
A A Brief Review of EM and Variational Inference

Fig. 5 shows the representation of a generative graphical model that produces observations x from
a distribution x ⇠ p!(x|h), has hidden variables h, and is parameterised by a set of parameters,
!. In learning a model, we often seek the parameters that maximises the log-marginal-likelihood
(LML), which can be found by marginalising the joint distribution p!(x, h) over hidden variables:

Figure 5: Graphical model
of inference problem.

`!(x) := log p!(x) = log

✓Z

H
p!(x, h)dh

◆
. (8)

In many cases, we also need to infer the corresponding posterior,

p!(h|x) =
p!(x, h)R

H p!(x, h)dh
.

Evaluating the marginal likelihood in Eq. (8) and obtain the correspond-
ing posterior, however, is intractable for most distributions. To compute
the marginal likelihood and !

⇤, we can use the EM algorithm [13] and
variational inference (VI). We review these two methods now.

For any valid probability distribution q(h) with support over h we can rewrite the LML as a difference
of two divergences [30],

`!(x) =

Z

H
q(h) log

✓
p!(x, h)

q(h)

◆
dh�

Z

H
q(h) log

✓
p!(h|x)
q(h)

◆
dh,

=L(!, q(h)) + KL(q(h) k p!(h|x)), (9)

where L(!, q(h)) :=
R
H q(h) log

⇣
p!(x,h)
q(h)

⌘
dh is known as the evidence lower bound (ELBO).

Intuitively, as KL(q(h) k p!(h|x)) � 0, it follows that `!(x) � ELBO (q(h);!), hence `!(x) �
ELBO (q(h);!) is a lower bound for the LML. The derivation of this bound can also be viewed as
applying Jensen’s inequality directly to Eq. (8) [8]. Note that when the ELBO and marginal likelihood
are identical, the resulting KL divergence between the function q(h) and the posterior p(h|x) is zero,
implying that q(h) = p!(h|x).
Maximising the LML now reduces to maximising the ELBO, which can be achieved iteratively using
EM [13, 71]; an expectation step (E-step) finds the posterior for the current set of model parameters
and then a maximisation step (M-step) maximises the ELBO with respect to ! while keeping q(h)
fixed as the posterior from the E-step.

As finding the exact posterior in the E-step is still typically intractable, we resort to variational
inference (VI), a powerful tool for approximating the posterior using a parametrised variational
distribution q✓(h) [30, 4]. VI aims to reduce the KL divergence between the true posterior and the
variational distribution, KL(q✓(h) k p!(h|x)). Typically VI never brings this divergence to zero
but nonetheless yields useful posterior approximations. As minimising KL(q✓(h) k p!(h|x)) is
equivalent to maximising the ELBO for the variational distribution (see Eq. (23) from Theorem 3),
the variational E-step amounts to maximising the ELBO with respect to ✓ while keeping ! constant.
The variational EM algorithm can be summarised as:

Variational E-Step: ✓k+1  argmax
✓

L(!k, ✓),

Variational M-Step: !k+1  argmax
!

L(!, ✓k+1).

B A Probabilistic Interpretation of VIREL

We now motivate our inference procedure and Boltzmann distribution ⇡!(a|s) from a probabilistic
perspective, demonstrating that ⇡!(a|s) can be interpreted as an action-posterior that characterises
the uncertainty our model has in the optimality of Q̂!(h). Moreover, maximising L(!, ✓) for ✓
is equivalent to carrying our variational inference on the graphical model in Fig. 6 for any "! >

0.
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B.1 Model Specification

Like previous work, we introduce a binary variable O 2 {0, 1} in order to define a formal graphical
model for our inference problem when "! > 0. The likelihood of O therefore takes the form of a
Bernoulli distribution:

p!(O|h) = y!(h)
O(1� y!(h))

(1�O)
,

where

y!(h) := exp

 
Q̂!(h)�maxa0 Q̂!(a0, s)

"!

!
.

In most existing frameworks, O = 1 is understood to be the event that the agent is acting optimally
[35, 63]. As we are using function approximators in VIREL, O = 1 can be interpreted as the event
that the agent is behaving optimally under Q̂!(h). Exploring the semantics of O further, consider the
likelihood when O = 1:

p!(O = 1|h) = exp

 
Q̂!(h)�maxa0 Q̂!(a0, s)

"!

!
,

Figure 6: Graphical model
for VIREL (variational ap-
proximation dashed)

Observe that 0  p!(O = 1|·)  1 8 ! 2 ⌦ s.t. "! > 0. For any
state s and any action a

⇤ such that p!(O = 1|s, a⇤) = 1, such an action
must be optimal under Q̂!(h) in the sense that it is the greedy action
a
⇤ 2 argmaxa Q̂!(h). If we find p!(O = 1|h) = 1 8 h 2 H, then

all observed state-action pairs have been generated from a greedy policy
⇡(a|s) = �(a 2 argmaxa0 Q̂!(a0|s)). From Theorem 2, the closer the
residual error "! is to zero, the closer Q̂!(h) becomes to representing an
optimal action-value function. When "! ⇡ 0, any a observed such that
p!(O = 1|a, ·) = 1 will be very nearly an action sampled from an optimal
policy, that is a ⇠ ⇡(a|·) ⇡ �(a 2 argmaxa0 Q

⇤(a0|·)). We caution
readers that in the limit "! ! 0, our likelihood is not well-defined for any
a 2 argmaxa0 Q̂!(a0, s). Without loss of generality, we condition on optimality for the rest of this
section, writing O in place of O = 1. Defining the function y!(s) := exp

⇣
�maxa0 Q̂!(a0,s)

"!

⌘
, our

likelihood takes the convenient form:

p!(O|h) = exp

 
Q̂!(h)

"!

!
y!(s),

Defining the prior distribution as the uniform distribution p(h) = U(h) completes our model, the
graph for which is shown in Fig. 6. Using Bayes’ rule, we find our posterior distribution is:

p!(h|O) =
p!(O|h)p(h)

p!(O)
,

=
p!(O|h)p(h)R

H p!(O|h)p(h)dh
,

=
exp

⇣
Q̂!(h)
"!

⌘
y!(s)

R
H exp

⇣
Q̂!(h)
"!

⌘
y!(s)dh

. (10)

We can also derive our action-posterior, p!(a|s,O), which we will find to be equivalent to the
Boltzmann policy from Eq. (3). Using Bayes’ rule, it follows:

p!(a|s,O) =
p!(h|O)

p!(s|O)
.

Now, we find p!(s|O) by marginalising our posterior over actions. Substituting p!(s|O) =R
p!(h|O)da yields :

p!(a|s,O) =
p!(h|O)R

A p!(h|O)da
.
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Substituting for our posterior from Eq. (10), we obtain:

p!(a|s,O) =
exp

⇣
Q̂!(h)
"!

⌘
y!(s)

R
A exp

⇣
Q̂!(h)
"!

⌘
y!(s)da

·

R
H exp

⇣
Q̂!(h)
"!

⌘
y!(s)dh

R
H exp

⇣
Q̂!(h)
"!

⌘
y!(s)dh

,

=
exp

⇣
Q̂!(h)
"!

⌘
y!(s)

⇣R
A exp

⇣
Q̂!(h)
"!

⌘
da

⌘
y!(s)

,

=
exp

⇣
Q̂!(h)
"!

⌘

R
A exp

⇣
Q̂!(h)
"!

⌘
da

,

= ⇡!(a|s),

proving that our action-posterior is exactly the Boltzmann policy introduced in Section 3.1. From a
Bayesian perspective, the action-posterior p!(a|s,O) characterises the uncertainty we have in deduc-
ing the optimal action for a given state s under Q̂!(h); whenever "! ⇡ 0 and hence Q̂!(h) ⇡ Q

⇤(h),
the uncertainty will be very small as p!(a|s,O) will have near-zero variance, approximating a Dirac-
delta distribution. Our model is therefore highly confident that the maximum-a-posteriori (MAP)
action a 2 argmaxa0 Q̂!(a0, s) is an optimal action, with all of the probability mass being close to
this point. In light of this, we can interpret the greedy policy ⇡!(a|s) = �(a 2 argmaxa0 Q̂!(a0, s))
as one that always selecting the MAP action across all states.

As our model incorporates the uncertainty in the optimality of Q̂!(h) into the variance of ⇡!(a|s),
we can benefit directly by sampling trajectories from ⇡!(a|s) which drives exploration to gather
data that is beneficial to reducing the residual error "! . Unfortunately, calculating the normalisation
constant

R
A exp

⇣
Q̂!(h)
"!

⌘
da is intractable for most function approximators and MDPs of interest. As

such, we resort to variational inference, a powerful technique to infer an approximation to a posterior
distribution from a tractable family of variational distributions [30, 4, 8]. As before ⇡✓(a|s) is known
as the variational policy, is parametrised by ✓ 2 ⇥ and with the same support as ⇡!(a|s). Like in
Section 3.1, we define a variational distribution as q✓(h) := d(s)⇡✓(a|s), where d(s) is an arbitrary
sampling distribution with support over S. We fix d(s), as in our model-free paradigm we do not
learn the state transition dynamics and only seek to infer the action-posterior.

The goal of variational inference is to find q✓(h) closest in KL-divergence to p!(h|O), giving an
objective:

✓
⇤ 2 argmin

✓
KL(q✓(h) k p!(h|O)).

This objective still requires the intractable computation of
R
exp

⇣
Q̂!(h)
"!

⌘
y!(s)dh. Using Eq. (9),

we can overcome this by writing the KL divergence in terms of the ELBO:

KL(q✓(h) k p!(h|O)) = `! � L!(✓),

where `! := log

Z

H
exp

 
Q̂!(h)

"!

!
y!(s)dh, L!(✓) := Eh⇠q✓(h)

2

4log

0

@
exp

⇣
Q̂!(h)
"!

⌘
y!(s)

q✓(h)

1

A

3

5 .

We see that minimising the KL-divergence for ✓ is equivalent to maximising the ELBO for ✓, which
is tractable. This affords a new objective:

✓
⇤ 2 argmax

✓
L!(✓).
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Expanding the ELBO yields:

L!(✓) = Eh⇠q✓(h)

2

4log

0

@
exp

⇣
Q̂!(h)
"!

⌘
y!(s)

q✓(h)

1

A

3

5 ,

= Es⇠d(s)

2

4Ea⇠⇡✓(a|s)

2

4log

0

@
exp

⇣
Q̂!(h)
"!

⌘
y!(s)

q✓(h)

1

A

3

5

3

5 ,

= Es⇠d(s)

"
Ea⇠⇡✓(a|s)

"
Q̂!(h)

"!

#
+ Ea⇠⇡✓(a|s) [log y!(s)]� Ea⇠⇡✓(a|s) [log(⇡✓(a|s)d(s))]

#
,

= Es⇠d(s)

"
Ea⇠⇡✓(a|s)

"
Q̂!(h)

"!

#
+ log y!(s)� log d(s)� Ea⇠⇡✓(a|s) [log ⇡✓(a|s)]

#
,

= Es⇠d(s)

"
Ea⇠⇡✓(a|s)

"
Q̂!(h)

"!

#
� Ea⇠⇡✓(a|s) [log ⇡✓(a|s)]

#
+ Es⇠d(s)


log

✓
y!(s)

d(s)

◆�
,

= Es⇠d(s)

"
Ea⇠⇡✓(a|s)

"
Q̂!(h)

"!

#
+ H (⇡✓(a|s))

#
+ Es⇠d(s)


log

✓
y!(s)

d(s)

◆�
.

As the final term Es⇠d(s)

h
log
⇣

y!(s)
d(s)

⌘i
has no dependency on ✓, we can neglect it from our objective,

recovering the VIREL objective from Eq. (4):

L!(✓) = Es⇠d(s)

"
Ea⇠⇡✓(a|s)

"
Q̂!(h)

"!

#
+ H (⇡✓(a|s))

#
.

Finally, Theorem 3 guarantees that minimising L!(✓) always minimises the expected KL divergence
between ⇡!(a|s) and ⇡✓(a|s), allowing us to learn a variational approximation for the action-
posterior.

C A Discussion of the Target Set T

We now prove that the Bellman operator for the Boltzmann policy, T ⇡! · := r(h) +
�Eh0⇠p(s0|h)⇡!(a0|s0) [·], is a member of T. Taking the limit "! ! 0 of T ⇡!Q̂!(h), we find:

lim
"!!0

T ⇡!Q̂!(h) = r(h) + lim
"!!0

�Eh0⇠p(s0|h)⇡!(a0|s0)

h
Q̂!(h

0)
i
.

From Theorem 2, evalutating lim"!!0 �Eh0⇠p(s0|h)⇡!(a0|s0) [·] recovers a Dirac-delta distribu-
tion:

lim
"!!0

T ⇡!Q̂!(h) = r(h) + �Eh0⇠p(s0|h)�(a0=argmaxa Q̂!(a,s))

h
Q̂!(h

0)
i
,

= r(h) + �Eh0⇠p(s0|h)

h
max
a0

(Q̂!(h
0))
i
,

= T ⇤
Q̂!(h).

which is sufficient to demonstrate membership of T.

Observe that using T ⇡! · implies Q̂!(h) cannot represent the true Q-function of any ⇡!(a|s) except
for the optimal Q-function. To see this, imagine there exists some "! > 0 such that Q⇡! (·) = Q̂(·).
Under these conditions, it holds that T ⇡!Q̂(·) = Q̂(·) =) "! = 0, which is a contradiction. More
generally, as ⇡!(a|s) is defined in terms of "! , which itself depends on ⇡!(a|s) from the definition of
T ⇡! ·, any ! satisfying this recursive definition forms a constrained set ⌦c ✓ ⌦. Crucially, we show
in Theorem 2 that there always exists some !

⇤ 2 ⌦c such that Q̂!⇤ can represent the action-value
function for an optimal policy. Note that there may exist other policies that are not Boltzmann
distributions such that Q̂!(h) = Q

⇡(h) for some ! 2 ⌦c. We discuss operators that don’t constrain
⌦ in Appendix F.2.
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Finally, we can approximate T ⇡! using any TD target sampled from ⇡!(a|s) (see Sutton & Barto
[55] for an overview of TD methods). Likewise, the optimum Bellman operator T ⇤· = r(h) +
�Eh0⇠p(s0|h) [maxa0(·)] is by definition a member of T and can be approximated using the Q-learning
target [68].

D Proofs for Section 3

D.1 Derivation of Lower Bound in terms of KL Divergence

We need to show that

L(!, ✓) = `(!)� KL(q✓(h) k p!(h))�H (d(s)), (11)

where `(!) := log

Z

H
exp

 
Q̂!(h)

"!

!
dh, p!(h) :=

exp
⇣

Q̂!(h)
"!

⌘

R
H exp

⇣
Q̂!(h)
"!

⌘
dh

.

Starting with the LHS of Eq. (11), and recalling the definition of L(!, ✓) from Eq. (4), we have:

L(!, ✓) = Es⇠d(s)

"
Ea⇠⇡✓(a|s)

"
Q̂!(h)

"!

#
+ H (⇡✓(a|s))

#
.

Expanding the definition of differential entropy, H (⇡✓(a|s)):

L(!, ✓) = Es⇠d(s)

"
Ea⇠⇡✓(a|s)

"
Q̂!(h)

"!

#
� Ea⇠⇡✓(a|s) [log ⇡✓(a|s)]

#
,

= Es⇠d(s)

"
Ea⇠⇡✓(a|s)

"
Q̂!(h)

"!

#
� Ea⇠⇡✓(a|s)


log

✓
⇡✓(a|s)d(s)

p!(h)
· p!(h)
d(s)

◆�#
,

= Es⇠d(s)

"
Ea⇠⇡✓(a|s)

"
Q̂!(h)

"!

#
� Ea⇠⇡✓(a|s)


log

✓
q✓(h)

p!(h)

◆�

� Ea⇠⇡✓(a|s) [log p!(h)] + log(d(s))

#
,

= Eh⇠q✓(h)

"
Q̂!(h)

"!

#
� KL(q✓(h) k p!(h))�H (d(s))� Eh⇠q✓(h) [log p!(h)] .

Substituting for the definition of p!(h) in the final term yields our desired result:

L(!, ✓) = Eh⇠q✓(h)

"
Q̂!(h)

"!

#
� KL(⇡✓(a|s) k ⇡!(a|s))�H (d(s))

� Ea⇠⇡✓(a|s)

2

4log

0

@
exp

⇣
Q̂!(h)
"!

⌘

R
H exp

⇣
Q̂!(h)
"!

⌘
dh

1

A

3

5
#
,

= Eh⇠q✓(h)

"
Q̂!(h)

"!

#
� KL(⇡✓(a|s) k ⇡!(a|s))�H (d(s))

� Eh⇠q✓(h)

"
Q̂!(h)

"!

#
+ log

Z

H
exp

 
Q̂!(h)

"!

!
dh

#
,

= `(!)� KL(q✓(h) k p!(h))�H (d(s)).
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D.2 Convergence of Boltzmann Distribution to Dirac-Delta

Theorem 1 (Convergence of Boltzmann Distribution to Dirac Delta). Let p" : X ! [0, 1] be a

Boltzmann distribution with temperature " 2 R�0

p"(x) =
exp

⇣
f(x)
"

⌘

R
X exp

⇣
f(x)
"

⌘
dx

,

where f : X ! Y is a function with a unique maximum f(x⇤) = supx f , a compact domain X
and bounded range Y . Let f be locally C2

smooth about x
⇤
, that is 9 � > 0 s.t.f(x) 2 C2 8 x 2

{x|kx� x
⇤k < � }. In the limit "! 0, p"(x)! �(x⇤), that is:

lim
"!0

Z

X
'(x)p"(x)dx = '(x⇤), (12)

for any smooth test function ' 2 C1
0 (X ).

Proof. Firstly, we define the auxiliary function to be

g(x) := f(x)� f(x⇤).

Note, g(x)  0 with equality at g(x⇤) = 0. Substituting f(x) = g(x) + f(x⇤) into p"(x):

p"(x) =
exp

⇣
g(x)+f(x⇤)

"

⌘

R
X exp

⇣
g(x)+f(x⇤)

"

⌘
dx

,

=
exp

⇣
g(x)
"

⌘
exp

⇣
f(x⇤)

"

⌘

R
X exp

⇣
g(x)
"

⌘
exp

⇣
f(x⇤)

"

⌘
dx

,

=
exp

⇣
g(x)
"

⌘

R
X exp

⇣
g(x)
"

⌘
dx

. (13)

Now, substituting Eq. (13) into the limit in Eq. (12) yields:

lim
"!0

Z

X
'(x)p"(x)dx = lim

"!0

0

@
Z

X
'(x)

exp
⇣

g(x)
"

⌘

R
X exp

⇣
g(x)
"

⌘
dx

dx

1

A . (14)

Using the substitution u := (x⇤�x)p
"

to transform the integrals in Eq. (14), we obtain

lim
"!0

Z

X
'(x)p"(x)dx = lim

"!0

0

@
Z

U
'(x⇤ �

p
"u)

exp
⇣

g(x⇤�
p
"u)

"

⌘

R
U exp

⇣
g(x⇤�

p
"u)

"

⌘p
"du

p
"du

1

A ,

= lim
"!0

0

@
R
U '(x⇤ �

p
"u) exp

⇣
g(x⇤�

p
"u)

"

⌘
du

R
U exp

⇣
g(x⇤�

p
"u)

"

⌘
du

1

A . (15)
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We now find lim"!0

⇣
g(x⇤�

p
"u)

"

⌘
. Denoting the partial derivative @p" :=

@
@
p
"

and using L’Hôpital’s
rule to the second derivative with respect to

p
✏, we find the limit as:

lim
"!0

✓
g(x⇤ �

p
"u)

"

◆
= lim

"!0

✓
@p"g(x

⇤ �
p
"u)

@p""

◆
,

= lim
"!0

✓
@p"f(x

⇤ �
p
"u)

@p""

◆
,

= lim
"!0

✓
�u>rf(x⇤ �

p
"u)

2
p
"

◆
,

= lim
"!0

 
�@p"

�
u
>rf(x⇤ �

p
"u)
�

@p"(2
p
")

!
,

= lim
"!0

✓
u
>r2

f(x⇤ �
p
"u)u

2

◆
,

=
u
>r2

f(x⇤)u

2
.

The integrand in the numerator in Eq. (15) therefore converges pointwise to '(x⇤) exp
⇣

u>r2f(x⇤)u
2

⌘
,

that is

lim
"!0

✓
'(x⇤ �

p
"u) exp

✓
g(x⇤ �

p
"u)

"

◆◆
= '(x⇤) exp

✓
u
>r2

f(x⇤)u

2

◆
, (16)

and the integrand in the denominator converges pointwise to exp
⇣

u>r2f(x⇤)u
2

⌘
, that is

lim
"!0

✓
exp

✓
g(x⇤ �

p
"u)

"

◆◆
= exp

✓
u
>r2

f(x⇤)u

2

◆
. (17)

From the second order sufficient conditions for f(x⇤) to be a maximum, we have u
>r2

f(x⇤)u  0
8 u 2 U with equality only when u = 0 [37]. This implies that Eq. (16) and Eq. (17) are both
bounded functions.

By definition, we have g(x⇤ �
p
✏u)  0 8 u 2 U , which implies that | exp

⇣
g(x⇤�

p
"u)

"

⌘
|  1.

Consequently, the integrand in the numerator of Eq. (15) is dominated by k'(·)k1, that is
����'(x

⇤ �
p
"u) exp

✓
g(x⇤ �

p
"u)

"

◆����  k'(·)k1, (18)

and the integrand in the denominator is dominated by 1, that is����exp
✓
g(x⇤ �

p
"u)

"

◆����  1. (19)

Together Eqs. (16) to (19) are the sufficient conditions for applying the dominated convergence
theorem [3], allowing us to commute all limits and integrals in Eq. (15), yielding our desired result:

lim
"!0

Z

X
'(x)p"(x)dx = lim

"!0

0

@
R
U '(x⇤ �

p
"u) exp

⇣
g(x⇤�

p
"u)

"

⌘
du

R
U exp

⇣
g(x⇤�

p
"u)

"

⌘
du

1

A ,

=

R
U lim"!0

⇣
'(x⇤ �

p
"u) exp

⇣
g(x⇤�

p
"u)

"

⌘⌘
du

R
U lim"!0

⇣
exp

⇣
g(x⇤�

p
"u)

"

⌘⌘
du

,

=

R
U '(x⇤) exp

�
u
>r2

f(x⇤)u
�
duR

U exp (u>r2f(x⇤)u) du
,

= '(x⇤)

R
U exp

�
u
>r2

f(x⇤)u
�
duR

U exp (u>r2f(x⇤)u) du
,

= '(x⇤).
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D.3 Optimal Boltzmann Distributions as Optimal Policies

Lemma 1 (Lower and Upper limits of L(!, ✓)). i) For any "! > 0 and ⇡✓(a|s) = �(a⇤), we have

L(!, ✓) = �1. ii) For Q̂!(·) > 0 and any non-deterministic ⇡✓(a|s), lim"!!0 L(!, ✓) =1.

Proof. To prove i), we substitute ⇡✓(a|s) = �(a⇤) into L(!, ✓) from Eq. (4), yielding:

L(!, ✓) = Es⇠d(s)

"
Ea⇠�(a⇤)

"
Q̂!(h)

"!

#
+H(�(a⇤))

#
,

= Es⇠d(s)

"
Q̂!(a⇤, s)

"!
+H(�(a⇤))

#
, (20)

We now prove that H (�(a⇤)) = �1 for any a
⇤. Let p : X ! [0, 1] be any zero-mean, unit

variance distribution. Using a transformation of variables, we have A = �X + a
⇤ and hence

p(a) = 1
�p(�x� a

⇤). We can therefore write our Dirac-delta distribution as

�(a⇤) = lim
�!0

p(a) = lim
�!0

1

�
p(�x� a

⇤).

Substituting into the definition of differential entropy, we obtain:

H (�(a⇤)) = lim
�!0

H (p(a))

= lim
�!0

H

✓
1

�
p(�x� a

⇤)

◆
,

= � lim
�!0

Z

A

1

�
p(�x� a

⇤) log

✓
1

�
p(�x� a

⇤)

◆
da,

= � lim
�!0

Z

A

1

�
p(�x� a

⇤) log (p(�x� a
⇤)) da+ lim

�!0

Z

A

1

�
p(�x� a

⇤) log (�) da,

= �
Z

A
�(a⇤) log (p(�a⇤)) da+ lim

�!0
log (�) ,

= � log(p(�a⇤)) + lim
�!0

log (�) , (21)

= �1.

Substituting for H (�(a⇤)) from Eq. (21) in Eq. (20) yields our desired result:

L(!, ✓) = Es⇠d(s)

"
Q̂!(a⇤, s)

"!

#
+ Es⇠d(s) [H(�(a⇤))] ,

=
Es⇠d(s)

h
Q̂!(a⇤, s)

i

"!
+ ( lim

�!0
log (�)� log(p(�a⇤)))Es⇠d(s) [1] ,

= �1,

where our final line follows from the first term being finite for any "! > 0.

To prove ii), we take the limit "! ! 0 of L(!, ✓) in Eq. (4):

lim
"!!0

L(!, ✓) = lim
"!!0

0

@
Ed(s)⇡✓(a|s)

h
Q̂!(h)

i

"!
+ Ed(s) [H (⇡✓(a|s))]

1

A ,

= lim
"!!0

0

@
Ed(s)⇡✓(a|s)

h
Q̂!(h)

i

"!

1

A+ Ed(s) [H (⇡✓(a|s))] ,

=1.
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where our last line follows from H (⇡✓(a|s)) being finite for any non-deterministic ⇡✓(a|s) and
Q̂!(·) > 0 =) Ed(s)⇡✓(a|s)

h
Q̂!(h)

i
> 0.

Theorem 2 (Optimal Boltzmann Distributions as Optimal Policies). For any pair {!⇤
, ✓

⇤} that

maximises L(!, ✓) defined in Eq. (4), the corresponding variational policy induced must be optimal,

i.e. {!⇤
, ✓

⇤} 2 argmax!,✓ L(!, ✓) =) ⇡!⇤(a|s) 2 ⇧⇤
. Moreover, any ✓

⇤
s.t. ⇡✓⇤(a|s) =

⇡!⇤(a|s) =) ✓
⇤ 2 argmax!,✓ L(!, ✓).

Proof. Our proof is structured as follows: Firstly, we prove that "!⇤ = 0 is both a necessary
and sufficient condition for any !

⇤ 2 argmax!,✓ L(!, ✓) with Q̂!⇤(·) > 0. We then verify that
Q̂!⇤(·) > 0 is satisfied by our framework and "!⇤ = 0 is feasible. Finally, we prove that "!⇤ = 0 is
sufficient for ⇡!⇤(a|s) 2 ⇧⇤.

To prove necessity, assume there exists an optimal !⇤ such that "!⇤ 6= 0. As "! � 0, it must be that
"!⇤ > 0. Consider L(!, ✓) as defined in Eq. (4):

L(!, ✓) =
Ed(s)⇡✓(a|s)

h
Q̂!(h)

i

"!
+ Ed(s) [H (⇡✓(a|s))] .

As ⇡✓(a|s) has finite variance, H (⇡✓(a|s)) is upper bounded, and as Q̂!(·) is upper bounded,
Ed(s)⇡✓(a|s)

h
Q̂!(h)

i
is upper bounded too. Together, this implies that Ed(s)⇡✓(a|s)

h
Q̂!(h)

i
is upper

bounded for "!⇤ > 0. From Assumption 2, there exists !⇧ 2 ⌦ such that "!⇧ = 0. From Lemma 1,
there exists ✓

⇤ such that lim"!⇤!0 L(!⇧
, ✓

⇤) = 1, implying L(!⇤
, ✓

⇤) < L(!⇧
, ✓

⇤) which is a
contradiction.

To prove sufficiency, we take argmax! L(!, ✓):

argmax
!

L(!, ✓) = argmax
!

 
Ed(s)⇡✓(a|s)

"
Q̂!(h)

"!

#
+ Ed(s) [H (⇡✓(a|s))]

!
,

=argmax
!

 
Ed(s)⇡✓(a|s)

"
Q̂!(h)

"!

#!
,

=argmax
!

0

@
Ed(s)⇡✓(a|s)

h
Q̂!(h)

i

"!

1

A .

Assume that i Q̂!⇤(·) > 0. It then follows:

argmax
!

L(!, ✓) = argmax
!

0

@
Ed(s)⇡✓(a|s)

h
Q̂!(h)

i

"!

1

A ,

=argmin
!

0

@ "!

Ed(s)⇡✓(a|s)

h
Q̂!(h)

i

1

A ,

=argmin
!

"!,

which, as "! � 0, is satisfied for any !
⇤ 2 ⌦ s.t. "!⇤ = 0, proving sufficiency.

Assume now ii Q̂!⇤(·) is locally smooth with a unique maximum over actions according to Defini-
tion 1. Under this condition we can apply Theorem 1 and our Boltzmann distribution tends towards a
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Dirac-delta function:

⇡!⇤(a|s) = lim
"!!0

0

@
exp

⇣
Q̂!⇤ (h)

"!

⌘

R
exp

⇣
Q̂!⇤ (h)

"!

⌘
da

1

A = �(a = argmax
a0

Q̂!⇤(s, a0)), (22)

which is a greedy policy w.r.t. Q̂!⇤(·). From Definition 2, when lim"!!0 ⇡!(a|s) we have
T!Q̂!(h) = T ⇤

Q̂!(h). Substituting into "!⇤ = 0 shows our our function approximator must
satisfy an optimal Bellman equation:

"!⇤ =
c

p
kT ⇤

Q̂!(h)� Q̂!(h)kpp = 0,

=) T ⇤
Q̂!⇤(·) = Q̂!⇤(·),

hence Q̂!⇤(·) = Q
⇤(·). Under Assumption 2, we see that there exists !

⇤ 2 ⌦ s.t. "!⇤ = 0 for
Q̂!⇤(·) = Q

⇤(·), hence "!⇤ = 0 is feasible. Moreover, our assumptions i and ii are satisfied for
Q̂!⇤(·) = Q

⇤(·) under Assumptions 2 and 3 respectively. Substituting for Q̂!⇤(·) = Q
⇤(·) into

⇡!⇤(a|s) from Eq. (22) we recover our desired result:

!
⇤ 2 argmax

!
L(!, ✓)

=) ⇡!⇤(a|s) = �(a = argmax
a0

Q
⇤(s, a0)) 2 ⇧⇤

.

From Lemma 1, we have that L(!, ✓)!1 = max!,✓ L(!, ✓) when "! = 0 for any ✓
⇤ 2 ⇥ such

that the variational policy is non-deterministic, hence

{!⇤
, ✓

⇤} 2 argmax
!,✓

L(!, ✓) =) ⇡!⇤(a|s) 2 ⇧⇤
,

as required.

D.4 Maximising the ELBO for ✓

Theorem 3 (Maximising the ELBO for ✓). Maximsing L(!, ✓) for ✓ with "! > 0 is equivalent

to minimising the expected KL divergence between ⇡!(a|s) and ⇡✓(a|s), i.e. for any "! > 0,

max✓ L(!, ✓) = min✓ Ed(s) [KL(⇡✓(a|s) k ⇡!(a|s))] with ⇡!(a|s) = ⇡✓(a|s) under exact repre-

sentability.

Proof. Firstly, we write L(!, ✓) in terms of `(!) and KL(q✓(h) k p!(h)) from Eq. (5), ignoring the
entropy term which has no dependency on ! and ✓:

L(!, ✓) = `(!)� KL(q✓(h) k p!(h)),

which, for any "! > 0, implies

max
✓

L(!, ✓) = max
✓

(`(!)� KL(q✓(h) k p!(h))) .

= min
✓

(KL(q✓(h) k p!(h))) . (23)

We now introduce the definition

p!(s) :=

R
A exp

⇣
Q̂!(h)
"!

⌘
da

R
H exp

⇣
Q̂!(h)
"!

⌘
dh

.
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We now show that we can decompose p!(h) as p!(h) = ⇡!(a|s)p!(s):

p!(h) =
exp

⇣
Q̂!(h)
"!

⌘

R
H exp

⇣
Q̂!(h)
"!

⌘
dh

,

=
exp

⇣
Q̂!(h)
"!

⌘

R
H exp

⇣
Q̂!(h)
"!

⌘
dh

·

R
A exp

⇣
Q̂!(h)
"!

⌘
da

R
A exp

⇣
Q̂!(h)
"!

⌘
da

,

=
exp

⇣
Q̂!(h)
"!

⌘

R
A exp

⇣
Q̂!(h)
"!

⌘
da

·

R
A exp

⇣
Q̂!(h)
"!

⌘
da

R
H exp

⇣
Q̂!(h)
"!

⌘
dh

,

= ⇡!(a|s)p!(s).
Substituting for p!(h) = ⇡!(a|s)p!(s) and q✓(h) = d(s)⇡✓(a|s) into the KL divergence from
Eq. (23) yields:

KL(q✓(h) k p!(h)) = Ed(s)⇡✓(a|s)


log

✓
d(s)⇡✓(a|s)
p!(s)⇡!(a|s)

◆�
,

= Ed(s)⇡✓(a|s)


log

✓
d(s)

p!(s)

◆�
+ Ed(s)⇡✓(a|s)


log

✓
⇡✓(a|s)
⇡!(a|s)

◆�
,

= Ed(s)


log

✓
d(s)

p!(s)

◆�
E⇡✓(a|s) [1] + Ed(s)⇡✓(a|s)


log

✓
⇡✓(a|s)
⇡!(a|s)

◆�
,

= Ed(s)


log

✓
d(s)

p!(s)

◆�
+ Ed(s)


E⇡✓(a|s)


log

✓
⇡✓(a|s)
⇡!(a|s)

◆��
,

= KL(d(s) k p!(s)) + Ed(s) [KL(⇡✓(a|s) k ⇡!(a|s))] . (24)

Observe that the first term in Eq. (24) does not depend on ✓, hence taking the minimum yields our
desired result:

max
✓

L(!, ✓) = min
✓

�
KL(d(s) k p!(s)) + Ed(s) [KL(⇡✓(a|s) k ⇡!(a|s))]

�
,

= min
✓

Ed(s) [KL(⇡✓(a|s) k ⇡!(a|s))] .

Since KL(⇡✓(a|s) k ⇡!(a|s)) � 0, it follows that under exact representability, that is there
exists ✓ 2 ⇥ s.t. ⇡✓(a|s) = ⇡!(a|s) and hence KL(⇡✓(a|s) k ⇡!(a|s)) = 0, we have
min✓ Ed(s) [KL(⇡✓(a|s) k ⇡!(a|s))] = 0.

E Deriving the EM Algorithm

E.1 E-Step

Here we provide a full derivation of our E-step of our variational actor-critic algorithm. The ELBO
for our model from Eq. (4) with !k fixed is:

L(!k, ✓) =Es⇠d(s)

2

4
Ea⇠⇡✓(a|s)

h
Q̂!k(h)

i

"!k

+ H (⇡✓(a|s))

3

5 .

Taking derivatives of the !-fixed ELBO with respect to ✓ yields:

r✓L(!k, ✓) =Es⇠d(s)

2

4
r✓Ea⇠⇡✓(a|s)

h
Q̂!k(h)

i

"!k

+r✓H (⇡✓(a|s))

3

5 ,

=Es⇠d(s)

2

4
Ea⇠⇡✓(a|s)

h
Q̂!k(h)r✓ log ⇡✓(a|s)

i

"!k

+r✓H (⇡✓(a|s))

3

5 ,
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where we have used the log-derivative trick [56] in deriving the final line. Note that in this form,
when "!k ⇡ 0, our gradient signal becomes very large. To prevent ill-conditioning, we multiply our
objective by the constant "!k . As "!k > 0 for all non-optimal !k (see Theorem 2), this will not
change the solution to the E-step optimisation. Our gradient becomes:

"!kr✓L(!k, ✓) =Es⇠d(s)

h
Ea⇠⇡✓(a|s)

h
Q̂!k(h)r✓ log ⇡✓(a|s)

i
+ "!kr✓H (⇡✓(a|s))

i
, (25)

as required.

E.2 M-Step

Here we provide a full derivation of the M-step for our variational actor-critic algorithm. The ELBO
from Eq. (4) with ✓k+1 fixed is:

L(!, ✓k+1) = Ed(s)

2

4
E⇡✓k+1

(a|s)

h
Q̂!(h)

i

"!
+ H (⇡✓k+1(a|s))

3

5

Taking derivatives of the with respect to ! yields:

r!L(!, ✓k+1) = Ed(s)⇡✓k+1
(a|s)

"
r!

 
Q̂!(h)

"!

!#
,

= Ed(s)⇡✓k+1
(a|s)

"
r!Q̂!(h)

"!
� Q̂!(h)

("!)2
r!"!

#
,

=
1

"!
Ed(s)⇡✓k+1

(a|s)

h
r!Q̂!(h)

i
� 1

("!)2
Ed(s)⇡✓k+1

(a|s)

h
Q̂!(h)

i
r!"!,

where we note that "! does not depend on h, which allowed us to move it in and out of the expectation
in deriving the final line. The gradient depends on terms up to 1

("!)2 , and so we multiply our objective
by ("!i)

2 to prevent ill-conditioning when "! ⇡ 0. As ("!i)
2
> 0 for all non-convergent !⇤, this

does not change the solution to our M-step optimisation and can be seen as introducing an adaptive
step size which supplements ↵critic. Observe that "!i

"!

��
!=!i

= 1, which, with a slight abuse of notation,
yields our desired result:

("!i)
2r!L(!, ✓k+1) = "!iEd(s)⇡✓k+1

(a|s)

h
r!Q̂!(h)

i
� Ed(s)⇡✓k+1

(a|s)

h
Q̂!(h)

i
r!"!.

In general, calculating the exact gradient of "! is non-trivial. We now derive this update for three
important cases:

E.3 Gradient of the Residual Error

We define �!(h) := T!Q̂!(h)�Q̂!(h) and use the notation E[·] , Eh⇠U(h)[·]. Taking the derivative
yields:

r!"! =
1

2|H|r!k�!(h)
2k22,

=
1

2
r!E

⇥
�!(h)

2
⇤
,

= E [�!(h)r!�!(h)] . (26)

For targets that do not depend on ⇡!(a|s), the gradient of r!�!(h) can be computed directly.
As an example, consider the update for the optimal Bellman operator target T ⇤· := r(h) +
�Eh0⇠p(s0|h) [maxa0(·)]:

r!�!(h) = Es0⇠p(s0|h)

h
r!Q̂!(a

⇤
, s

0)
i
�r!Q̂!(h),

where a
⇤ = argmaxa Q̂(a, s0).
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Consider instead the Bellman operator target T ⇡!Q̂!(h) = r(h) + �E!

h
Q̂!(h0)

i
for the Bellman

policy ⇡!(a|s), which does have dependency on ⇡!(a|s). For convenience, we denote the expectation
Eh0⇠p(s0|h)⇡!(a0|s0) [·] as E! [·]. To obtain an analytic gradient, we must solve a recursive equation
for r!⇡!(a|s). Consider the gradient of �!(h) with respect to ! using this operator:

r!�!(h) = r!

⇣
r(h) + �E!

h
Q̂!(h

0)
i
� Q̂!(h)

⌘
,

= r!�E!

h
Q̂!(h

0)
i
�r!Q̂!(h),

= �E!

h
(r! log ⇡!(a

0|s0))Q̂!(h
0) +r!Q̂!(h

0)
i
�r!Q̂!(h),

= �E!

h
(r! log ⇡!(a

0|s0))Q̂!(h
0)
i
+ �E!

h
r!Q̂!(h

0)
i
�r!Q̂!(h),

= �E!

h
(r! log ⇡!(a

0|s0))Q̂!(h
0)
i
+ �!(h), (27)

where �!(h) := �E!

h
r!Q̂!(h0)

i
� r!Q̂!(h). Substituting Eq. (27) into Eq. (26), we ob-

tain:

r!"! = E [�!(h)r!�!(h)] ,

= �E
h
�!(h)E!

h
(r! log ⇡!(a

0|s0))Q̂!(h
0)
ii

+ E [�!(h)�!(h)] (28)

To find an analytic expression for the first term of Eq. (28), we rely on the following theorem:
Theorem 4 (Analytic Expression for Derivative of Boltzmann Policy Under Expectation). If ⇡!(a|s)
is the Boltzmann policy defined in Eq. (3), it follows that:

E
h
�!(h)E!

h
(r! log ⇡!(a

0|s0))Q̂!(h
0)
ii

=
"!E [�!(h)�!(h)] E!Q̂!(h) + E!

h
r!Q̂!(h)

i

("!)2
⇣
1 + �E

h
�!(h)E!

h
Q̂!(h0)

ii⌘ ,

where E! is the operator E!· := E
h
�!(h)E!

h
Q̂!(h0)M!·

ii
and M! denotes the operator

M![·] := ·� Ea⇠⇡!(a|s) [·]

Proof. consider the derivative ⇡!(a|s)r! log ⇡!(a|s):

⇡!(a|s)r! log ⇡!(a|s) = r!⇡!(a|s),

= r!

exp
⇣

Q̂!(h)
"!

⌘

R
A exp

⇣
Q̂!(h)
"!

⌘
da

,

= r!

 
Q̂!(h)

"!

!
exp

⇣
Q̂!(h)
"!

⌘

R
A exp

⇣
Q̂!(h)
"!

⌘
da

�
exp

⇣
Q̂!(h)
"!

⌘

R
A exp

⇣
Q̂!(h)
"!

⌘
da

·

R
Ar!

⇣
Q̂!(h)
"!

⌘
exp

⇣
Q̂!(h)
"!

⌘
da

R
A exp

⇣
Q̂!(h)
"!

⌘
da

,

= r!

 
Q̂!(h)

"!

!
⇡!(a|s)� ⇡!(a|s)

Z

A
r!

 
Q̂!(h)

"!

!
⇡!(a|s)da,

= r!

 
Q̂!(h)

"!

!
⇡!(a|s)� ⇡!(a|s)Ea⇠⇡!(a|s)

"
r!

 
Q̂!(h)

"!

!#
,

= ⇡!(a|s)
 
r!

 
Q̂!(h)

"!

!
� Ea⇠⇡!(a|s)

"
r!

 
Q̂!(h)

"!

!#!
. (29)
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Finding an expression for r!

⇣
Q̂!(h)
"!

⌘
, we have:

r!

 
Q̂!(h)

"!

!
=

1

("!)2

⇣
"!r!Q̂!(h)� Q̂!(h)r!"!

⌘
.

Substituting into Eq. (29), we obtain:

⇡!(a|s)r! log ⇡!(a|s) =
⇡!(a|s)
("!)2

✓
"!r!Q̂!(h)� Q̂!(h)r!"!

� Ea⇠⇡!(a|s)

h
"!r!Q̂!(h)� Q̂!(h)r!"!

i◆
,

=
⇡!(a|s)
("!)2

✓
"!

⇣
r!Q̂!(h)� Ea⇠⇡!(a|s)

h
r!Q̂!(h)

i⌘

+r!"!

⇣
Ea⇠⇡!(a|s)

h
Q̂!(h)

i
� Q̂!(h)

⌘◆
,

=
⇡!(a|s)
("!)2

⇣
"!M!

h
r!Q̂!(h)

i
�r!"!M!Q̂!(h)

⌘
,

where M! denotes the operator M![·] := ·� Ea⇠⇡!(a|s) [·]. Dividing both sides by ⇡!(a|s) yields:

r! log ⇡!(a|s) =
1

("!)2

⇣
"!M!

h
r!Q̂!(h)

i
�r!"!M!Q̂!(h)

⌘
.

Now, substituting for r!"! = E [�!(h)r!�!(h)] from Eq. (26) yields:

r! log ⇡!(a|s) =
1

("!)2

⇣
"!M!

h
r!Q̂!(h)

i
� E [�!(h)r!�!(h)]M!Q̂!(h)

⌘
.

Now substituting for r!�!(h) = �E!

h
(r! log ⇡!(a0|s0))Q̂!(h0)

i
+ �!(h) from Eq. (27), and

re-arranging for r! log ⇡!(a|s):

r! log ⇡!(a|s) =
1

("!)2

✓
"!M!

h
r!Q̂!(h)

i
� �E

h
�!(h)E!

h
(r! log ⇡!(a

0|s0))Q̂!(h
0)
ii

+E [�!(h)�!(h)]M!Q̂!(h)

◆
,

r! log ⇡!(a|s) + �E
h
�!(h)E!

h
(r! log ⇡!(a

0|s0))Q̂!(h
0)
ii

=
1

("!)2

✓
"!M!

h
r!Q̂!(h)

i

+E [�!(h)�!(h)]M!Q̂!(h)

◆
.
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Now, to obtain our desired result, we first multiply both sides by Q̂!(h), take the expectation E!,
multiply by �!(h) and finally take the expectation E:

E
h
�!(h)E!

h
(r! log ⇡!(a

0|s0))Q̂!(h
0)
ii ⇣

1 + �E
h
�!(h)E!

h
Q̂!(h

0)
ii⌘

=
1

("!)2

✓
"!E

h
�!(h)E!

h
Q̂!(h

0)M!

h
r!Q̂!(h

0)
iii

+ E [�!(h)�!(h)]E
h
�!(h)E!

h
Q̂!(h

0)M!Q̂!(h
0)
ii◆

.

E
h
�!(h)E!

h
(r! log ⇡!(a

0|s0))Q̂!(h
0)
ii

=
E
h
�!(h)E!

h
Q̂!(h0)M!

h
r!Q̂!(h0)

iii

"!

⇣
1 + �E

h
�!(h)E!

h
Q̂!(h0)

ii⌘

+
E [�!(h)�!(h)]E

h
�!(h)E!

h
Q̂!(h0)M!Q̂!(h0)

ii

("!)2
⇣
1 + �E

h
�!(h)E!

h
Q̂!(h0)

ii⌘ ,

=
"!E [�!(h)�!(h)] E!Q̂!(h) + E!

h
r!Q̂!(h)

i

("!)2
⇣
1 + �E

h
�!(h)E!

h
Q̂!(h0)

ii⌘ ,

as required.

Using Theorem 4 to substitute for E
h
�!(h)E!

h
(r! log ⇡!(a0|s0))Q̂!(h0)

ii
into Eq. (27), we obtain

the result:

r"! =
"!E [�!(h)�!(h)] E!Q̂!(h) + E!

h
r!Q̂!(h)

i

("!)2
⇣
1 + �E

h
�!(h)E!

h
Q̂!(h0)

ii⌘ + E [�!(h)�!(h)] . (30)

The second term of Eq. (30) is the standard policy evaluation gradient and the first term changes
⇡!(a|s) in the direction of increasing "! . We see that all expectations in Eq. (30) can be approximated
by sampling from our variational policy ⇡✓(a|s) ⇡ ⇡!(a|s). After a complete E-step, and under
Assumption 4, we have ⇡✓(a|s) = ⇡!(a|s) and the gradient is exact.

While the first term in Eq. (30) is certainly tractable, it presents a formidable challenge for the
programmer to implement, especially if unbiased estimates are required; several expressions which
involve the multiplication of more than one expectation E! need to be evaluated. In all of these cases,
expectations approximated using the same data will introduce bias, however it is often infeasible to
sample more than once from the same state in the environment. Like in Sutton et al. [58], a solution
to this problem is to learn a function approximator for one of the expectations that is updated at a
slower rate than the other expectation. Alternatively, these function approximators can be updated
using separate data batches from a replay buffer.

A radical approach is to simply neglect this gradient term, which we discuss in Appendix F.3. A
more considered approach is to use an operator that does not constraint ⌦. Consider the operator
introduced in Appendix F.2,

T!,k· = r(h) + �E!,k [·] ,
where we have used the shorthand for expectation E!,k [·] := Eh0⇠p(s0|h)p!,k(a0|s0) [·] and the Boltz-
mann distribution is defined as

p!,k(a|s) :=
exp

⇣
Q̂!(h)

"k

⌘

R
A exp

⇣
Q̂!(h)

"k

⌘
da

.

The incremental residual error is defined as "!,k := 1
2|H|k�!,k(h)k22 + "k and �!,k(h) :=

T!,kQ̂!(h)� Q̂!(h). Taking gradients of "!,k directly yields:

r!"!,k = E [�!,k(h)r!�!,k(h)] .

30



where

r!�!,k(h) = r!E!,k

h
Q̂!(h

0)
i
�r!Q̂!(h),

= r!E!,k

h
Q̂!(h

0)
i
�r!Q̂!(h),

= E!,k

h
r! log p!,k(a

0|s0) +r!Q̂!(h
0)
i
�r!Q̂!(h). (31)

Now, r! log p!,k(a0|s0) can be computed directly as:

r! log p!,k(a
0|s0) = r!

 
Q̂!(h0)

"k
� log

Z

A
exp

 
Q̂!(h0)

"k

!
da

!
,

=
r!Q̂!(h0)

"k
�
Z

A

r!Q̂!(h0)

"k

exp
⇣

Q̂!(h0)
"k

⌘

R
A exp

⇣
Q̂!(h)

"k

⌘
da

da,

=
r!Q̂!(h0)

"k
�
Z

A

r!Q̂!(h)

"k
p!,k(a

0|s0)da,

=
r!Q̂!(h0)

"k
� Ea0⇠p!,k(a0|s0)

"
r!Q̂!(h)

"k

#
,

= M!,k

"
r!Q̂!(h0)

"k

#
,

where where M!,k denotes the operator M!,k[·] := ·� Ea⇠p!,k(a|s) [·]. Substituting into Eq. (31)
yields:

r!�!,k(h) = E!,k

"
M!,k

"
r!Q̂!(h0)

"k

#
+r!Q̂!(h

0)

#
�r!Q̂!(h).

E.4 Discussion of E-step

We now explore the relationship between classical actor-critic methods and the E-step. The policy
gradient theorem [56] derives an update for the derivative of the RL objective (1) with respect to the
policy parameters

r✓J(✓) = Es⇠⇢⇡(s)

⇥
Ea⇠⇡✓(a|s) [Q

⇡(h)r✓ log ⇡✓(a|s)]
⇤
,

where ⇢
⇡(s) is the discounted-ergodic occupancy, defined formally in Ciosek & Whiteson [11], and

in general not a normalised distribution. To obtain practical algorithms, we collect rollouts and treat
them as samples from the steady-state distribution instead.

By contrast, the VIREL policy update in Eq. (25) involves an expectation over d(s), which can be any
sampling distribution decorrelated from ⇡ ensuring all states are visited infinitely often. As Q̂!(h)
is also independent of ⇡✓(a|s), we can move the gradient operator r✓ out of the inner integral to
obtain

Es⇠d(s)

h
Ea⇠⇡✓(a|s)

h
Q̂!(h)r✓ log ⇡✓(a|s)

ii
= Es⇠d(s)

h
r✓Ea⇠⇡✓(a|s)

h
Q̂!(h)

ii

This transformation is essential in deriving powerful policy gradient methods such as Expected
and Fourier Policy Gradients [10, 15] and holds for deterministic polices [53]. However, unlike in
VIREL, it is not strictly justified in the classic policy gradient theorem [56] and MERL formulation
[25].

F Relaxations and Approximations

F.1 Relaxation of Representability of Q-functions

In our analysis, Assumption 2 is required by Theorem 2 to ensure that a maximum to the optimisation
problem exists, however it can be completely neglected provided that projected Bellman operators
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are used; moreover, if projected Bellman operators are used, our M-step is also always guaranteed to
converge, even if our E-step does not. Consequently, we can terminate the algorithm by carrying out a
complete M-step at any time using our variational approximation and still be guaranteed convergence
to a sub-optimal point.

We now introduce the assumption that our action-value function approximator is three-times differen-
tiable over ⌦, which is required for convergence guarantees.
Assumption 5 (Universal Smoothness of Q̂!(h)). We require that Q̂!(h) 2 C3(⌦) for all h 2 H,

We now extend the analysis of Bhatnagar et al. [6] to continuous domains. Consider the local
linearisation of the function approximator Q̂!(h) ⇡ b

>
! (h)!, where b!(h) := r!Q̂!(h). We define

the projection operator P!Q(·) := b
>
! (h)!

0 where !̃ are the parameters that minimise the difference
between the action-value function and the local linearisation:

!̃ := argmin
!0

1

2|H|kQ(h)� b
>
! (h)!

0k22. (32)

Using the notation E[·] , Eh⇠U(h)[·] and taking derivatives of Eq. (32) with respect to !
0

yields:

r!0
1

2|H|kQ(h)� !
0>k22 =

1

2
r!0E

⇥
(Q(h)� b

>
! (h)!

0)2
⇤
,

=
1

2
E
⇥
r!0(Q(h)2 � 2b>! (h)!

0
Q(h) + b

>
! (h)!

0
b
>
! (h)!

0⇤
,

= E
⇥
b!(h)b

>
! (h)!

0 � b!(h)Q(h)
⇤
.

Equating to zero and solving for !̃, we obtain:

!̃ = E
⇥
b!(h)b

>
! (h)

⇤�1 E [b!(h)Q(h)] .

Substituting into our operator yields:

P!· = b
>
! (h)E

⇥
b!(h)b

>
! (h)

⇤�1 E [b!(h)·] .
We can therefore interpret P as an operator that projects an action-value function onto the tangent
space of Q̂!(h) at !. For linear function approximators of the form Q̂!(h) = b

>(h)!, the projection
operator is independent of ! and projects Q directly onto the nearest function approximator and the
operator [57].

We now replace the residual error in Section 3.1 with the projected residual error,

"! :=
1

2|H|

���P!

⇣
T!Q̂!(h)� Q̂!(h)

⌘���
2

2
. (33)

By definition, there always exists fixed point ! 2 ⌦ for which "! = 0, which means that "! now
satisfies all requirements in Theorem 2 without Assumption 2. We can also carry out a complete partial
variational M-step by minimising the surrogate "!, keeping ⇡!(a|s) = ⇡✓(a|s) in all expectations.
At convergence, we have "! = 0 in this case.

We now derive the more convenient form of "! from Lemma 1 in Bhatnagar et al. [6], extending
this result to continuous domains. Let �!(h) := T!Q̂!(h)� Q̂!(h). Substituting into Eq. (33), we
obtain:

2"! =
1

|H| kP!�!(h)k22 ,

=
1

|H|

���b>! (h)E
⇥
b!(h)b

>
! (h)

⇤�1 E [b!(h)�!(h)]
���
2

2
,

= E
h
E
⇥
b
>
! (h)�!(h)

⇤
E
⇥
b!(h)b

>
! (h)

⇤�1
b!(h)b

>
! (h)E

⇥
b!(h)b

>
! (h)

⇤�1 E [�!(h)b!(h)]
i
,

= E
⇥
b
>
! (h)�!(h)

⇤
E
⇥
b!(h)b

>
! (h)

⇤�1 E
⇥
b!(h)b

>
! (h)

⇤
E
⇥
b!(h)b

>
! (h)

⇤�1 E [�!(h)b!(h)] ,

= E
⇥
b
>
! (h)�!(h)

⇤
E
⇥
b!(h)b

>
! (h)

⇤�1 E [�!(h)b!(h)] .
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Denoting ⇣! := E
⇥
b!(h)b>! (h)

⇤�1 E [�!(h)b!(h)] following the analysis in [6], we find the deriva-
tive of "! as:

r!"! = E
⇥
(r!�!(h))b

>
! (h)⇣!

⇤
+ E

h
(�!(h)� b

>
! (h)⇣!)r2

!Q̂!(h)⇣!
i
.

Following the method of Pearlmutter [45], the multiplication between the Hessian and ⇣! can be
calculated in O(n) time, which bounds the overall complexity of our algorithm. To avoid bias in our
estimate, we learn a set of weights ⇣̂ ⇡ ⇣! on a slower timescale, which we update as:

⇣̂k+1  ⇣̂k + ↵⇣k

�
�!(h)� b

>
! (h)⇣k

�
b!(h), (34)

where ↵⇣k is a step size chosen to ensure that ↵⇣k < ↵critic. The weights are then used to find our
gradient term:

r!"! = E
h
(r!�!(h))b

>
! (h)⇣̂

i
+ E

h
(�!(h)� b

>
! (h)⇣̂)r2

!Q̂!(h)⇣!
i
.

In our framework, the term r�!(h) is specific to our choice of operator. In Bhatnagar et al. [6], a
TD-target is used and parameter updates for ! are given as:

!k+1 = P
⇣
!k + ↵!k(bk � �b

0
k)b

>
k ⇣̂k � qk

⌘
, (35)

qk :=
⇣
�!k(hk)� b

>
k ⇣̂k

⌘
r2

!Q̂!k(hk)⇣̂k

where bk := b!k(hk) and P(·) is an operator that projects !k into any arbitrary compact set with a
smooth boundary, C. The projection P(·) is introduced for mathematical formalism and, provided C
is large enough to contain all solutions

n
!|E

h
�!(h)r!Q̂!(h)

i
= 0
o
✓ C, has no bearing on the

updates in practice. Under Assumption 5, provided the step size conditions
P1

k ↵⇣k =
P1

k ↵!k =
1,

P1
k ↵

2
⇣k <,

P1
k ↵

2
!k < 1 and limk!1

↵⇣k

↵!k
= 0 hold and E[b!(h)b>! (h)] is non-singular

8! 2 ⌦, the analysis in Theorem 2 of Bhatnagar et al. [6] applies and the updates in Eqs. (34)
and (35) are guaranteed to converge to the TD fixed point. This demonstrates using data sampled
from any variational policy ⇡✓(a|s) to update !k as Eqs. (34) and (35), !k will converge to a fixed
point.

F.2 Off-Policy Bellman Operators

As discussed in Section 3.1, using the Bellman operator T ⇡! · induces a constraint on the set of
parameters ⌦. While this constraint can be avoided using the optimal Bellman operator T ⇤· :=
r(h) + �Eh0⇠p(s0|h) [maxa0(·)], evaluating maxa0(Q̂!(h0)) may be difficult in large continuous
domains. We now make a slight modification to our model in Section 3.1 to accommodate a Bellman
operator that avoids these two practical difficulties.

Firstly, we introduce a new Boltzmann distribution p!,k(a|s):

p!,k(a|s) :=
exp

⇣
Q̂!(h)

"k

⌘

R
A exp

⇣
Q̂!(h)

"k

⌘
da

,

where {"k} is a sequence of positive constants "k � 0, limk!1 "k = 0. We now introduce a new
operator T!,k·, defined as is the Bellman operator for p!,k(a|s):

T!,k· := T p!,k · = r(h) + �Eh0⇠p(s0|h)p!,k(a0|s0) [·] . (36)
Let ⇡!,k(a|s) be the Boltzmann policy:

⇡!,k(a|s) :=
exp

⇣
Q̂!(h)
"!,k

⌘

R
A exp

⇣
Q̂!(h)
"!,k

⌘
da

,

where the residual error "!,k := c
pkT!,kQ̂!(h) � Q̂!(h)kpp + "k. It is clear that T!,k· does not

constrain ⌦ as "k has no dependency on ! and ⇡!,k(a|s) is well defined for all ! 2 ⌦.

We now formally prove that min! limk!1 "!,k = min! "!, and so minimising "!,k is the
same as minimising the objective "! from Section 3.1 and that T!,k· 2 T. We also prove that
min! limk!1 "!,k = limk!1 min! "!,k (i.e. that min and lim commute), which allows us to
minimise our objective incrementally over sequences "!,k.
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Theorem 5 (Incremental Optimisation of "!,k). Let "!,k := c
pkT!,kQ̂!(h)�Q̂!(h)kpp+"k and T!,k

be the Bellman operator defined in Eq. (36). It follows that i) T!,k· 2 T, ii) min! limk!1 "!,k =
min! "! and iii) min! limk!1 "!,k = limk!1 min! "!,k

Proof. To prove i), we take the limit limk!1 T!,kQ̂!(h) = T ⇤
Q̂!(h):

lim
k!1

T!,kQ̂!(h) = r(h) + lim
k!1

�Eh0⇠p(s0|h)p!,k(a0|s0)

h
Q̂!(h)

i
.

Observe that from Theorem 1, we have

lim
"k!1

�Eh0⇠p(s0|h)p!,k(a0|s0)

h
Q̂!(h)

i
= �Eh0⇠p(s0|h)�(a=argmaxa0 (Q̂!(a0,s))

h
Q̂!(h)

i
,

hence:

lim
k!1

T!,kQ̂!(h) = r(h) + lim
k!1

�Eh0⇠p(s0|h)p!,k(a0|s0)

h
Q̂!(h)

i
,

= r(h) + �Eh0⇠p(s0|h)�(a=argmaxa0 (Q̂!(a0,s))

h
Q̂!(h)

i
,

= r(h) + �Es0⇠p(s0|h)

h
max
a0

(Q̂!(h))
i
,

= T ⇤
Q̂!(h).

Our operator is therefore constructed such that in the limit k !1, we recover the optimal Bellman
operator. Observe too that as c

pkT!,kQ̂!(h)� Q̂!(h)kpp � 0, we have "!,k > 0 for all "k > 0. From
Theorem 1, it follows that ⇡!,k(a|s)! �(a = argmaxa0(Q̂!(a0, s)) only in the limit limk!1 "k =
0 and when "!,k = 0. Under this limit, we have limk!1 T!,k = T ⇤ and so T!,k 2 T, as required
for i).

To prove ii), consider taking the limit of "!,k directly:

lim
k!1

"!,k = lim
k!1

✓
c

p
kT!,kQ̂!(h)� Q̂!(h)kpp + "k

◆
,

= lim
k!1

✓
c

p
kT!,kQ̂!(h)� Q̂!(h)kpp

◆
+ "1,

=
c

p
k lim
k!1

T!,kQ̂!(h)� Q̂!(h)kpp,

=
c

p
kT ⇤

Q̂!(h)� Q̂!(h)kpp,

= "!, (37)

as required.

To prove iii), let !̃k be the minimiser of "!,k, that is !̃k = argmin! "!,k. Let !̃ be the limit of all
such sequences !̃ = limk!1 !̃k and let !⇤ = argmin! "!. By definition, we have "!̃k,k  "!,k.
Taking the limit k !1 and then the min, we have:

min lim
k!1

"!̃k,k  min lim
k!1

"!,k,

=) "!̃,1  min lim
k!1

"!,k. (38)

Using Assumption 2 and Eq. (37), it follows that the right hand side of Eq. (38) is min limk!1 "!,k =
min "! = 0, hence "!̃,1  0. By definition, "!̃,1 � 0, and so equality must hold. It therefore
follows limk!1 min! "!,k = "!̃,1 = 0, which implies min! limk!1 "!,k = limk!1 min! "! =
0 as required.

Overall, this result permits us to carry out separate optimisations over "!,k while gradually increasing
k !1 to obtain the same result as minimising "! directly. The advantage to this method is that each
minimisation "!,k involves the operator T!,k, which is tractable, mathematically convenient and does
not constrain ⌦. Note too that, as calculated in Appendix E.3, the gradientr!"!,k is straightforward
to implement in comparison withr!"! using T ⇡! . We save investigating this operator further for
future work.
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F.3 Approximate Gradient Methods and Partial Optimisation

A common trick in policy evaluation is to use a direct method [2, 55]. Like in supervised methods
[7], direct methods treat the term T!Q̂!(h) as a fixed target, rather than a differential function.
Introducing the notation E[·] , Eh⇠U(h)[·], the gradient can easily be derived as:

r!"! =
1

2
r!E

⇣
a
h
T!Q̂!(h)

i
� Q̂!(h)

⌘2�
,

= �E
h⇣

Q̂!(h)� T!Q̂!(h)
⌘
r!Q̂!(h)

i

where a [·] is the stopgrad operator, which sets the gradient of its operand to zero, a [·] = ·,
ra [·] = 0 [16]. For general function approximators, direct methods have no convergence guarantees,
and indeed there exist several famous examples of divergence when used with classic RL targets
[5, 65, 70], however its ubiquity in the RL community is testament to its ease of implementation and
empirical success [42, 55]. We therefore see no reason why it should not be successful for VIREL,
a claim which we verify in Section 5. In our setting, we replace our M-step with the simplified
objective !k+1  argmin! "!. This is justified because argmin! "! was the original objective
motivated in Section 3.1, and so the only limitation to minimising this directly is obtaining a good
enough variational policy ⇡!(a|s) ⇡ ⇡✓(a|s). More formally, our objective L(!, ✓) is maximised
for any "! ! 0, so argmin! "! can be considered a surrogate objective for L(!, ✓). Using direct
methods, M-step update becomes:

M-Step (Critic) direct: !i+1  !i � ↵criticr!"!|!=!i ,

r!"! = E
h⇣

Q̂!(h)� T!Q̂!(h)
⌘
r!Q̂!(h)

i
.

We can approximate T!Q̂!(h) by sampling from the variational distribution ⇡✓(a|s) and by using any
appropriate RL target. Another important approximation that we make is that we perform only partial
E- and M-steps, halting optimisation before convergence. From a practical perspective, convergence
can often only occur in a limit of infinite time steps anyway, and if good empirical performance result
from taking partial E- and M-steps, computation may be wasted carrying out many sub-optimisation
steps for little gain.

As analysed by Gunawardana & Byrne [23], such algorithms fall under the umbrella of the generalised
alternating maximisation (GAM) framework, and convergence guarantees are specific to the form of
function approximator and MDP. Like in many inference settings, we anticipate that most function
approximators and MDPs of interest will not satisfy the conditions required to prove convergence,
however variational EM procedures are known to be to empirically successful even when convergence
properties are not guaranteed [23, 66]. We demonstrate in Section 5 that taking partial EM steps does
not hinder our performance.

F.4 Local Smoothness of Q̂!⇤(·)

For Theorem 1 to hold, we require that Q̂!⇤(·) is locally smooth about its maximum. Our choice
of function approximator may prevent this condition from holding, for example, a neural network
with ReLU elements can introduce a discontinuity in gradient at maxh Q̂!⇤(h). In practice, a formal
Dirac-delta function can only ever emerge in the limit of convergence "! ! 0. In finite time, we
obtain, at best, a nascent delta function; that is a function with very small variance that is ‘on the way
to convergence’ (see, for example, Kelly [31] for a formal definition). The mode of a nascent delta
function therefore approximates the true Dirac-delta distribution. When Q̂!⇤(·) is not locally smooth,
functions that behave similarly to nascent delta functions will still emerge at finite time, the mode of
which we anticipate provides an approximation to the hardmax behaviour we require for most RL
settings.

We also require that Q̂!⇤(·) has a single, unique global maximum for any state. In reality, optimal
Q-functions may have more than one global maxima for a single state corresponding to the existence
of multiple optimal policies. To ensure Assumption 3 strictly holds, we can arbitrarily reduce the
reward for all but one optimal policy. We anticipate that this is unnecessary in practice, as our
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risk-neutral objective means that a variational policy will be encouraged fit to a single mode anyway.
In addition, these assumptions are required to characterise behaviour under convergence to a solution
and will not present a problem in finite time where Q̂!(h) is very unlikely to have more than one
global optimum.

F.5 Analysis of Approximate EM Algorithms

We now provide two separate analyses of our EM algorithm, replacing the Bellman operator T ⇡! ·
with its unconstrained variational approximation T ⇡✓ · (effectively substituting for ⇡!(·|s) ⇡ ⇡✓(·|s)
under expectation). In our first analysis, we make no simplifying assumptions on "!, showing that
our EM algorithm reduces exactly to policy iteration and evaluation. In our second analysis, we use a
direct method, treating T ⇡✓ · as a fixed target as outlined in Appendix F.3, showing that the algorithm
reduces exactly to Q-learning.

In both analyses, we assume a complete E- and M- step can be carried out and our class of function
approximators is rich enough to represent any action-value function. Let ⇡✓0(a|·) be any initial policy
and Q̂!0(·) an arbitrary initialisation of the function approximator. For notational convenience we
write ⇡k(a|·) := ⇡✓k(a|·).

Analysis with !-Dependent Target As we prove in Theorem 2, we can always maximise our
objective with respect to ! by finding !

⇤ s.t. "!⇤ = 0. This gives the M-step update:

!1 = argmin
!

"!,

=) "!1 = 0,

=) T ⇡0Q̂!1 = Q̂!1 ,

=) Q̂!1 = Q
⇡0(·).

Our E-step amounts to calculating the Boltzmann distribution with "!1 = 0, which from Theorem 1
takes the form of a Dirac-delta distribution:

⇡1(a|·) = �

✓
a = argmax

a0
Q

⇡0(a0, ·)
◆
.

We can generalise to the kth EM update as:

Q̂!k(·) Q
⇡k�1(·), (39)

⇡k(a|·) �

✓
a = argmax

a0
Q

⇡k�1(a0, ·)
◆
. (40)

Together Eqs 39 and 40 are exactly the updates for policy iteration, an algorithm which is known to
converge to the optimal policy [59, 55]. We therefore see that, even ignoring the constraint on ⌦, the
optimal solution is still an attractive fixed point when our algorithms are carried out exactly. Using
partial E- and M-steps give a variational approximation to the complete EM algorithm. We now
provide a similar analysis using the fixed target of direct methods introduced in Appendix F.3.

Analysis with Fixed Target Using a direct method, we replace the residual error with the fixed
target residual error "! ⇡ "!,k := c

pkT
⇡kQ̂!k � Q̂!kpp, giving the M-step update:

!1 = argmin
!

"!,0

which, under our assumption of representability, is achieved for

"!1,0 = 0,

=) Q̂!1(·) = T ⇡0Q̂!0 .

As with our !-dependent target, the E-step amounts to calculating the Boltzmann distribution with
"!1,0 = 0, which from Theorem 1 takes the form of a Dirac-delta distribution:

⇡1(a|·) = �

✓
a = argmax

a0
Q̂!1(a

0
, ·)
◆
.
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We see that for any policy and function approximator, carrying out a complete E- and M- step results
in a deterministic policy being learnt in this approximate regime. We generalise to the kth EM updates
for k > 2 as:

⇡k�1(a|·) = �

✓
a = argmax

a0
Q̂!k�1(a

0
, ·)
◆
,

!k = argmin
!

"!,k�1 = argmin
!

c

p
kT ⇡k�1Q̂!k�1 � Q̂!kpp,

=) "!1,0 = 0,

=) Q̂!k(·) = T ⇡k�1Q̂!k�1(·),

= r(·) + Es0|·

h
max
a0

Q̂!k�1(s
0
, a

0)
i
,

= T ⇤
Q̂!k�1(·). (41)

From Eq. (41), we see that the EM algorithm with complete E- and M- steps implements Q-learning
updates on our function approximator Q̂!k(·) T ⇤

Q̂!k�1(·) for k > 2 [68]. See Yang et al. [72] for
a theoretical exposition of the convergence this Q-learning algorithm using function approximators.
When partial EM steps are carried out, we can view this algorithm as a variational approximation to
Q-learning.

G Recovering MPO

We now derive the MPO objective from our framework. Under the probabilistic interpretation in
Appendix B, the objective can be derived using the prior p�(h) = U(s)⇡�(a|s) instead of the uniform
distribution. Following the same analysis as in Appendix B, this yields an action-posterior:

p!,�(a|s,O) =
exp

⇣
Q̂!(h)
"!

⌘
⇡�(a|s)

R
exp

⇣
Q̂!(h)
"!

⌘
⇡�(a|s)da

.

Again, following the same analysis as in Appendix B, our ELBO objective is:

L(!, ✓,�) = Ed(s)

"
E⇡✓(a|s)

"
Q̂!(h)

"!

#
� KL(⇡✓(a|s) k ⇡�(a|s))

#
. (42)

Including a hyper-prior p(�) over � adds an additional term to L(!, ✓,�):

L(!, ✓,�) = Ed(s)

"
E⇡✓(a|s)

"
Q̂!(h)

"!

#
� KL(⇡✓(a|s) k ⇡�(a|s))

#
+ log p(�).

which is exactly the MPO objective, with an adaptive scaling constant "! to balance the influence of
KL(⇡✓(a|s) k ⇡�(a|s)). Without loss of generality, we ignore the hyperprior and analyse Eq. (42)
instead.

As discussed by Abdolmaleki et al. [1], the MPO objective is similar to the PPO [52] objective
with the KL-direction reversed. In our E-step, we find a new variational distribution ⇡✓k+1(a|s) that
maximises the ELBO with !k fixed: Doing so yields an identical E-step to MPO. In parametric
form, we can use gradient ascent and apply the same analysis as in Appendix E.1, obtaining an
update

E-Step (MPO): ✓i+1  ✓i + ↵actor ("!kr✓L(!k,�k, ✓)|✓=✓i),

"!kr✓L(!k,�k, ✓) = Ed(s)

h
E⇡✓(a|s)

h
Q̂!k(h)r✓ log ⇡✓(a|s)

i
� "!kr✓KL(⇡✓(a|s) k ⇡�k(a|s))

i
.

(43)
As a point of comparison, Abdolmaleki et al. [1] motivate the update in Eq. (43) by carrying out
a partial E-step, maximising the “one-step” KL-regularised pseudo-likelihood objective. In our
framework, maximising Eq. (43) constitutes a full E-step, without requiring approximation.

In our M-step, we maximise the LML using the posterior derived from the E-step, yielding the
update:
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M-Step (MPO): !k+1,�k+1  argmax!,� L(!,�, ✓k+1),

argmax
!,�

L(!,�, ✓k+1) = argmax
!,�

 
Ed(s)

"
E⇡✓k+1

"
Q̂!(h)

"!

#
� KL(⇡✓k+1 k ⇡�(a|s))

#!
.

Maximising for � can be achieved exactly by setting ⇡�(a|s) = ⇡✓k+1(a|s), under which

KL(⇡✓k+1 k ⇡�(a|s)) = 0. Maximising for ! is equivalent to finding argmax! Ed(s)⇡✓k+1

h
Q̂!(h)
"!

i
,

which accounts for the missing policy evaluation step, and can be implemented using the gradient
ascent updates from Eq. (7). Setting ⇡�(a|s) = ⇡✓k+1(a|s) is exactly the M-step update for MPO
and, like in TRPO [51], means that ⇡�(a|s) can be interpreted as the old policy, which is updated
only after policy improvement. The objective in Eq. (42) therefore prevents policy improvement
from straying too far from the old policy, adding a penalisation term KL(⇡✓(a|s) k ⇡OLD(a|s)) to the
classic RL objective.

H Variational Actor-Critic Algorithm Pseudocode

Algorithms 1 and 2 show the pseudocode for the variational actor-critic algorithms virel and beta

described in Section 5. The respective objectives are:

J
V (�) =Est⇠D


1

2
(V�(st)� Eat⇠⇡✓ [Q!(st, at)])

2
�
,

J
Q(!) =E(ht,rt,st+1)⇠D


1

2

�
rt + �V�̄(st+1)�Q!(ht)

�2
�
,

J
⇡q

virel
(✓) =Eht⇠D


log ⇡✓(at|st)(↵� (Q!(ht)� V�̄(st)))

�
,

J
⇡q

beta
(✓) =Eht⇠D


log ⇡✓(at|st)

✓
1� �

ravg
"! � (Q!(ht)� V�̄(st))

◆�
.

Note that the derivative of the policy objectives can be found using the reparametrisation trick [32, 29],
which we use for our implementation.

Algorithm 1 Variational Actor-Critic: virel

Initialize parameter vectors �, �̄, ✓, !, D  {}

for each iteration do
for each environment step do
at ⇠ ⇡

q(a|s; ✓)
st+1 ⇠ p(st+1|st, at)
D  D [ {(st, at, r(st, at), st+1)}

end for
for each gradient step do
� �� �V r̂�J

V (�) (M-step)
!  ! � �Qr̂!J

Q(!) (M-step)
✓  ✓ � �⇡qr̂✓J

⇡q

virel
(✓) (E-step)

�̄ ⌧ �̄+ (1� ⌧)�̄
end for

end for

Algorithm 2 Variational Actor-Critic: beta

Initialize parameter vectors �, �̄, ✓, !, D  {}

for each iteration do
for each environment step do
at ⇠ ⇡

q(a|s; ✓)
st+1 ⇠ p(st+1|st, at)
D  D [ {(st, at, r(st, at), st+1)}

end for
for each gradient step do
"!  ED

h�
rt + �V�̄(st+1)�Q!(ht)

�2i

� �� �V r̂�J
V (�) (M-step)

!  ! � �Qr̂!J
Q(!) (M-step)

✓  ✓ � �⇡qr̂✓J
⇡q

beta
(✓) (E-step)

�̄ ⌧ �̄+ (1� ⌧)�̄
end for

end for
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I Experimental details

I.1 Parameter Values

Note that instead of specifying temperature c, we fix c = 1 for all implementations and scale reward
instead.

Table 1: Summary of Experimental Parameter Values

PARAMETER VALUE

Steps per evaluation 1000
Path Length 999
Discount factor 0.99

Mujoco-v2 Experiments:

Batch size 128
Net size 300

�� ⇡
1� �

ravg

Humanoid
4e-4

All other
4e-3

Reward scale

Hopper, Half-Cheetah
5

Walker
3

All other
1

Value function
learning rate 3e-4

Policy
learning rate 3e-4

MLP layout as given in
https://github.com/vitchyr/rlkit

Mujoco-v1 Experiments:

Values as used by Haarnoja et al. [25] in
https://github.com/haarnoja/sac
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I.2 Additional MuJoCo-v1 Experiments

Figure 7: Training curves on additional continuous control benchmarks Mujoco-v1.

I.3 Additional MuJoCo-v2 Experiments

Figure 8: Training curves on additional continuous control benchmarks gym-Mujoco-v2.
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