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Abstract

We introduce the Neural Conditioner (NC), a self-supervised machine able to learn
about all the conditional distributions of a random vector X . The NC is a function
NC(x · a, a, r) that leverages adversarial training to match each conditional distri-
bution P (Xr|Xa = xa). After training, the NC generalizes to sample conditional
distributions never seen, including the joint distribution. The NC is also able to
auto-encode examples, providing data representations useful for downstream classi-
fication tasks. In sum, the NC integrates different self-supervised tasks (each being
the estimation of a conditional distribution) and levels of supervision (partially
observed data) seamlessly into a single learning experience.

1 Introduction

Supervised learning estimates the conditional distribution of a target variable given values for a feature
variable [63]. Supervised learning is the backbone to build state-of-the-art prediction models using
large amounts of labeled data, with unprecedented success in domains spanning image classification,
speech recognition, and language translation [35]. Unfortunately, collecting large amounts of labeled
data is an expensive task painstakingly performed by humans (for instance, consider labeling the
objects appearing in millions of images). If our ambition to transition from machine learning to
artificial intelligence is to be met, we must build algorithms capable of learning effectively from
inexpensive unlabeled data without human supervision (for instance, millions of unlabeled images).
Furthermore, we are interested in the case where the available unlabeled data is partially observed.
Thus, the goal of this paper is unsupervised learning, defined as understanding the underlying process
generating some partially observed unlabeled data.

Currently, unsupervised learning strategies come in many flavors, including component analysis,
clustering, energy modeling, and density estimation [23]. Each of these strategies targets the
estimation of a particular statistic from high-dimensional data. For example, principal component
analysis extracts a set of directions under which the data exhibits maximum variance [28]. However,
powerful unsupervised learning should not commit to the estimation of a particular statistic from
data, but extract general-purpose features useful for downstream tasks.

An emerging, more general strategy to unsupervised learning is the one of self-supervised learning
[24, for instance]. The guiding principle behind self-supervised learning is to set up a supervised
learning problem based on unlabeled data, such that solving that supervised learning problem leads
to partial understanding about the data generating process [32]. More specifically, self-supervised
learning algorithms transform the unlabeled data into one set of input features and one set of output
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features. Then, a supervised learning model is trained to predict the output features from the input
features. Finally, the trained model is later leveraged to solve subsequent learning tasks efficiently. As
such, self-supervision turns unsupervised learning into the supervised learning problem of estimating
the conditional expectation of the output features given the input features. A common example of a
self-supervised problem is image in-painting. Here, the central patch of an image (output feature) is
predicted from its surrounding pixel values (input feature), with the hope that learning to in-paint leads
to the learning of non-trivial image features [50, 38]. Another example of a self-supervised learning
problem extracts a pair of patches from one image as the input feature, and requests their relative
position as the target output feature [10]. These examples hint one potential pitfall of “specialized”
self-supervised learning algorithms: in order to learn a single conditional distribution from the many
describing the data, it may be acceptable to throw away most of the information about the sought
generative process, which in fact we would like to keep for subsequent learning tasks.

Thus, a general-purpose unsupervised learning machine should not commit to the estimation of a
particular conditional distribution from data, but attempt to learn as much structure (i.e., interactions
between variables) as possible. This is a daunting task, since joint distributions can be described in
terms of an exponential amount of conditional distributions. Thus, learning the joint distribution, a
problem usually associated to unsupervised learning, can be understood as analogous to an exponential
amount of supervised learning problems. Our challenges do not end here. Being realistic, learning
agents never observe the entire world. For instance, occlusions and camera movements hide portions
of the world that we would otherwise observe. Therefore, we are interested in unsupervised learning
algorithms able to learn about the structure of unlabeled data from partial observations.

In this paper, we address the task of unsupervised learning from partial data by introducing the
Neural Conditioner (NC). In a nutshell, the NC is a function NC(x · a, a, r) that leverages adversarial
training to match each conditional distribution P (Xr|Xa = xa). The set of available variables a,
the set of requested variables r, and the set of available values x · a can be either determined by the
pattern of missing values in data, or randomly by the self-supervised learning process. The set of
available variables a and the set of requested variables r are not necessarily complementary, and
index an exponential amount of conditional distributions (each associated to a single self-supervised
learning problem). After trained, the NC generalizes to sample from conditional distributions never
seen during training, including the joint distribution. Furthermore, trained NC’s are also able to
auto-encode examples, providing data representations useful for downstream classification tasks.
Since the NC does not commit to a particular conditional distribution but attempts to learn a large
amount of them, we argue that our model is a small step towards general-purpose unsupervised
learning. Our contributions are as follows:

• We introduce the Neural Conditioner (NC) (Section 2), a method to perform unsupervised
learning from partially observed data.

• We explain the multiple uses of NCs (Section 3), including the generation of conditional
samples, unconditional samples, and feature extraction from partially observed data.

• We provide insights on how NCs work and should be regularized (Section 4).

• Throughout a variety of experiments on synthetic and image data, we show the efficacy of
NCs in generation and prediction tasks (Sections 5 and 7).

2 The Neural Conditioner (NC)

Consider the dataset (x1, . . . , xn), where each xi ∈ R
d is an identically and independently distributed

(iid) example drawn from some joint probability distribution P (X). Without any further information,

we could consider O(3d) different prediction problems about the random vector X , where each
prediction problem partitions the coordinates xi into features, targets, or unobserved variables. We
may index this exponential amount of supervised learning problems using binary vectors of available
features a ∈ {0, 1}d and requested features r ∈ {0, 1}d. In statistical terms, a pair of available and
requested vectors (r, a) instantiates the supervised learning problem of estimating the conditional
distribution P (Xr|Xa = xa), where xr = (xi : ri = 1), and xa = (xi : ai = 1).

By making use of the notations above, we can design a single supervised learning problem to estimate
all the conditional distributions contained in the random vector X . Since learning algorithms are
often designed to deal with inputs and outputs with a fixed number of dimensions, we will consider
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Figure 1: The proposed NC, where data x ∼ P (X), available/requested masks a, r ∼ P (a, r), and
noise z ∼ N (0, I).
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Figure 2: Example of masks and masked images. NC learns to predict x · r from x · a.

the augmented supervised learning problem of mapping the feature vector (x · a, a, r) into the target
vector x · r, where the operation “·” denotes entry-wise multiplication. In short, our goal is to learn a
Neural Conditioner (NC) producing samples:

x̂ ∼ NC(x · a, a, r) : x̂r ∼ P (Xr|Xa = xa) ∀ (x, a, r).

The previous equation manifests the ambition of NC to model the entire conditional distribution
P (Xr|Xa = xa) when given a triplet (x, a, r). Therefore, given the dataset (x1, . . . , xn), learning a
NC translates into minimizing the distance between the estimated conditional distributions NC(x ·
a, a, r) and the true conditional distributions P (Xr|Xa = xa), based on their samples. In particular,
we will follow recent advances in implicit generative modeling, and implement NC training using
tools from generative adversarial networks [18]. Other alternatives to train NCs would include
maximum mean discrepancy metrics [21], energy distances [61], or variational inference [31]. If
the practitioner is only interested in recovering a particular statistic from the exponentially many
conditional distributions (e.g. the conditional means), training a NC with a scoring rule D for such
statistic (e.g. the mean squared error loss) would suffice.

Training a NC is an iterative process involving six steps, illustrated in Figures 1 and 2:

1. A data sample x is drawn from P (X).

2. Available and requested masks (r, a) are drawn from some data-defined or user-defined dis-
tribution P (R,A). These masks are not necessarily complementary, enabling the existence
of unobserved (neither requested or observed) variables. If a coordinate equals to one in
both r and a, we zero it at the requested mask.

3. A noise vector z is sampled from an external source of noise with distribution P (Z).

4. A sample is generated as x̂ = NC(x · a, a, r, z).

5. A discriminator D provides the final scalar objective function by distinguishing between data
samples (scored as D(x · r, x ·a, a, r)) and generated samples (scored as D(x̂ · r, x ·a, a, r)).

6. The NC parameters are updated to minimize the objective function, while the parameters of
the discriminator are updated to maximize it, following adversarial training [18].

Mathematically, our general objective function is:

min
NC

max
D

E
x,a,r

logD(x · r, x · a, a, r) + E
x,a,r,z

log(1−D(NC(x · a, a, r, z) · r, x · a, a, r)). (1)

3 Using NCs

Once trained, one NC serves many purposes. The most direct use is perhaps the multimodal prediction
of any subset of variables given any subset of variables. More specifically, a NC is able to leverage
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any partially observed vector xa to predict about any partially requested vector xr. Importantly, the
combination of test values, available, and requested masks (x, a, r) could be novel and never seen
during training. Since NCs leverage an external source of noise z to make their predictions, NCs
provide a conditional distribution for each triplet (x, a, r).

Two special cases of masks deserve special attention. First, properly regularized NCs are able to
compress and reconstruct samples when provided with the full requested mask r = 1 and the full
available mask a = 1. This turns NCs into autoencoders able to extract feature representations of
data, as well as allowing latent interpolations between pairs of examples. Second, when provided
with the full requested mask r = 1 and the empty available mask a = 0, NCs are able to generate
full samples from the data joint distribution P (X), even in the case when the training never provided
the NC with this mask combination, as our experiments verify.

NCs are able to seamlessly deal with missing features and/or labels during both training and testing
time. Such “missingness” of features and labels can be real (as given by incomplete or unlabeled
examples) or simulated by designing an appropriate distribution of masks P (A,R). This blurs the
lines that often separate unsupervised, semi-supervised, and supervised learning, integrating all types
of data and supervision into a new learning paradigm.

Finally, a trained NC can be used to understand relations between variables, for instance by using a
complete test vector x and querying different available and requested masks. The strongest relations
between variables can also be analyzed in terms of gradients with respect to (a, r).

4 Understanding NCs

To better understand how NCs work, this section describes i) how NCs look like in the Gaussian case,
ii) what the optimal discriminator minimizes, iii) the relationship between NC training and the usual
reconstruction error minimized by auto-encoders, and iv) some regularization techniques.

4.1 The Gaussian case

Let us consider the case where the data joint distribution is a Gaussian P (X) = N (µ,Σ). Then, the
closed-form expression of the conditional distribution implied by any triplet (x, a, r) is P (Xr|Xa =
xa) = N (µr|a,Σr|a), where µr|a = µr +ΣraΣ

−1

aa (xa − µa), and Σr|a = Σrr − ΣraΣ
−1

aaΣar.

The previous expressions highlight an interesting fact: even in the case of Gaussian distributions,
computing the conditional moments implied by (x, a, r) is a non-linear operation. When fixing
(a, r) = (a0, r0), learning the conditional distribution implied by triplets (x, a0, r0) can be understood
as linear heteroencoding [54].

The motivation behind self-supervised learning is that learning about a conditional distribution is an
effective way to learn about the joint distribution. In part, this is because learning conditional distribu-
tions allows to deploy the powerful machinery of supervised learning. To formalize this, we consider
the amount of information contained in a probability distribution in terms of its differential entropy.
Then, we show that learning conditional distributions is easier than learning joint distributions, where
“difficult” is measured in terms of how much information is to be learned. This argument can be made

by considering the chain rule of the differential entropy [9]: h(X) =
∑d

i=1
h(Xi|X1, . . . , Xi−1),

where, in the case of partitioning X = (Xa, Xr), we have: h(X) = h(Xr|Xa) + h(Xa). The
previous shows that h(Xr|Xa) ≤ h(Xr), where equality is achieved if and only if Xa and Xr are
independent. This reveals a “blessing of structure” of sorts: to reduce the difficulty of learning about
a joint distribution, we should construct self-supervised learning problems associated to conditional
distributions between highly coupled blocks of input and output features. Indeed, if all of our variables
are independent, self-supervised learning is hopeless. For the case of a d-dimensional Gaussian
with covariance matrix Σ, the differential entropy can be stated in terms of the covariance function:

h(Σ) = d
2
(1+log(2π))+ 1

2
log(|Σ|). which allows to choose good self-supervised learning problems

based on the log-determinant of empirical covariances.

A successful evolution from single self-supervised learning problems to NCs rests on the existence of
relationships between different conditional distributions. More formally, the success of NCs relies
on assuming a smooth landscape of conditionals. If smoothness across conditional distributions is
satisfied, learning about some conditional distribution should inform us about other, perhaps never
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seen, conditionals. This is akin to supervised learning algorithms relying on smoothness properties
of the function to be learned. For NCs we do not consider the smoothness of a single function,
but the smoothness of the “conditioning operator” Cx(a, r) = NC(x · a, a, r). The smoothness of
this conditioning operator is related to the smoothness of the covariance operator studied in kernel
embeddings of distributions [45].

4.2 Training objective, NC’s point of view

This section considers the following question: what is the objective function minimized by NC? In
particular we are interested in the intriguing fact of how NCs is able to complete and reconstruct
samples, when the discriminator is never presented with pairs of real and generated requested
variables. First, consider the “augmented” data and model θ joint distributions

P (Xa, Xr, A,R) = q(Xr|Xa, A,R)p(Xa, A,R),

Pθ(Xa, Xr, A,R) = qθ(Xr|Xa, A,R)p(Xa, A,R).

Next, consider the negative log-likelihood L(xa, a, r) = −Eq log qθ and its expectation L =
−EP log qθ. Then,

L(Xa, A,R) = −E
q
log

(

qθ ·
q

q

)

= −E
q

{

log
qθ

q
+ log q

}

=

∫

−q log q −

∫

q log
qθ

q
.

Integrating wrt p(Xa, A,R), we see that NCs minimize:

L = DKL(P ‖Pθ) +H(XR|XA) = DKL(P ‖Pθ)− I(XA, XR) +H(XR)

= DKL(P ‖Pθ)− I(XA, XR) +H(XA).

Where H stands for (conditional) entropy and I for mutual information. Following [18], assuming an
optimal discriminator and a NC globally minimizing (1) we have that P = Pθ, DKL(P ‖Pθ) = 0,
and thus L = H(XR|XA).

We summarize the previous results as follows. If a NC is able to match the distributions (P, Pθ),
there will be a residual reconstruction error of H(XR | XA). Thus, if XA and XR are independent,
such residual reconstruction error reduces to H(XR). This can happen if A = 0, or if XA holds no
information about XR. Moreover the reconstruction error is a decreasing function of the amount of
information that XA holds about XR.

4.3 Regularization

We found, during our experiments, gradient based regularization on the discriminator to be
crucial. Following [53] we augment the discriminator’s loss with the expected gradient with
respect to the inputs for both the positive and negative examples; Less succintly, we add
1

2
(E[‖∇D(XA, XR, A,R)‖2] + E[‖∇D(XA, X̂R, A,R)‖2]) to the discriminator’s loss.

For NC to generalize to unobserved conditional distributions and prevent memorizing the observed
ones, we have found that regularization of the latent space to be essential. In information theoretic
terms, we would like to control the mutual information between XA and Z := enc(XA, ǫ). One
could use a variational approximation of the conditional entropy [1] or an adversarial approach [3].
The former requires an encoder with tractable conditional density (e.g. Gaussian), the latter, while
allowing general encoders, introduces an additional training loop in the algorithm. We opt for another
approach by controlling the encoder’s Lipschitz constant using one-sided spectral normalization [42].

5 Experiments on Gaussian data

We train a single NC to model all the conditionals of a three-dimensional Gaussian distribution.
Given that in this example we know that the data generating process is fully determined by the first
two moments, we train two versions of NCs: one that uses moment-matching, and one that uses
our full adversarial training pipeline. Both strategies train NC given minibatches of triplets (x, a, r)
observed from the same Gaussian distribution. This allows us to better understand the impact of
adversarial training when dealing with NCs. For these experiments, both the discriminator and the
NC have 2 hidden layers of 64 units each, and ReLU non-linearities. We regularize the latent space
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Figure 3: Illustration of the NC on a three-dimensional Gaussian dataset. We show a) one-dimensional
conditional estimation, b) two-dimensional conditional estimation, and c,d) the representation of the
conditional distributions in the hidden space.

a) pdf r = (1, 0, 0), a = (0, 1, 0)

real

generated

b) pdf r = (1, 1, 0), a = (0, 0, 1)

real

fake

c) embeddings r = (0, 1, 0)

2|1

2|3

2|1, 3

d) embeddings r = (1, 0, 0)

1|2, 3

1|2

1|3

Table 1: Average error norms ‖θr|a − θ̂r|a‖ in the task of estimating the conditional moments

θr|a = (µr|a,Σr|a) of Gaussian data. We show results for Moment-Matching (MM) and the full
Adversarial Training (AT). VAEAC only supports complementary masks (some results are NA).

a r NC (MM) NC (AT) VAEAC

(1, 0, 0) (0, 0, 1) .09± .06 .10± .05 NA
(0, 1, 0) .10± .04 .07± .03 NA
(0, 1, 1) .67± .05 .13± .04 .68± .03

(0, 1, 0) (0, 0, 1) .16± .03 .08± .05 NA
(1, 0, 0) .20± .05 .05± .03 NA
(1, 0, 1) .28± .07 .14± .06 .73± .03

(0, 0, 1) (0, 1, 0) .13± .06 .11± .07 NA
(1, 0, 0) .08± .05 .09± .05 NA
(1, 1, 0) .29± .03 .17± .03 .71± .06

(1, 0, 1) (0, 1, 0) .22± .07 .11± .07 .50± .04
(1, 1, 0) (0, 0, 1) .15± .08 .08± .05 .43± .03
(0, 1, 1) (1, 0, 0) .27± .09 .15± .07 .35± .05

NC conditioning
∅ (a, r)

discriminator ∅ 0.12 0.17
conditioning (a, r) 0.15 0.07

of the NC using one-sided spectral normalization [43] We train the networks for 10, 000 updates,
with a batch-size of 512, and the Adam optimizer with a learning rate of 10−4, β1 = 0.5, and
β2 = 0.999. The training set contains 104 fixed samples sampled from a Gaussian with mean (2, 4, 6)
and covariance ((1, 0.5, 0.25), (0.5, 1, 0), (0.25, 0, 1)).

Figure 3 illustrates the capabilities of NC to perform one-dimensional and two-dimensional con-
ditional distribution estimation. We also show the embeddings of the conditional distributions as
given by the bottleneck of NC. These show a higher dependence for variables that are more tightly
coupled. Table 1 shows the error on the conditional parameter estimation for the NC (both using
moment matching and adversarial training) as well as the VAEAC [26], a VAE-based analog to the
NC. Finally, Table 1 (right) shows the importance of conditioning both the discriminator and NC on
both available and requested masks.

6 Missing data Imputation

In order to quantitatively evaluate NC’s ability to construct representations of the joint distributions
from data with missing observations, we consider data imputation tasks on three UCI datasets [37].
We compare to GAIN [66] and use the same empirical setup for the sake of consistency. Note that
while [66] augments the adversarial loss with an euclidean reconstruction error NC does not. Table 2
shows the normalized root mean squared error of the imputed missing data on the test set.

7 Experiments on image data

We train NCs on SVHN and CelebA. We use rectangular a, r masks spanning between 10% and 50%
of the images. We evaluate our setup in several ways. First qualitatively: generating full samples
(using the never seen mask configuration a = 0, r = 1, Fig 4) and reconstructing samples (Figures 5
for denoising and 6 for inpainting). These experiments share the goal of showing that our model is
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Table 2: RMSE of missing data Imputations on the test set. Experiments were repeated five times.

Algorithm Spam Letter Credit

MICE[55] .0699 ± .0010 .1537 ± .0006 .2585 ± .0011
MissForest[60] .0553 ± .0013 .1605 ± .0004 .1976 ± .0015

Matrix[40] .0542 ± .0006 .1442 ± .0006 .2602 ± .0073
Auto-encoder[17] .0670 ± .0030 .1351 ± .0009 .2388 ± .0005

EM[14] .0712 ± .0012 .1563 ± .0012 .2604 ± .0015

GAIN w/o l2[66] .0672± .0036 .1586± .0024 .2533± .048
GAIN[66] .0513± .0016 .1198± .005 .1858± .0010

VAEAC[26] .0552± .0020 .1115± .0010 .1523± .0020

NC .0486± .0010 .0851± .0020 .1276± .0020

able to generalize to conditional distributions not observed during training. Second, we evaluate our
models quantitatively: that is, their ability to provide useful features for downstream classification
tasks (see Table 3). Our results show that NC-based figures systematically outperform state-of-art
hand-crafted features, while being competitive with deep unsupervised features.

Figure 4: SVHN and CelebA samples. The model never observed a complete sample in training.

Figures 5 and 6 show samples and in-paintings using masks configurations unobserved during
training to illustrate that our model is able to generalize to conditional distributions and construct
representation of the data solely through partial observation. Figure 4 shows samples from the joint
distribution (a = 0, r = 1), even though these masks were never observed during training.

7.0.1 Feature extraction

SVHN As a feature extraction procedure, we retrieve the latent code created by the PAE while
feeding an image in compress and reconstruct mode (a = r = 1). Then, we use a linear SVM to
assess the quality of the extracted encoding, and show in Table 3 that our approach is competitive
with deep unsupervised feature extractors.

CelebA The multimodality presented by the CelebA attributes provides an ideal test mode to
quantify our model ability to construct a global understanding out of local and partial observations.
Following [6, 39], we train 40 linear SVMs on learned representations extracted from the encoder
using full available and requested masks (a = r = 1) on the CelebA validation set. We measure the
performance on the test set. As in [6, 25, 29], we report the balanced accuracy in order to evaluate
the attribute prediction performance. Please note that our model was trained trained on entirely
unsupervised data and masking configurations unobserved during training. Attribute labels were only
used to train the linear SVM classifiers.
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Table 3: Test errors on SVHN (left), and test accuracies on CelebA (right).

Model Test error

KNN 77.93
TSVM 66.55
VAE (M1 + M2) [30] 36.02
DCGAN + L2-SVM [51] 22.18
ALI + L2-SVM [13] 19.14± 0.50
VAEAC [26] 57.89± 1.0

NC (L2-SVM) (ours) 17.12± 0.59

Model Mean Stdv

Triplet-kNN [57] 71.55 12.61
PANDA [67] 76.95 13.33
Anet [39] 79.56 12.17
LMLE-kNN [25] 83.83 12.33
VAE [31] 73.30 9.65
ALI [13] 73.88 10.16
HALI [4] 83.75 8.96

VAEAC [27] 66.06 6.98

NC (Ours) 82.21 7.63

8 Related work

Self-supervised learning is an emerging technique for unsupervised learning. Perhaps the earliest
example of self-supervised learning is auto-encoding [2, 24], which in the language of NCs amounts
to full available and requested masks. Auto-encoders evolved into more sophisticated variants
such as denoising auto-encoders [64], a family of models including NC. Recent trends in generative
adversarial networks [18] are yet another example of self-supervised training. The connection between
auto-encoders and generative adversarial training was first instantiated by [34]. Auto-regressive
models [5] such as the masked autoencoder [15], neural autoregressive distribution estimators
[33, 62], and Pixel RNNs [47] are other examples of casting unsupervised learning using a simple
self-supervision strategy: order the variables, and then predict each of them using the previous.

Moving further, the task of unsupervised learning with partially observed data was also considered
by others, often in terms of estimating transition operators [20, 7, 58]. Generative adversarial
imputation nets [66] considered the case of learning missing feature predictions using adversarial
training. In a different thread of research, the literature in kernel mean embeddings [59, 36, 45]
is an early consideration of the problem of learning distributions. Concerning applications, self-
supervised learning was pioneered by word embeddings [41]. In the image domain, self-supervised
setups include image in-painting [50], colorization [68], clustering [8], de-rotation [16], and patch
reordering [10, 46]. In the video domain, common self-supervised strategies include enforcing similar
feature representations for nearby frames [44, 19, 65], or predicting ambient sound statistics from
video frames [48]. These applications yield representations useful for downstream tasks, including
classification [8], multi-task learning [11], and RL [49]. Finally, the most similar piece of literature
to our research is the concurrent work on VAE with Arbitrary Conditioning, or VAEAC [26]. The
VAEAC is proposed as a fast alternative to the also related universal marginalizer [12]. Similarly to
our setup, the VAEAC augments a VAE with a mask of requested variables; the complimentary set
of variables is provided as the available information for prediction. Our work extends VAEAC by
employing adversarial training to obtain better sample quality and features for downstream tasks.
To sustain these claims, a comparison between NC and VAEAC was performed in Section 7. As
commonly assumed in VAE-like architectures, the conditional encoding and decoding distributions
are assumed Gaussian, which may not be a good fit for complex multimodal data such as natural
images. The VAEAC work was mainly applied to the problem of feature imputation. Here we
hope to provide a more holistic perspective on the uses of NCs, including feature extraction and
semi-supervised learning.

9 Conclusion

We presented the Neural Conditioner (NC), an adversarially-learned neural network able to learn
about the exponentially many conditional distributions describing some partially observed unlabeled
data. Once trained, one NC serves many purposes: sampling from (unseen) conditional distributions
to perform multimodal prediction, sampling from the (unseen) joint distribution, and auto-encode
(partially observed) data to extract data representations useful for (semi-supervised) downstream
tasks. Neural Conditioner blurs the lines that often separate unsupervised, semi-supervised, and
supervised learning, integrating all types of data and supervision into a holistic learning paradigm.
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