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1 Proof of Theorem 1

Proof. We estimate the expectation by representing Ŝ(f, v) as the function

F (x1, y1, . . . , x|L|, y|L|) :=
|L|∑
l=1

x2
l

yl
.

We use the first-order Taylor series expansion of F at the point (µx1
, µy1 , . . . , µx|L| , µy|L|), where

µxl
= Exl =

∑
i∈l
gi and µyl = Eyl =

∑
i∈l
hi.

Without loss of generality, we further provide calculations for the case |L| = 1.

We have F (x1, y1) ≈ F (µx1
, µy1) + 2

µx1

µy1
(x1 − µx1

) − µ2
x1

µ2
y1

(y1 − µy1), and, therefore, ∆ =

F (x1, y1)− F (µx1
, µy1) ≈ 2

µx1

µy1
(x1 − µx1

)− µ2
x1

µ2
y1

(y1 − µy1).

Further, we have

E∆2 ≈ E(2
µx1

µy1
(x1 − µx1)−

µ2
x1

µ2
y1

(y1 − µy1))2 = c21(4V ar(x1)− 4c1Cov(x1, y1) + c21V ar(y1)).

2 Proof of Theorem 2

Proof. Our goal is to find solution to the optimization problem:
N∑
i=1

1

pi
g2i + λ

N∑
i=1

1

pi
h2i → min

pi
, w.r.t.

N∑
i=1

pi = N · s and ∀i pi ∈ [0, 1]. (1)

Lagrange function for this problem has form:

L =

N∑
i=1

1

pi
g2i + λ

N∑
i=1

1

pi
h2i + γ

(
N∑
i=1

pi −N · s

)
−

N∑
i=1

τipi −
N∑
i=1

ηi(1− pi), τi ≥ 0, ηi ≥ 0, ∀i

(2)

Necessary conditions for solution of 1 are set by Karush–Kuhn–Tucker conditions:
∂L
∂pi

= − g
2
i

p2i
− λh

2
i

p2i
+ γ − τi + ηi = 0,∀i

τipi = 0,∀i
ηi(1− pi) = 0,∀i

(3)
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Analyzing these conditions, it is easy to conclude that optimal solution has the following properties.

1. Since every pi > 0, τi = 0, ∀i.

2. If ηi > 0, then pi = 1 and g2i + λh2i = γ + ηi > γ.

3. If ηi = 0, then pi =

√
g2i+λh

2
i√

γ ≤ 1

Putting all together, there exists a threshold
√
γ, which divides sample into two parts: {xi :√

g2i + λh2i >
√
γ} of size k(γ) with pi = 1 and {xi :

√
g2i + λh2i ≤

√
γ} of size N − k(γ)

with pi =

√
g2i+λh

2
i√

γ .

Therefore, it is sufficient to find γ = γ∗, such that
N∑
i=1

pi = N · s. Desired value of γ∗ can be found

as a solution of:

N∑
i=1

pi =

N−k(γ)∑
i=1

√
g2i + λh2i

γ
+ k(γ) = N · s (4)

Existence and uniqueness of solution for s ∈ [0, 1] follows from the monotonous decrease of the left
side of equation as a function of γ.

Setting µ =
√
γ∗ finishes the proof.

3 Experiments

We use grid search with 5-fold cross validation to find the best sampling parameters for each al-
gorithm and sampling ratio. For MVS it is a logspace grid on [10−6, 103] for λ parameter and
{5 : 1, 4 : 1, 2 : 1, 1 : 1, 1 : 2, 1 : 4, 1 : 5} for large and small gradients ratio for GOSS. For other
parameters we use tuned parameters from the publicly available benchmarks [1].

For the most visible demonstration of the superiority of MVS we place here charts of quality on
sampling ratio dependence for every dataset from the main paper.
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