator ® satisfies | ®(X;) — ®(X5)| < 1|/ X; — Xa|| forall X; and X> in S,. Moreover,
we have ||®(X)|| < wvforall X € S,. Since v < g(P,), we know that P, + ®(X) = 0

Therefore, ® maps S, into itself and is a contraction over S,,. Hence, ® has a fixed point in S, since
S, is a closed set. However, we already argued that the unique fixed point of ® is A p. Therefore,
Ap € S, and ||Ap|| < v. Proposition 1 is now proven.
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B.2 Proof of Proposition 2

Since both noisy and noiseless LQR have the same associated Riccati equation and the same optimal
controller, we can focus on the noiseless case in this section. Namely, noiseless LQR takes the form

oo
minz x:th + utTRut , where x;11 = A,x¢ + Byuy,
p——
for a given initial state xy. Then, we know that the cost achieved by the optimal controller when the
system is initialized at xg is equal to x] PyX.

We denote by J(A, B, X, {u;}+>0) the cost achieved on a linear system (A, B) initialized at x( by
the input sequence {u,; };>o. When the input sequence is given by a time invariant linear gain matrix
K we slightly abuse notation and denote the cost by J(A, B, xq, K). In this case, J(A, B,x0, K) =
x( Pxg, where P is the solution to the associated Riccati equation.

Now, let xg be an arbitrary unit state vector in R™. Then,
XJﬁXO —xg Pixo = J(A,E,Xo,f?) — J(A,, By, %0, K)
< J(A, B, %0, {8t }i20) — J(Ax, Ba, X0, K.

for any sequence of inputs {U; };>¢. We denote by x; the states produced by U, on the system (ﬁ, f?)
and by x; and u, the states and actions obtained on the system (A,, B,) when the optimal controller
u; = K,x, is used. To prove Proposition 2 we choose a sequence of actions {u; };>¢ such that

J(A\v Ev X0, {ﬁt}tZ(]) ~ J(A*7 B*7 X0, K*)

For any sequence of inputs {U; }:>o such that the series defining the cost .J (4, B, xo, {Ut}t>0) is
absolutely convergent, we can write

oo £—1
J(A, B,x0, K) = J(As, By X0, Ky) = Y [R54iQR i — X{54.:Q%e;14] (20)
=0 1i=0
oo £—1
T Z Z [ﬁéTjHRﬁéjJri - u£Tj+iRqu+i] .
§j=01i=0

Then, the key idea is to choose a sequence of inputs {U; };+>¢ such that the system (A\7 B) tracks the
system (A,, By, K,), i.e., X¢; = x¢; forany j > 0 ( Xo = x¢ because both systems are initialized at
the same state). This can be done because (A, B) is (¢, 7/2)-controllable when (A,, By ) is (¢, 7)-
controllable and the estimation error is sufficiently small, as shown in Lemma 6. First, we present a
result that quantifies the effect of matrix perturbations on powers of matrices.

Lemma 5. Let M be an arbitrary matrix in R"*"™ and let p > p(M). Then, for all k > 1 and real
matrices A of appropriate dimensions we have

I(M + A)*|| < 7(M, p)(7(M, p)| Al + p)*,
I(M + A)F = M*|| < kr(M,p)*(r(M, p)IA] + p)* Al
Recall that 7(M, p) is defined in Equation 3.

The proof is deferred to Appendix C. Lemma 5 quantifies the effect of a perturbation A, applied
to a matrix M on the spectral radius of M + A. We are interested in quantifying the sizes of
these perturbations for all k = 1,2,. .., ¢. Depending on |A||, M, and p the sum 7(M, p)||A]| + p
can either be greater than one or smaller than one. For notational simplicity, in the rest of the
proof we denote 3 = max{1,e7(A,,p) + p}. Then, we have ||(A, + A)¥|| < 7(A,, p)B*~! and
(A + A)k — A¥|| < ¢7(Ay, p)2B¢ e forall k < £ — 1 and all real matrices A with ||A]| < e.

We denote C; = [B. A.B, ... A"'B,] and C = [E AB ... ﬁ“lg]. Before
presenting the next result we recall that for any block matrix M with blocks M; ; we have
M%< > 1M |. The next lemma gives us control over the smallest positive singular value of

the controllability matrix é\g in terms of the corresponding value for Cy.
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Lemma 6. Suppose the linear (A, By) is (£, v)-controllable and let p be a real number such that
p > p(Ay). Then, if ||A — Ay|| < e and ||B — By| < &, we have

o(Cp) 2 7 = 3el37(A,, p)* max{1, 7(Au, )| Al + p} " (I1B.] +1) -

The proof is deferred to Appendix D. Lemma 6 tells us that by the assumption made in Proposition 2

on €, we have Q(Cg) > ” . Hence, we know that for any xy € R™ and up,uy,...,up—1 € R4, there
exist Ug, Uy, ..., Us_1 € Rd such that
-1 -1
AiXO + Z AiB*uzflfi = A\ZX() + Z zzl\igﬁgflfi (21)
i=0 =0

because the system (ﬁ, E) is controllable. This equation implies that X, = x,.

We denote the concatenation of u;, for 4 from 0 to £ — 1 by ul¥). We define u(¥) analogously.
Therefore, Equation (21) can be rewritten as

(Aﬁ - 2%) o + (Cg _ @) u® = G0 — u®). 22)

Recall that 3 = max{1, 7(A., p)|Al| + p}. Combmmg Lemma 5 and the upper bound on operator
norms of block matrices we ﬁnd ICe — Co|| < el3(Ay, p)2B°~ 2 (|| Bul| + 1)

We are free to choose 1Y) anyway we wish as long as Equation (22) is true. Therefore, we can
choose ﬁ“) such that ¥ — u® is perpendicular to the nullspace of C;. Then,

TR | < JCED - u®)]| < str(Ae o8 ol + G — ol

< el (As, p)* B Ixoll + 02 7(Ary p)*B 71 (| Bull + 1) [[u].

Hence,
a® () 25€% 200—1 (0)
89 —u®) < (40,08 (1Bu] +1) (ol + [0 ]])
= (IIxoll + [u®]) - (23)
Let us consider the block Toeplitz matrix
0 0 0 0
B, 0 0 0
7_| AB. B 0 0
AL2B, ALRB, ... B, 0
From Lemma 5 and the upper bound on operator norms of block matrices we have || 7; — 7| <
el?1(Ay, p)2B72(|| B, || + 1). Let x(¥) be the concatenation of the vectors Xg, X1, ..., X;_1. Then,
L,
Ay
x = 7u® + .| %o
AZ.fl
Hence,

Ix© — RO < || Tou® — Ta®|| + 203 7(A,, p)2B" 2 |xo |
< || Tea — T @) + | Tou'® — T ®|| + 203 7(A,, p)2B" 2 |xo |
<72 = Telllla @ | + [ Tell [ — GO + 05 7(As, p)2 572 1x0
< elPr(A,, p)2 B2 (| Bull + D[u®]| + 03 7(A,, p)2B 72 |xo |
+0r(Ay, p)BT2(|Bull + 1) u® — @)
< 2e037(AL, )BTV (L4 77 (Bl + 1) | ol + [[u®]

= p |0 + [|xoll| - (24)
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In Equations (23) and (24) we proved that the inputs and states of the system (A\7 E) are close to

the inputs and states of the system (A, B, ) from time 0 to £. Since the inputs to the system (ﬁ, E)
satisfy Equation (22), we know that X,; = x,; for all j. We can repeat the same argument as above,

with x,; taking the place of Xg, to show that the inputs and states of the two systems are close to each

other from time £j to £(j + 1). Let us denote by x( )

) (¢
X¢j+0—1 and let u;

the concatenation of the vectors X¢;, X¢j41, - - -

) be defined analogously. Then,

~(0) 4 4 ~(L 4 0
1887 = a2 < [l + x|, and R = ) < e[l + xel] . @9)

Now, we note that

. oo £—1
xg Pxo — xq Pixo < Z Z (X1 Q%ej4i — X754 Q%)
7=0 =0
oo £—1
+ [ﬁzj+iRﬁgj+i — qu—i-iRu@j-‘ri]

o

§=0 i=0

Y4 ¢ ~(¢ 4 ~(¢
< S 20IQI 1 = =) + QxS — =12
7=0
l 4 ~(¢ ? ~(¢
+ 3 2Rl [ul? — &)+ |RIful” — a7 )2 .
j=0

Now, we use the upper bounds from (25). We always have < p. Since Proposition 2 assumes ¢ is
small enough, we also have ;1 < 1. Using these upper bounds, we find

(o)
= ¢ ¢ ¢ 2
T = do <y 20QUIRE N [+ xesl] + QU [l + e ]
j=0

o)
2
L 4 4
3 20BN | [+ xesl] + 1R[]+ e ]
Jj=0

Then, we get J — J, < 8umax{||Q|, | R|/} Yo ||x§»€) |I* + ||u§é)|\2 after using the inequalities
(a+b)? <2(a® + b?) and 2ab < a? + b. Now, As long as ||x¢|| < 1 we have
. ¢ ¢
min{a(Q), a(R)} Y 1”1 + [ < D" x[Qx: +u/ Ru, = xg Poxo < | 2] (26)
§=0 t=0
Since the initial state is an arbitrary unit norm vector, our upper bound on x (ﬁ — P,)x becomes

max{||Q]|, [ R[|}
min{o(Q),c(R)}

Now, we can reverse the roles of (A, B) and (A,, B,) and repeat the same argument and obtain an

Amas (P = B.) < 160374, o850 (1071 + | B P @)

upper bound on Ay ax (P* - ﬁ) analogous to Equation (27), but which has || P, || replaced by HﬁH

on the right hand side. However, (27) implies that || P|| < || P,|| + 1 < 2|| P, || because we assumed
that € is small enough such that the right hand side of (27) is less than one, and because P, >~ I,,.
The conclusion follows.

We note that the proof can be easily extended to the case when the cost matrix () is also being
perturbed. Moreover, the only essiential step in the argument where we used @ > 0 is (26). The goal
of (26) is to upper bound Y77, Hx(e) [|?

Q is not positive definite, but the system (Q'/2, A) is observable; which is a necessary requirement
for LQR on the parameters (A, B, @, R) to stabilize the system (A, B).

+ Hug-e) |2. This quantity can be upper bounded even when
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C Proof of Lemma 5

This proof is a simple modification of Lemma D.1 in [11]. We replicate the argument here for
completeness.

Fix an integer k > 1. Consider the expansion of (M + A)* into 2* terms. Label all these terms as
T;jfori=0,..,kandj=1,..., (]:) where i denotes the degree of A in the term (hence there are
(%) terms with a degree of i for A). Using the fact that | M*|| < 7(M, p)p* for all k > 0, we can
bound ||T; ;|| < 7(M, p)i*1pk~%||A||’. Hence by triangle inequality:

;
(M + 251 <D Y IITig)

i=0 j
<Z() (M) A
=T<M,p>g(f) (0, A

= (M, p)(r(M, p)||A]| + p)*.

To prove the first part of the lemma we follow the same argument. We find

I(M +A)F — M¥| < ZZIIT,JII

< Z( ) (M, ) A
=, pé (5)rarpnano

= 7(M,p) [(T(M, p)|A]| + p)* — p]
< kCh, ((M, p) Al + o) HIA]

where the last inequality follows from the mean value theorem applied to the function z — z*.

D Proof of Lemma 6

We can write

o~ ~ ~ o~

o([B AB ... A*'B])= min |0"[B AB ... A“'B]|.

vesSn—1

Fix an arbitrary unit vector v in R?. Then,

|o" [B. AuB. ... AT'B—-o'[B AB ... A-'B]|
<|v"[B. AB. ... A“'B,]-o"[B, AB, ... A"'B]|
+[o" [B. 4B, ... A“'B,)-v"[B AB ... A'B]|

S €£%T(A*,p)25£71”-3*” + 5\/ZT(A*apa ﬂ)€71
< 5€%T(A*,P)2ﬁ€_l (1Bl +1).

We used £ > 1, 7(A,, p) > 1, Lemma 5, and the upper bound || M ||* < 3=, /[|M; ;|* on the operator
norm of a block matrix. The conclusion follows by the triangle inequality.
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E Proof of Lemma 4

We wish to upper bound ||®(X)|| and ||®(X;) — ®(X3)|| for X, X3, and X5 in S,. First, we
upper bound the operator norm of the linear operator 7', the inverse of 7: X — X — LI XL,.

Since L, is a stable matrix, the linear map 7 must be invertible. Moreover, when L, is stable and
X — L] XL, = M for some matrix M, we know that X = >";° /(L¥)" M L%. Therefore, by the

triangle inequality, the operator norm of 7' can be upper bounded by || 7| < %. Before
we proceed with the rest of the proof we present a technical lemma which will be used several times.

Lemma 7. Let M and N be two positive semidefinite matrices of the same dimension. Then
IN(I+MN)~H < [IN]|.

Proof. We assume that M and N are invertible. If they are not, we can work with the matrices
M + vI and N + vI and take the limit of v going to zero. Then, we have N(I + MN)~! =
NN-YYN14+ M)t =(N"1+M)"* <N. O
Next, recall that H(X) = LT X (I + S, (P, + X))~ ' S, XL,. Then, Lemma 7 yields

IHEON < LIPS X NP

We turn our attention to the difference F(P, + X, A,, B,) — F(P, + X, A, B). We use the notation
Px as a shorthand for P, + X. Then, by Equation 16 we find

F(Px,A,B,Q) — F(Px, Ay, B,,Q.) = Al Px (I + S,Px) " A, — AT Px (I + §PX)_1 A—Ag
= Al Px(I + 5,Px) "AsPx(I + SPx)"A, — Al Px(I+ 5Px)"'A,
— AW Px(I4+S5Px)"'A, — ALPx(I+SPx) A4 — Ag. (28)
Then,
IF(P. + X, A4, B,Q) — F(P, + X, Ay, B, Q.|
< [ APIPx 1 As ] + 2l AullIPx [l + | Px[le? + e,

where we used Lemma 7. Since X € S,, we know || X|| < v and hence ||Px|| < || P.|| + v. We
assumed that v < 1/2 and so || Px|| < ||P.|| + 1. Now, we know that ||Ag|| < 2||B,]|[|[R7!]|e +
||[R~1||e? and since we assumed ¢ < || B, ||, we have ||Ag| < 3||B.||||R~}||e. Therefore,

(Ly, p)?

T _
Il = =—73 NZAPISN? + B AT NP I Bell+ 1R [ 4e] -

We use Lemma 7, the assumption v < ||S,|| =1, and the definition of # to upper bound
1H(X1) = HX)I < Ll [1S4lP0? + 2[[Silv] X1 — Xl < 3| Lu]|Sellv] X1 — Xall.

Let us denote G(X) = F(P, + X, A, B, @) — F(P, + X, A, By, Qy). In order to upper bound

G(X1) — G(X5)]|| we first upper bound the norm of (I + S,Px)~! and (I + SPx)~'. Since
[IX|| < v <1/2andsince P, > I, by Lemma 7 we get

(1 + S.Px) " = | Px ' Px (I + SPx) 7| < [P [ Px (I + SePx) ™t < 2| Px .
Therefore, after some algebraic manipulations, we obtain
1G(X1) = G(Xo)|| < 32| AR NP IBLATIRTF 1 X1 — Xoll.

F Proofs for LQG

F.1 Proof of Theorem 3
The proof strategy works as follows. Note that unlike the case for LQR, we were unable to reuse or

derive an exact second order perturbation bound analogous to Lemma 3 for LQG. Hence we resort to
an argument based on a simple Taylor expansion.
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We first assume that K satisfies | K — K, 7| < ¢ and thate < 1. Let © = (4, B,C,W,V,Q, R)
be the parameters that specific an instance of LQG in (8). Here, we will be slightly more general than
in (8) and allow the process noise w; and observation noise v; to have non-isotropic covariances W

P N N NN

~ AN N~ o~

T
1
J(A,B,C,K,L;@):Tnm E TE yiQy: +uf Ru,| st
— 00
t=1

Xpp1 = Axe + Bug +wy, wi ~ N(0, W),
:CXt—FVt, V¢ NN(O,V),
== I?ﬁt,

XtJrl AXt + But + L(Yt CXt) .

~ AN A~ o~ N~ AN AN A~

As observed earlier, we have that J(A,B,C,K,L;0) = J(A,B,C,K,L,0), with 6 =
(TAT~Y, TB,CT~',TWTT,V,Q, R) for any invertible T. Hence, we can assume that T" = |
moving forward.

P N N N

P N N N

T
. 1
Js(A,B,C,K,L;0) = lim E T szQxf +u/ Ru;| st

T— o0
X1 = Axy + Bug +wy , wy ~ N(0, W),
:Cxt+vt, VtNN((),V),
u; = I?)?t ’
X1 = A%, + Bu, + E(Yt — éﬁt) .

Observe that:

~ N N N~ ~ oA A~ o~

J(A,B,C,K,L;0) = J,(A,B,C,K,L; (A, B,C,W,V,Q.,R)) + tr(QV), Q.:=CTQC.

Let J, . denote the optimal value for J,. This decomposition shows that:

~ N N~ ~ ~ N N~ o~

J(A,B,C,K,L;0) — J, = JJ(A,B,C,K,L;(A,B,C,W,V,Q0,R)) — Js, .

Hence we will work with Js from here on. In the sequel, we will drop the dependence of J on ©. We

~ AN~~~

write £ = (A, B,C,K,L) and Z, = (A, B,C, K,, L,). By Taylor’s theorem,

1
2

= JID7,ENA, ).

To(E) = o = [DI(E(A) + 5 [D*T,(E)](A, A)

where the first equality holds by the optimality of =, and Z is an element along the ray between g
and =,.

We start by defining e; = X; — x;. Observe that:

Xe| Xt o I 0
R sl os=l <”>
We write:
xo] [ AxrBRRtw
Xi+1 Aﬁt + BKﬁt + L(C’xt + vy — Cﬁt)

_ A B[? Xt + I 9 Wi
" |LC (A+BK)-LC| [X¢] " [0 LJ |Vt

AAAAA I 0
el o

I
=
>
=
9
=

h



~N oA A A~

We abbreviate M := M (A,B,C,K,L). Applying a similarity transform to M:

175 I 0fA BK I0
SIS = {_1 1] [Ec (A4 BR) - Eé] [1 1]
:{A A+BK  BK
(A-—A)+(B-B)K+L(C-C) (A-LC)+(B-B)K
=N.
Therefore M is stable iff N is stable.
By (30), if M is stable, then the stationary distribution of (x4, %) is given by N(0, %) with & =

T (w0 :
dlyap (M , { 0 LVLT] > Therefore, we have that:

AAAAA o Qc 0 S
JJ(A,B,C,K,L)=tr ([ o IA(TRK} 2) .

= A+ M, .
Using the assumption that ¢ < 1, we can bound ||A|| by:
IAI < [IBllex + IClle +ea + (1Kl + Dep + [ Bllex + (ICl + e + ([ Lxllec
<ea+ (1Bl +Vep + [[Lullec + 2(|C| + Der + 2| Bllex
<2l (ea+ep+tec+ex+er)
<10le.
Let p > p(M,). If 10Ty - € < m, then we have p(M) < (1 + p)/2 and 7(M, (1 + p)/2) <

~ AN AN~

7(M,, p). This holds for any (A, B,C, K, L) along the ray of (A, B,C, K, L) and (4, B,C, K, L).
Therefore for any point along this ray we have that M is stable and that for any fixed H,
|[dlya (]\}[T H)|| < I H||7(Ms,p)

yap — 1-Avg(p,1)?"

Next, we consider = = (A B C ) and differentiate J, twice w.r.t. :, assuming that = corre-

sponds to a point along the ray = = (A\7 B,C.K, E) and =, = (A, B,C, K,, L,). By the chain
rule:

D21,3)(A,8)
—u (|9 grna| =@M v ([0 apnk 4 2rRay | PREIS)
+2tr<{8 A}%AK]Z( ))

< (tr(Qe) + tr(R) (KL + DPID*RE)NA, A
+2tr(R) (K| + Dex IDEE)(A)]| + 2 tr(R)ek [2(E)

< (tr(Qe) + tr(R)I) (II[DQE(E)]( , )||+2€K||[DE(E)](A)H+28§<||E(§)|I)-

[1]2

[1]2

[I]z

Given the composition h(z) = g(f(x)), we have by the chain rule:
[Dh(2)](A) = [Dg(f(2))[([Df(2)](A)) , €2
)] ]

[D?h(2))(A, A) = [D?g(f(2)/([Df())(A )7[Df(l')}(A))+[Dg(f(z))]([sz(x)](A,A)gz)
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= yap (M, Q) and

We apply this with g(M =
BK w0
(A+ BK)—LC| "0 LVL'|)"~
3 (Z). Differentiating f,

[I]r

Therefore the composition h = go fis h(Z) =
DiENA) = ([, i B N

- o ALC AA-‘FBAK-‘FABK—(LAc-i-ALC) 710 LVAI-FALVLT ’

0 0 ]T {0 0 D

0 2ApAg —2ALAc| 7|0 2ALVAT

D2E)(A,A) = ([
Letting P = g(M, Q), we have:
[Dg(M,Q)|(A) = g(M,Aq + MTPAy + A} PM)
(D2g(M, Q)N(A, &) = 29(M, AL, PAw + MTg(M, Ag)Ans + Al g(M, Ag)M)
+29(M, A}, g(M, A}, PM + MTPAN)M + M g(M, AL, PM + MTPAN)Ap) .
(33)
The derivation for (33) is postponed for now.
Let Sy (Q) be the linear operator @ — g¢(M,Q). Observe that ||Su|| 721(77%’2’3) and
IMTg(M,Q)|| < T (MP)HQH With this, we can bound,
M,p M,p
11000, Q) < 5L gl + 2L s
M,p M,p
at )||Q||AM|2+4(1()Z||AQ||AM|

IID%g(M, Q)I(A, A)] < IOW

Therefore,

IDg(FENIDFENAD]

M
< 2MHLHHVHQ oo (M0)

(M, p)
< 24— TEYaE max{||W||,|LVLT||}T,e

TQ(M p) (M, p)
I, [|Vier + 20 max{|[|[W|, T2V e
g eV ller + 20 g 2 W T2V}
7—4(1”*7p) 3
< m W
—2 (l—AVg(p, 1)2)2 aX{” Ha”V”}F*E

and,
IIDa(FENDFENA. A
<25 LD et T L) (VT +evc)
7'2(M p) 74 (M, p) 2 2
e A VI +8 T pe s max (W 12V e

(M, p)
<10 ’ W, |V 22 .
< (FAVg(p,l)Q)Qmax{n I VI3

and also, ) ) )
IID2(FENDFENA). [DFEA))]
(M, p (M
< 107 B a1 VLT 00r.2)? + 4T CE D o BV e 10re)
70 (My, p) 4.2 (M, p)
max{ [ VD + 807 v,

<1000
- (T-Avep,1)?)?

TG(M* P) 4.2
< 1080 . W1, IV e .
T gl 1y eI L VT
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Therefore,

< 72(M,, p)
~ 1-Avg(p,1)?

IDEENA) < 22 B max(W L Ve

2 = TG(M*7P)

Combining these bounds with the calculations for J;,
[D2J,())(A, A)
< (tr(Qc) + tr(R)I) (II[DZE(E)](A, A)| + 2k [[DEE)(A)] + 26%”2(3)\\)

I=(=)] max{||W|, [[V|[}T

max{||W|, [V|[}T}e.

< 1136(6r(Q0) + (R — D)t vy

(1~ Avgl(p. )7

( *»P)
< 1136(tr(Qc)+tr(R))<1_Avg( PR max{[|W|], |V |}T¢e
< 1136+ 64(1x(Q0) + () 772 T )) max{ | W], |V }T%2

To finish the first part of proof, we show the derivation for (33). Observe that for £ small:

(A+BE) ' =(AI+A'E) ' =(I+A'E) AT =) (-AT'E)FAT!
k=0
=A'—AT'EAT L AT EATT EAT L O(|E)P)

Therefore, letting S =1 — M T MT,
(I — (M +Ap)" @M+ Ax)")  tvec(Q + Ag)
= S vec(Q + Ag)
+STH A, @MT+ MT®@ AL + AL @ Al)S tvec(Q + Ag)
+S MA@ MT + MT@AL)S AL, @ MT + MT @ A},)S tvec(Q + Ag) + O(J|A|P)
= S vec(Q) + S~ vec(Ag)

+8~ (A QMT+M"®Al)S vec(Q) + S7HAL, @ AL,)S Ivec(Q)
HAL, @M+ MT e AL)S vec(Ag)
AL o MT+ MToAL)STHAL @ MT + MT @ Al)S vec(Q) + O(||A]%) .
Now to finish the proof, we need to obtain a € such that

max{|[ A~ TAT Y, |B ~ TB.|.|C ~ C.T 7", | ~ TLJl. |K — K.T7"} <=.
We do this by observing that:

K.T7'=LQR(TAT Y, TB,, T-"CIQC,. T, R).

Hence with K — LQR(A\7 ﬁ, C“TQG, R), we can use the Riccati perturbation between P, =

dare(TA,T-Y,TB,, T-"CIQC, T~', R) and P= dare(zzl\7 E, aTQé, R). We can bound, assum-
ing that that e < [|C,||:

1T TCTQC, T~ — CTQC| < (2Cull +£0)Qllec < 3CLIQllec -

Therefore by our hypothesis and the assumption that f is monotonically increasing,

IP = P.|| < f(max{ea,ep,3|Cul|[Qllec}) < fGIICHI+IQ]+ max{ea, ep.ec)) .
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as long as 3||Cy ||+ ||Q]|+ max{ea,ep,ec} < v0. By Lemma 2, this allows us to bound:

_ 73
IR~ K. < T max(en,em SOIC 1@l maxfea.cp.ech)
< T H31Cul Q]+ max{ea,en. )

* max 5 5 .
_Q(R) + + ma. AEBYEC
73

We can set € =
a(R) > 1.

U(R)f(3||C*||+HQ||+ max{e4,ep,£c}) because we assume that f(v) > v and

. A B, K
We now complete the proof by observing that for M, = L. 6* A, + B*;(* - L.C. and N, =
A* + B*K* B*K*
0 A, —L.C,
has several consequences. First, we have p(N,) = p(M,). Second, for any integer & > 1 we have
S~IMFS = N, and therefore

], using S defined in (29), we have that N, = S~'M, S. This identity

3+V5

INE] < cond(S)| M| = =5 — (1M

A nearly identical argument shows that || MF|| < 35 || N¥||. Therefore, 7(Ms, p) = 7(N,, p) for
any p.
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