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A Cross entropy loss

While this is outside the scope of the theoretical results in the paper, we tested the convergence rate
of a network with a single hidden layer with the cross entropy loss. We used a binary classification
task. To construct our target classes, for every integer k > 0 we produced data on the 1D circle
according to the function cos(kθ), and then thresholded it, assigning class 1 if cos(kθ) > 2/3, -1 if
cos(kθ) < 2/3 and omitted points for which | cos(kθ)| ≤ 2/3. As with the MSE loss, here too we
see a near quadratic convergence rate, see Figure 1.
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Figure 1: Number of iterations to convergence as a function of target frequency with the cross entropy loss. A
deep residual network is used with 10 hidden layers including bias, m = 256, η = 0.05, n = 1001. Weight
initialization as in [13], bias - uniform. Leading exponent is estimated as O(K2.34).

B Eigenvalues of H∞ with d > 1

Using the Funk-Hecke theorem, we can find the eigenvalues of H∞ in the continuous limit by
integrating the product of the convolution kernel with spherical harmonics. We first collect together
a number of formulas and integrals that will be useful. We then show how to use the Funk-Hecke
theorem to formulate the relevant integrals, and finally compute the results.

B.1 Useful integrals and equations∫ π
0

cosn θdθ is π for n = 0 and 0 for n = 1. For n > 1 we use integration by parts∫ π

0

cosn θdθ =
cosn−1θ sin θ

n

∣∣∣∣π
0

+
n− 1

n

∫ π

0

cosn−2 θdθ. (1)

The first term vanishes and we obtain∫ π

0

cosn θdθ =

{
π n−1n

n−3
n−2 ...

1
2 = π

2n

(
n
n
2

)
n is even.

0 n is odd
(2)
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∫ π
0

sinn θdθ is π for n = 0 and 2 for n = 1. For n > 1 we integrate by parts∫ π

0

sinn θdθ =
− sinn−1 θ cos θ

n

∣∣∣∣π
0

+
n− 1

n

∫ π

0

sinn−2 θdθ. (3)

The first term vanishes, and we obtain∫ π

0

sinn θdθ =

 π n−1n
n−3
n−2 ...

1
2 = π

2n

(
n
n
2

)
n is even.

2n−1n
n−3
n−2 ...

2
3 = 2n+1

(n+1)( n
n+1
2

)
n is odd (4)

Next we wish to compute
∫ π
0
θcosnθ sin θdθ for n ≥ 1. Integrating by parts∫ π

0

θcosnθ sin θdθ = −θ cosn+1 θ

n+ 1

∣∣∣∣π
0

+

∫ π

0

cosn+1 θ

n+ 1
dθ. (5)

Using (2) this we obtain∫ π

0

θcosnθ sin θdθ =
(−1)nπ

n+ 1
+

{
0 n is even
π
n+1

n
n+1

n−2
n−1 ...

1
2 n is odd

=

{ π
n+1 n is even.
π
n+1

(
−1 + 1

2n+1

(n+1
n+1
2

))
n is odd (6)

Next ∫ π

0

θ cos θ sinn θdθ =
θ sinn+1 θ

n+ 1

∣∣∣∣π
0

−
∫ π

0

sinn+1 θ

n+ 1
dθ (7)

The first term vanishes and we obtain from (4)∫ π

0

θ cos θ sinn θdθ =

 −
2n+2

(n+1)(n+2)(
n+1
n+2
2

)
n is even

− π
(n+1)2n+1

(n+1
n+1
2

)
n is odd.

(8)

Other useful equations

(1− t2)p =

p∑
q=0

(−1)q
(
p

q

)
t2q (9)

and its k’th derivative,
dk

dtk
(1− t2)p =

p∑
q=d k2 e

C2(q, d, k)t2q−k (10)

where we denote

C2(q, d, k) = (−1)q
(
p

q

)
(2q)!

(2q − k)!
(11)

∫ 1

−1
tndt =

tn+1

n+ 1

∣∣∣∣1
−1

=
1− (−1)n+1

n+ 1
=

{
2

n+1 n is even
0 n is odd

(12)

∫ 1

−1
t(1− t2)ndt = 0, (13)

since this is a product of an odd and even functions.

Finally, using (6) and (9),∫ 1

−1
arccos(t)(1− t2)ndt =

n∑
q=0

(−1)q
(
n

q

)∫ π

0

θ cos2q θ sin θdθ

=

n∑
q=0

(−1)q
(
n

q

)
π

2q + 1
(14)
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B.2 The Kernel

We have

H∞i,j =
t(π − arccos(t))

2π
=

cos θ(π − |θ|)
2π

(15)

for θ the angle between xi and xj and we use the notation t = cos θ. For the case of xi uniformly
sampled on the hypersphere, this amounts to convolution by the kernel:

K∞ =
π cos θ − θ cos θ

2π
(16)

The absolute value disappears because on the hypersphere, θ varies between 0 and π.

For the bias, the kernel changes to

K̄∞ =
(t+ 1)(π − arccos(t))

4π
=

(cos θ + 1)(π − θ)
4π

(17)

We can divide the integrals we need to compute into four parts. We denote:

K1 =
t

2
=

cos θ

2
(18)

K2 = − t arccos(t)

2π
= −θ cos θ

2π
(19)

K3 =
1

2
(20)

K4 = −arccos(t)

2π
= − θ

2π
(21)

This gives usK∞ = K1 +K2. We denoteKb = K3 +K4. This is the new component introduced by
bias. Then we have K̄∞ = 1

2 (K∞ +Kb) = 1
2 (K1 +K2 +K3 +K4). We will use adk to denote the

coefficient for frequency k of the harmonic transform of K∞, in dimension d. We use bdk to denote
the coefficient of the transform for just the bias term, Kb. And finally, cdk denotes the coefficient for
the complete kernel with bias, K̄∞, so that cdk = adk + bdk.

B.3 Application of the Funk Hecke theorem

The eigenvalues of H∞ can be found by projecting the kernel onto the spherical harmonics, that is,
by taking their transform. It is only necessary to do this for the zonal harmonics. This is because the
kernel is written so that it only has components in the zonal harmonic. Suppose the dimension of xi is
d+ 1, so it lies on Sd, and we want to compute the transform for the k’th order harmonic. We have:

adk = V ol(Sd−1)

∫ 1

−1
K∞(t)Pk,d(t)(1− t2)

d−2
2 dt, (22)

where V ol(Sd−1) denotes the volume of Sd−1, given by

V ol(Sd−1) =
π

d
2

Γ(d2 + 1)
(23)

and Pk,d(t) denotes the Gegenbauer polynomial, given by the formula:

Pk,d(t) =
(−1)k

2k
Γ(d2 )

Γ(k + d
2 )

1

(1− t2)
d−2
2

dk

dtk
(1− t2)k+

d−2
2 (24)

Γ is Euler’s gamma function whose formulas for integer values of n are:

Γ(n) = (n− 1)! (25)

Γ(n+
1

2
) = (n− 1

2
)(n− 3

2
)...

1

2
π

1
2 (26)
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Substituting for these terms we obtain

adk =
π

d
2

Γ(d2 + 1)

∫ 1

−1
K∞(t)

(−1)k

2k
Γ(d2 )

Γ(k + d
2 )

1

(1− t2)
d−2
2(

dk

dtk
(1− t2)k+

d−2
2

)
(1− t2)

d−2
2 dt (27)

=
π

d
2

Γ(d2 + 1)

∫ 1

−1
K∞(t)

(−1)k

2k
Γ(d2 )

Γ(k + d
2 )

dk

dtk
(1− t2)k+

d−2
2 dt (28)

=
π

d
2

Γ(d2 + 1)

(−1)k

2k
Γ(d2 )

Γ(k + d
2 )

∫ 1

−1
K∞(t)

dk

dtk
(1− t2)k+

d−2
2 dt (29)

= C1(d, k)

∫ 1

−1
K∞(t)

dk

dtk
(1− t2)k+

d−2
2 dt (30)

(31)

with

C1(d, k) =
π

d
2

(d2 )

(−1)k

2k
1

Γ(k + d
2 )

To simplify the expressions we obtain, we will assume d is even in what follows. For the cases with
and without bias we first compute the DC component of the parts of the kernels, and then compute
the coefficients for k > 0.

B.4 Calculating the coefficients: no bias

k = 0:

ad0 = C1(d, k)

∫ 1

−1
K∞(t)(1− t2)

d−2
2 dt. (32)

First we consider K1 (18). Using (13) we have

1

2

∫ 1

−1
t(1− t2)

d−2
2 dt = 0. (33)

Next, we consider K2 (19). Using (8) we have

− 1

2π

∫ π

0

θ cos θ sind−1 θdθ =
1

d2d+1

(
d
d
2

)
(34)

Therefore,

ad0 = C1(d, k)
1

d2d+1

(
d
d
2

)
(35)

k > 0:

adk = C1(d, k)

∫ 1

−1
K∞(t)

dk

dtk
(1− t2)pdt (36)

where we denote p = k + d−2
2 , noting that p ≥ k. Using (10)

adk = C1(d, k)

p∑
q=d k2 e

C2(q, d, k)

∫ 1

−1
K∞(t)t2q−kdt (37)

Considering K1, and using (12)

1

2

∫ 1

−1
t2q−k+1dt =

{
0 k is even

1
2q−k+2 k is odd (38)
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Considering K2, and using (6)

1

2π

∫ π

0

θ cos2q−k+1 θ sin θdθ =

{
1

2(2q−k+2)

(
−1 + 1

22q−k+2

(2q−k+2
2q−k+2

2

))
k is even

1
2(2q−k+2) k is odd.

(39)

Combining equations (37), (38), and (39) we obtain:

adk = C1(d, k)

p∑
q=d k2 e

C2(q, d, k)

{
1

2(2q−k+2)

(
1− 1

22q−k+2

(2q−k+2
2q−k+2

2

))
k is even

1
2(2q−k+2) k is odd.

(40)

As is proven in Thm. 3 in the paper, the coefficients for the odd frequencies in (40) (with the exception
of k = 1) vanish.

B.5 Coefficients with bias

Denote the harmonic coefficients of Kb = K3 +K4 by bdk then

bdk = V ol(Sd−1)

∫ 1

−1
Kb(t)Pk,d(t)(1− t2)

d−2
2 dt (41)

=
1

2π
C1(d, k)

∫ 1

−1
(π − arccos (t))

dk

dtk
(1− t2)pdt (42)

k = 0:

Considering K3, and using (4)

1

2

∫ 1

−1
(1− t2)

d−2
2 dt =

1

2

∫ π

0

sind−1 θdθ =
2d−1

d
(
d−1

d
2

) (43)

Considering K4, and using (14),

1

2π

∫ 1

−1
arccos(t)(1− t2)

d−2
2 dt =

1

2

d−2
2∑

q=0

(−1)q
(d−2

2

q

)
1

2q + 1
(44)

Combining these we get:

bd0 =
1

2
C1(d, k)

 2d−1

d
(
d−1

d
2

) − 1

2

d−2
2∑

q=0

(−1)q
(d−2

2

q

)
1

2q + 1

 (45)

k > 0:

The term associated with K3 vanishes, since (p > k − 1)

1

2
C1(d, k)

∫ 1

−1

dk

dtk
(1− t2)pdt =

dk−1

dtk−1
(1− t2)p

∣∣∣∣1
−1

= 0 (46)

Therefore,

bdk = − 1

2π
C1(d, k)

p∑
q=d k2 e

C2(q, d, k)

∫ 1

−1
arccos(t)t2q−kdt (47)

where p = k + d−2
2 . Replacing t = cos θ and using (6)∫ π

0

θ cos2q−k θ sin θdθ =

{ π
2q−k+1 k is even

π
2q−k+1

(
−1 + 1

22q−k+1

(2q−k+1
2q−k+1

2

))
k is odd

(48)
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Putting all this together

bdk =

 −C1(d, k)
∑p

q=d k2 e
C2(q,d,k)
2(2q−k+1) k is even

−C1(d, k)
∑p

q=d k2 e
C2(q,d,k)
2(2q−k+1)

(
−1 + 1

22q−k+1

(2q−k+1
2q−k+1

2

))
k is odd

(49)

The final coefficients are given by

cdk =
1

2
(adk + bdk) (50)

where adk is given in (40), resulting in

cdk =
1

2
C1(d, k)

p∑
q=d k2 e

C2(q, d, k)

 −
1

2(2q−k+1) + 1
2(2q−k+2)

(
1− 1

22q−k+2

(2q−k+2
2q−k+2

2

))
k is even

1
2(2q−k+2) + 1

2(2q−k+1)

(
1− 1

22q−k+1

(2q−k+1
2q−k+1

2

))
k is odd

(51)
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