
Appendix

1 Smoothing Function and Random Gradient Estimate

Lemma A1 a) Relationship between fµ and f : If f is convex, then fµ is convex. If f is Lc-Lipschitz
continuous, then fµ is Lc-Lipschitz continuous. Moreover for any x ∈ Rd,

|fµ(x)− f(x)| ≤ Lcµ. (17)
If f has Lg-Lipschitz continuous gradient, then fµ has Lg-Lipschitz continuous gradient. Moreover
for any x ∈ Rd,

|fµ(x)− f(x)| ≤ Lgµ2/2 (18)

‖∇fµ(x)−∇f(x)‖22 ≤ µ2d2L2
g/4. (19)

b) Statistical properties of ∇̂f : For any x ∈ Rd,

Eu

[
∇̂f(x)

]
= ∇fµ(x). (20)

If f has Lg-Lipschitz continuous gradient, then

Eu

[
‖∇̂f(x)‖22

]
≤ 2d‖∇f(x)‖22 + µ2L2

gd
2/2. (21)

Proof: We refer readers to [30, Lemma 4.1] for the detailed proof of a)-b) except the Lipschitz
continuity of fµ and (17). Suppose that f is Lc-Lipschitz continuous, based on the definition of fµ in
(2), we obtain

|fµ(x)− fµ(y)| ≤ 1

α(d)

∫
B

|f(x + µu)− f(y + µu)|du ≤ Lc‖x− y‖2,

where α(d) denotes the volume of the unit ball B in Rd.

Moreover, we prove (17) as below.

|fµ(x)− f(x)| =
∣∣∣∣ 1

α(d)

∫
B

f(x + µu)− f(x)du

∣∣∣∣ ≤ µLc
α(d)

∫
B

‖u‖2du =
µLcd

d+ 1
≤ µLc,

where the first equality holds due to (2), Jensen’s inequality and Lipschitz continuity of f , and the
last equality holds since (1/α(d))

∫
B
‖u‖p2du = n

n+p [30, Lemma 6.3.a]. �

In Lemma A1, it is clear from (19) and (20) that the ZO gradient estimate (1) becomes unbiased to
the true gradient ∇f only when µ→ 0. However, if µ is too small, then the difference of empirical
function values is also too small to represent the function differential [22, 24]. Thus, the tolerance
on the smoothing parameter µ is an important factor to indicate the convergence performance of
ZO optimization methods. It is also known from (21) that regardless of the value of µ, the variance
of the ZO gradient estimate is always proportional to the dimension d. This is one of reasons
for the dimension-dependent slowdown in convergence of ZO optimization methods. This also
introduces technical difficulties for analyzing the effect of adaptive learning rate on the convergence
of ZO-AdaMM in nonconvex optimization.

2 Proof for Nonconvex Optimization

2.1 Proof of Proposition 1

Let us consider a special case of Algorithm 1 with the average ZO gradient estimate ∇̂f(x) =
d
qµ

∑q
i=1 {[f(x + µui)− f(x)]ui} under β1,t = β2 → 0, µ → 0 and q → ∞. The conditions of

β1,t = β2 → 0 enables Algorithm 1 to reduce to ZO-signSGD in [14], and the conditions of µ→ 0
and q → ∞ makes the ZO gradient estimate unbiased to ∇f(x) and its variance close to 0 [14,
Proposition 2]. As a result, we obtain ĝt → ∇f(xt), and Algorithm 1 becomes signSGD [15],

xt+1 =ΠX ,I(xt − αtsign(∇f(xt))) (22)
where sign(x) = 1 if x > 0 and −1 if x < 0, and it is taken elementwise for a vector argument.

Let f(x) = −2x1 − x2 in (5). We then run (22) at x1 = x2 = 0.5, which yields

xt+1 =ΠX ([0.5, 0.5]T − αt[−1,−1]T ) = ΠX([0.5 + αt, 0.5 + αt]
T ) = [0.5, 0.5]T , (23)
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where X encodes the constraint |x1 + x2| ≤ 1.

It is clear that the updating rule (23) will converge to x = [0.5, 0.5]T regardless of the choice of αt.
The remaining question is whether or not it is a stationary point. Recall that a point x∗ is a stationary
point if it satisfies the following conditions:

〈∇f(x∗),x− x∗〉 ≥ 0, ∀x ∈ X . (24)

Since the gradient at [0.5, 0.5]T is [−2,−1]T , and the inequality (24) at x = [0.6, 0.4]T ∈ X does not
hold, given by 〈[−2,−1]T , [0.6, 0.4]T − [0.5, 0.5]T 〉 = −0.1 < 0. This implies that x∗ = [0.5, 0.5]T

is not a stationary point of problem (5).

Next, we apply the Mhalanobis distance V̂t = diag(∇f(xt)
2) to (22),

xt+1 =ΠX ,V̂1/2
t

(xt − αtsign(∇f(xt))) = ΠX ,V̂1/2
t

(xt − αtV̂−1/2t ∇f(xt)). (25)

Similar to (22), we then consider the impact of fixed point xt+1 = xt on (25). By the definition of
projection operator, we have

xt = arg min
x∈X

‖V̂1/4(x− xt + αtV̂
−1/2
t ∇f(xt)))‖ (26)

The optimality condition of (26) is given by

〈V̂1/2(xt − xt + αtV̂
−1/2
t ∇f(xt)),x− xt〉 ≥ 0, ∀x ∈ X,

which reduces to
〈∇f(xt),x− xt〉 ≥ 0, ∀x ∈ X. (27)

It thus means that xt is a stationary point by (24). �

2.2 Proof of Proposition 2

Before proving the main result Proposition 2, we first prove a few auxiliary lemmas.

Lemma 2.1 Given {xt} from Algorithm 1, consider the sequence

zt = xt +
β1

1− β1
(xt − xt−1), ∀t ≥ 1, (28)

where let x0 := x1. Then for β1,t = β1 and X = Rd, ∀t > 1

zt+1 − zt

=− β1
1− β1

(
αtV̂

−1/2
t − αt−1V̂−1/2t−1

)
mt−1 − αtV̂−1/2t ĝt

and
z2 − z1 = −α1ĝ1/

√
v̂1.

Proof of Lemma 2.1: The proof follows from Lemma 6.1 in [20] by setting β1,t = β1.

Lemma 2.2 By ZO-AdaMM update rule, we have

E[fµ(zt+1)− fµ(z1)] ≤
T∑
t=1

E [〈∇fµ(xt), zt+1 − zt〉] +
4Lg + 5Lgβ

2
1

2(1− β1)2

T∑
t=1

E
[
‖xt+1 − xt‖2

]
(29)
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Proof of Lemma 2.2: By smoothness of function f , we can have
fµ(zt+1)− fµ(zt)

≤〈∇fµ(zt), zt+1 − zt〉+
Lg
2
‖zt+1 − zt‖2

=〈∇fµ(xt), zt+1 − zt〉+
Lg
2
‖zt+1 − zt‖2 + 〈∇fµ(zt)−∇fµ(xt), zt+1 − zt〉

≤〈∇fµ(xt), zt+1 − zt〉+
Lg
2
‖zt+1 − zt‖2 +

1

2
(

1

Lg
‖∇fµ(zt)−∇fµ(xt)‖2 + Lg‖zt+1 − zt‖2)

≤〈∇fµ(xt), zt+1 − zt〉+ Lg‖zt+1 − zt‖2 +
1

2
Lg‖zt − xt‖2

=〈∇fµ(xt), zt+1 − zt〉+ Lg‖zt+1 − zt‖2 +
1

2
Lg‖

β1
1− β1

(xt − xt−1)‖2 (30)

Further, by (28), we have

zt+1 − zt =
1

1− β1
(xt+1 − xt) +

β1
1− β1

(xt − xt−1)

and thus

‖zt+1 − zt‖2 ≤
2

(1− β1)2
‖xt+1 − xt‖2 +

2β2
1

(1− β1)2
‖xt − xt−1‖2 (31)

Substituting (31) into (30), we get
fµ(zt+1)− fµ(zt)

≤〈∇fµ(xt), zt+1 − zt〉+
2Lg

(1− β1)2
‖xt+1 − xt‖2 +

2β2
1Lg

(1− β1)2
‖xt − xt−1‖2

+
1

2
Lg

β2
1

(1− β1)2
‖xt − xt−1‖2

=〈∇fµ(xt), zt+1 − zt〉+
2Lg

(1− β1)2
‖xt+1 − xt‖2 +

5Lgβ
2
1

2(1− β1)2
‖xt − xt−1‖2 (32)

Summing t from 1 to T and take expectation, we get
E[fµ(zt+1)− fµ(z1)]

≤E
[ T∑
t=1

(
〈∇fµ(xt), zt+1 − zt〉+

2Lg
(1− β1)2

‖xt+1 − xt‖2 +
5Lgβ

2
1

2(1− β1)2
‖xt − xt−1‖2

)]

≤
T∑
t=1

E [〈∇fµ(xt), zt+1 − zt〉] +
4Lg + 5Lgβ

2
1

2(1− β1)2

T∑
t=1

E
[
‖xt+1 − xt‖2

]
�

Lemma 2.3 Assume ‖ĝt‖∞ ≤ Gzo, ∀t ∈ [T ] and m0 = 0, By ZO-AdaMM update rule, we have
T∑
t=1

E[〈∇fµ(xt), zt+1 − zt〉] ≤E

[(
ηGzo

1− β1
+ η2

) d∑
i=1

α1√
v̂0,i

]

−
T∑
t=1

E
[
〈∇fµ(xt), αtV̂

−1/2
t ∇fµ(xt)〉

]
. (33)

Proof of Lemma 2.3: By Lemma 2.1, we have
〈∇fµ(xt), zt+1 − zt〉

=〈∇fµ(xt),−
β1

1− β1

(
αtV̂

−1/2
t − αt−1V̂−1/2t−1

)
mt−1 − αtV̂−1/2t ĝt〉

=〈∇fµ(xt),−
β1

1− β1

(
αtV̂

−1/2
t − αt−1V̂−1/2t−1

)
mt−1〉 − 〈∇fµ(xt), αtV̂

−1/2
t ĝt〉, (34)
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and
〈∇fµ(xt), αtV̂

−1/2
t ĝt〉

=〈∇fµ(xt), αtV̂
−1/2
t ∇fµ(xt)〉+ 〈∇fµ(xt), αtV̂

−1/2
t (ĝt −∇fµ(xt))〉

=〈∇fµ(xt), αtV̂
−1/2
t ∇fµ(xt)〉+ 〈∇fµ(xt), αt−1V̂

−1/2
t−1 (ĝt −∇fµ(xt))〉

+ 〈∇fµ(xt),
(
αtV̂

−1/2
t − αt−1V̂−1/2t−1

)
(ĝt −∇fµ(xt))〉. (35)

Substitute (35) into (34), we have
〈∇fµ(xt), zt+1 − zt〉

≤〈∇fµ(xt),−
β1

1− β1

(
αtV̂

−1/2
t − αt−1V̂−1/2t−1

)
�mt−1〉

− 〈∇fµ(xt), αtV̂
−1/2
t ∇fµ(xt)〉 − 〈∇fµ(xt), αt−1V̂

−1/2
t−1 (ĝt −∇fµ(xt))〉

− 〈∇fµ(xt),
(
αtV̂

−1/2
t − αt−1V̂−1/2t−1

)
(ĝt −∇fµ(xt))〉

=〈∇fµ(xt),−
(
αtV̂

−1/2
t − αt−1V̂−1/2t−1

) mt

1− β1
〉

− 〈∇fµ(xt),−
(
αtV̂

−1/2
t − αt−1V̂−1/2t−1

)
∇fµ(xt)〉

− 〈∇fµ(xt), αtV̂
−1/2
t ∇fµ(xt)〉 − 〈∇fµ(xt), αt−1V̂

−1/2
t−1 (ĝt −∇fµ(xt))〉

≤(
ηGzo

1− β1
+ η2)

d∑
i=1

∣∣∣∣∣ αt−1√
v̂t−1,i

− αt√
v̂t,i

∣∣∣∣∣
− 〈∇fµ(xt), αtV̂

−1/2
t ∇fµ(xt)〉 − 〈∇fµ(xt), αt−1V̂

−1/2
t−1 (ĝt −∇fµ(xt))〉 (36)

where the last inequality follows from the assumption that V̂t = diga(v̂t), ‖∇fµ(xt)‖∞ ≤ η and
‖ĝt‖∞ ≤ Gzo.
The upper bound on ‖mt‖∞ can be proved by a simple induction. Recall that mt = β1,tmt−1 +
(1− β1,t)ĝt, suppose ‖mt−1‖ ≤ Gzo, we have

‖mt‖∞ ≤(β1,t + (1− β1,t)) max(‖ĝt‖∞, ‖mt−1‖∞)

= max(‖ĝt‖∞, ‖mt−1‖∞) ≤ Gzo. (37)
Then since m0 = 0, we have ‖m0‖ ≤ Gzo, which completes the induction.

Sum t from 1 to T and take expectation over randomness of ĝt, we have
T∑
t=1

E[〈∇fµ(xt), zt+1 − zt〉]

≤E

[
T∑
t=1

(
ηGzo

1− β1
+ η2

) d∑
i=1

∣∣∣∣∣ αt−1√
v̂t−1,i

− αt√
v̂t,i

∣∣∣∣∣
]

−
T∑
t=1

E
[
〈∇fµ(xt), αtV̂

−1/2
t ∇fµ(xt)〉

]
−

T∑
t=1

E
[
〈∇fµ(xt), αt−1V̂

−1/2
t−1 (ĝt −∇fµ(xt))〉

]
≤E

[(
ηGzo

1− β1
+ η2

) d∑
i=1

α1√
v̂0,i

]
−

T∑
t=1

E
[
〈∇fµ(xt), αtV̂

−1/2
t ∇fµ(xt)〉

]
where the last inequality follows from following facts.
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1. Since v̂t = max(v̂t−1,vt), we know v̂t is non-decreasing. Given the fact that αt is non-increasing
(by our choice), we have αt−1/v̂t−1,i − αt/v̂t,i ≥ 0. Thus, following inequality holds.

E

[
T∑
t=1

d∑
i=1

∣∣∣∣∣ αt−1√
v̂t−1,i

− αt√
v̂t,i

∣∣∣∣∣
]

= E

[
d∑
i=1

T∑
t=1

∣∣∣∣∣ αt−1√
v̂t−1,i

− αt√
v̂t,i

∣∣∣∣∣
]

=E

[
d∑
i=1

T∑
t=1

(
αt−1√
v̂t−1,i

− αt√
v̂t,i

)]
≤ E

[
d∑
i=1

α1√
v̂0,i

]
(38)

2. We have E[ĝt|ĝ1:t−1] = ∇fµ(xt) by the assumption that E[ĝt] = ∇fµ(xt) and the noise on ĝt is
independent of ĝ1:t−1. Thus, the following holds

E
[
〈∇fµ(xt), αt−1V̂

−1/2
t−1 (ĝt −∇fµ(xt))〉

]
= 0 (39)

�

Lemma 2.4 Assume γ := β1/β2 < 1, ZO-AdaMM yields

‖xt+1 − xt‖2 ≤α2
td

1− β1
1− β2

1

1− γ
(40)

Comment:This is an important lemma for ZO-AdaMM, it shows the squared update quantity is not
dependent on size of stochastic gradient, thus giving a tighter dependency on d compared with [18].

Proof of Lemma 2.4: By the update rule, we have

‖xt+1 − xt‖2 = α2
t

∥∥∥∥ mt√
v̂t

∥∥∥∥2
≤α2

t

d∑
i=1

((1− β1)
∑t−1
j=0 β

t−j
1 ĝj,i)

2

(1− β2)
∑t−1
j=0 β

t−j
2 ĝ2

j,i

≤ α2
t

d∑
i=1

(1− β1)2(
∑t−1
j=0 β

t−j
1 )(

∑t−1
j=0 β

t−j
1 ĝ2

j,i)

(1− β2)
∑t−1
j=0 β

t−j
2 ĝ2

j,i

≤α2
t

d∑
i=1

(1− β1)
∑t−1
j=0 β

t−j
1 ĝ2

j,i

(1− β2)
∑t−1
j=0 β

t−j
2 ĝ2

j,i

≤ α2
t

d∑
i=1

t−1∑
j=0

(1− β1)βt−j1 ĝ2
j,i

(1− β2)βt−j2 ĝ2
j,i

≤α2
td

t−1∑
j=0

1− β1
1− β2

γt−j ≤ α2
td

1− β1
1− β2

1

1− γ

where the second inequality is due to Cauchy-Schwarz and γ = β1/β2 < 1.

�

Proof of Proposition 2: Substitute (40) and (33) into (29), we get
E[fµ(zt+1)− fµ(z1)]

≤
T∑
t=1

E[〈∇fµ(xt), zt+1 − zt〉] +
4Lg + 5Lgβ

2
1

2(1− β1)2

T∑
t=1

E[‖xt+1 − xt‖2]

≤E
[(

ηGzo
1− β1

+ η2
)∥∥∥∥ α1√

v̂0

∥∥∥∥
1

]
−

T∑
t=1

E
[
〈∇fµ(xt), αtV̂

−1/2
t ∇fµ(xt)〉

]
+

T∑
t=1

α2
td

4Lg + 5Lgβ
2
1

2(1− β1)2
1− β1
1− β2

1

1− γ
(41)

Rearrange and assume fµ(z1)−minz fµ(z) ≤ Df , we get
T∑
t=1

E
[
〈∇fµ(xt), αtV̂

−1/2
t ∇fµ(xt)〉

]
≤Df + E

[(
ηGzo

1− β1
+ η2

)∥∥∥∥ α1√
v̂0

∥∥∥∥
1

]
+

T∑
t=1

α2
td

4Lg + 5Lgβ
2
1

2(1− β1)2
1− β1
1− β2

1

1− γ
(42)
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Set αt = α = 1/
√
Td and divide both sides by Tα, uniformly randomly pick R from 1 to T ,

E
[
‖V̂−1/2R ∇fµ(xR)‖2

]
=

1

T

T∑
t=1

E
[
‖V −1/2t ∇fµ(xt)‖2

]
≤Df

Tα
+

1

T
E
[(

ηGzo
1− β1

+ η2
)∥∥∥∥ 1√

v̂0

∥∥∥∥
1

]
+ αd

4Lg + 5Lgβ
2
1

2(1− β1)2
1− β1
1− β2

1

1− γ

=

√
d√
T
Df +

1

T
E
[(

ηGzo
1− β1

+ η2
)∥∥∥∥ 1√

v̂0

∥∥∥∥
1

]
+

√
d√
T

4Lg + 5Lgβ
2
1

2(1− β1)2
1− β1
1− β2

1

1− γ
(43)

Since V̂
1/2
0,ii ≥ c, ∀i ∈ [d]. By Lemma A1, we have

‖V̂−1/4t (∇fµ(x)−∇fµ(x))‖2 ≤ µ2d2L2

4c
(44)

Then we can easily adapt (43) to

E
[
‖V̂−1/4t ∇f(xR)‖2

]
≤µ

2d2L2

2c
+ 2

√
d√
T
Df + 2

1

T
E
[(

ηGzo
1− β1

+ 2η2

)∥∥∥∥ 1√
v̂0

∥∥∥∥
1

]
+

√
d√
T

4Lg + 5Lgβ
2
1

(1− β1)2
1− β1
1− β2

1

1− γ
Substituting into µ finishes the proof. �

2.3 Proof of Proposition 3

Upon defining Gzo,i := maxt∈[T ] |ĝt,i|

by [50, Lemma 2.2], for a vector u sampled from a unit sphere in Rd, we have for any i ∈ [d],

P [|ui| ≥
√
ξ/d] ≤ exp ((1− ξ + log ξ) /2) . (45)

Let ξ = 4 log dT
δ , and by the assumption of max(d, T ) ≥ 3 we have 1 + log ξ ≤ ξ/2. Thus, we

obtain from (45) that

P [|ui| ≥
√
ξ/d] ≤ exp (−ξ/4) = exp (− log (dT/δ)) = δ/dT. (46)

Recall that the ZO gradient estimate ĝt is given by the form

∇̂f(x) = (d/µ)[f(x + µu)− f(x)]u. (47)
By Lipschitz of f under A2, the ith coordinate of the ZO gradient estimate (47) is upper bounded by
dLc|ui|. Since u is drawn uniformly randomly from a unit sphere, by (46) we have

P [dLc|ui| ≥ Lc
√
ξd] ≤ δ/dT. (48)

Also, since |ĝt,i| ≤ dLc|ui|, based on (48) we obtain that

P [|ĝt,i| ≥ Lc
√
ξd] ≤ P [dLc|ui| ≥ Lc

√
ξd] ≤ δ/dT. (49)

Substituting ξ = 4 log dT
δ into (49), we have

P [|ĝt,i| ≥ 2Lc
√
d log(dT/δ)] ≤ δ/dT (50)

Then by the union bound and (50), we have

P [|ĝt,i| ≥ 2Lc
√
d log(dT/δ), ∀i, t]

≤
∑
t∈[T ]

∑
i∈[d]

P [|ĝt,i| ≥ 2Lc
√
d log(dT/δ)] ≤ dT (δ/dT ) = δ,

which implies the inequality (11). �

2.4 Proof of Theorem 1

The idea is to prove a similar result as Proposition 2 conditioned on the event in Proposition 3
(maxt∈[T ]{‖ĝt‖∞} ≤ 2Lc

√
d log(dT/δ)). Thus, the proof follows the same flow as Proposition 2.

The difference is that (39) does not hold conditioned on the event and more efforts are need to bound
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the corresponding term in (39). Denote the event that maxt∈[T ]{‖ĝt‖∞} ≤ 2Lc
√
d log(dT/δ) to be

U(δ), we need to upper bound

E
[
〈∇fµ(xt), αt−1V̂

−1/2
t−1 (ĝt −∇fµ(xt))〉|U(δ)

]
(51)

where E[·|U(δ)] is conditional expectation conditioned on U(δ).

By Proposition 3, we know P (U(δ)) ≥ 1− δ and using the fact that E[·|A] = E[·]−E[·|Ac]P (Ac)
P (A) for

any event A and its complimentary event Ac, we have

E
[
〈∇fµ(xt), αt−1V̂

−1/2
t−1 (ĝt −∇fµ(xt))〉|U(δ)

]
≤
E
[
〈∇fµ(xt), αt−1V̂

−1/2
t−1 (ĝt −∇fµ(xt))〉

]
1− δ

+
δ
∣∣∣E [〈∇fµ(xt), αt−1V̂

−1/2
t−1 (ĝt −∇fµ(xt))〉|U(δ)c

]∣∣∣
1− δ

(52)

and further we have ∣∣∣E [〈∇fµ(xt), αt−1V̂
−1/2
t−1 (ĝt −∇fµ(xt))〉|U(δ)c

]∣∣∣
≤dαt−1

c
(η2 + ηmax

t∈[T ]
‖ĝt‖∞)

≤dαt−1
c

(η2 + ηdLc) (53)

where the first inequality is due to ‖∇fµ(xt)‖∞ ≤ η and v̂1/2t−1 ≥ v̂
1/2
0 ≥ c1, the second inequality

is due to (1) and Lipschitz continuity of f(x; ξ).

Using the fact that E
[
〈∇fµ(xt), αt−1V̂

−1/2
t−1 (ĝt −∇fµ(xt))〉

]
= 0 proved in in (39) and set δ =

1/Td0.5, we have for T ≥ 2

E
[
〈∇fµ(xt), αt−1V̂

−1/2
t−1 (ĝt −∇fµ(xt))〉|U(1/Td0.5)

]
≤2

1

Td0.5
d
αt−1
c

(η2 + ηdLc) = 2
d1.5

T

αt−1
c

ηLc + 2
d0.5

T

αt−1
c

η2 (54)

Replacing (39) with (54) and going through the rest of the proof of Proposition (2), one can finally
get

E
[
‖V̂−1/4t ∇f(xR)‖2

∣∣U(1/Td0.5)
]

≤µ
2d2L2

2c
+ 2

√
d√
T
Df + 2

1

T
E
[(

ηGzo
1− β1

+ 2η2

)∥∥∥∥ 1√
v̂0

∥∥∥∥
1

∣∣∣∣U(1/Td0.5)

]
+

√
d√
T

4Lg + 5Lgβ
2
1

(1− β1)2
1− β1
1− β2

1

1− γ
+ 2

d1.5

T

ηLc
c

+ 2
d0.5

T

η2

c
.

Since in the event of U(1/Td0.5), we have

Gzo = max
t∈[T ]
{‖ĝt‖∞} ≤ 2Lc

√
d log(d1.5T 2) = 2Lc

√
d
√

1.5 log d+ 2 log T . (55)

Substituting the above inequality into (55), we get the desired result. �

2.5 Proof of Theorem 2

To proceed into proof of Theorem 2, we give a few technical lemmas for the properties of (7).

Lemma 2.5 For any symmetric H � 0,g, ω, we have

〈g, PX ,H(x−,g, ω)〉 ≥ ‖H1/2PX ,H(x−,g, ω)‖2 (56)
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Proof of Lemma 2.5: By definition of x+, the optimality condition of (6) is

〈g +
1

ω
H(x+ − x−),x− x+〉 ≥ 0 ∀x ∈ X

Thus

〈g +
1

ω
H(x+ − x),x− x+〉 ≥ 0

which can be rearranged to

〈g, PX ,H(x−,g, ω)〉 =
1

ω
〈g, x− x+〉 ≥ 1

ω2
〈H(x− x+), x− x+〉 = ‖H1/2PX ,H(x−,g, ω)‖2

This completes the proof. �

Lemma 2.6 Let x+
1 and x+

2 be given by (6) with g replaced by g1 and g2, with H � 0, we have

‖x+
1 − x+

2 ‖ ≤
ω

λmin(H)
‖g1 − g2‖ (57)

‖H1/2(x+
1 − x+

2 )‖ ≤ ω‖H−1/2(g1 − g2)‖. (58)
where λmin(H) is the minimum eigenvalue of H.

Proof of Lemma 2.6: By definition of x+, the optimality condition of (6) is

〈g +
1

ω
H(x+ − x−),x− x+〉 ≥ 0 ∀x ∈ X

Thus, we have

〈g1 +
1

ω
H(x+

1 − x−,x+
2 − x+

1 〉 ≥ 0

〈g2 +
1

ω
H(x+

2 − x−,x+
1 − x+

2 〉 ≥ 0

Summing up the above two inequalities, we get

〈g1 − g2,x
+
2 − x+

1 〉 ≥
1

ω
〈H(x+

2 − x+
1 ),x+

2 − x+
1 〉 (59)

By Cauchy-Schwarz inequality, we get

‖g1 − g2‖‖x+
2 − x+

1 ‖ ≥ 〈g1 − g2,x
+
2 − x+

1 〉 ≥
1

ω
〈H(x+

2 − x+
1 ),x+

2 − x+
1 〉

≥ 1

ω
λmin(H)‖x+

2 − x+
1 ‖2

which gives (57).

Further, by (59) and Cauchy-Schwarz, we also have

‖H−1/2(g1 − g2)‖‖H1/2(x+
2 − x+

1 )‖ ≥ 〈g1 − g2,x
+
2 − x+

1 〉

≥ 1

ω
〈H(x+

2 − x+
1 ),x+

2 − x+
1 〉 =

1

ω
‖H1/2(x+

2 − x+
1 )‖2

which gives (58). This completes the proof. �

The following lemma characterizes the difference between projected points if different distance
matrices are used in ZO-AdaMM.

Lemma 2.7 Assume V
1/2
t ≥ cI, ZO-AdaMM yields∥∥∥(PX ,V̂1/2

t−1
(xt,∇fµ(xt), αt)− PX ,V̂1/2

t
(xt,∇fµ(xt), αt))

∥∥∥2 ≤ d∑
i=1

v
1/2
t,i (v̂

1/2
t,i − v̂

1/2
t−1,i)

1

c4
η2.

(60)

Proof of Lemma 2.7: Recall the optimality condition of (6) is

〈g +
1

ω
H(x+ − x−,x− x+〉 ≥ 0 ∀x ∈ X (61)
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Let us define
x∗t , xt − αtPX ,V̂1/2

t−1
(xt,∇fµ(xt), αt)

x̃∗t , xt − αtPX ,V̂1/2
t

(xt,∇fµ(xt), αt).

By optimality condition (61), we have

〈∇fµ(xt) +
1

αt
V̂

1/2
t (x̃∗t − xt),x

∗
t − x̃∗t 〉 ≥ 0

〈∇fµ(xt) +
1

αt
V̂

1/2
t−1(x∗t − xt), x̃

∗
t − x∗t 〉 ≥ 0

Summing the above up, we get

〈V̂1/2
t (x̃∗t − xt)− V̂

1/2
t−1(x∗t − xt),x

∗
t − x̃∗t 〉 ≥ 0

which is equivalent to

〈(V̂1/2
t − V̂

1/2
t−1)(x∗t − xt),x

∗
t − x̃∗t 〉

+ 〈V̂1/2
t (x̃∗t − x∗t ),x

∗
t − x̃∗t 〉 ≥ 0.

Further rearranging, we have

〈(V̂1/2
t − V̂

1/2
t−1)(x∗t − xt),x

∗
t − x̃∗t 〉 ≥ ‖V̂

1/4
t (x̃∗t − x∗t )‖2 ≥ c‖(x̃∗t − x∗t )‖2

which implies (by using Cauchy-Swartz on the left hand side and then squaring both sides)

c2‖(x̃∗t − x∗t )‖2 ≤‖(V̂
1/2
t − V̂

1/2
t−1)(x∗t − xt)‖2 =

d∑
i=1

(v̂
1/2
t,i − v̂

1/2
t−1,i)

2(x̂∗t,i − xt,i)2

(a)

≤
d∑
i=1

v̂
1/2
t,i (v̂

1/2
t,i − v̂

1/2
t−1,i)‖x̂

∗
t − xt‖2

(b)

≤
d∑
i=1

v̂
1/2
t,i (v̂

1/2
t,i − v̂

1/2
t−1,i)

1

c2
α2
t ‖∇fµ(xt)‖2

≤
d∑
i=1

v̂
1/2
t,i (v̂

1/2
t,i − v̂

1/2
t−1,i)

1

c2
α2
t η

2 (62)

where (a) is due to v̂1/2t,i ≥ v̂
1/2
t−1,i and (b) is due to Lemma 2.6 by treating g1 = ∇fµ(xt), g2 =

0, x− = xt, H = V̂
1/2
t . Substituting (7) into LHS of the above inequality and rearrange, we get

(60). This completes the proof. �

Now we are ready to prove our main theorem.

Proof of Theorem 2:
We start with standard decent lemma in nonconvex optimization. By Lipschitz smoothness of fµ, we
have

fµ(xt+1) ≤fµ(xt)− αt〈∇fµ(xt), PX ,V̂1/2
t

(xt, ĝt, αt)〉+
L

2
α2
t ‖PX ,V̂1/2

t
(xt, ĝt, αt)‖2. (63)

We need to upper bound RHS of the above inequality and split out a descent quantity.
− 〈∇fµ(xt), PX ,V̂1/2

t
(xt, ĝt, αt)〉

=− 〈ĝt, PX ,V̂1/2
t

(xt, ĝt, αt)〉+ 〈ĝt −∇fµ(xt), PX ,V̂1/2
t

(xt, ĝt, αt)〉

≤ − ‖V̂1/4
t PX ,V̂1/2

t
(xt, ĝt, αt)‖2 + 〈ĝt −∇fµ(xt), PX ,V̂1/2

t
(xt, ĝt, αt)〉 (64)

where the inequality is by Lemma (2.5) and some simple substitutions.
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Further, for the last term in RHS of (64) we have
〈ĝt −∇fµ(xt), PX ,V̂1/2

t
(xt, ĝt, αt)〉

=
+〈ĝt −∇fµ(xt), PX ,V̂1/2

t
(xt, ĝt, αt)〉

−〈ĝt −∇fµ(xt), PX ,V̂1/2
t

(xt,∇fµ(xt), αt)〉

}
A

+〈ĝt −∇fµ(xt), PX ,V̂1/2
t

(xt,∇fµ(xt), αt)〉

−〈ĝt −∇fµ(xt), PX ,V̂1/2
t−1

(xt,∇fµ(xt), αt)〉

}
B

+ 〈ĝt −∇fµ(xt), PX ,V̂1/2
t−1

(xt,∇fµ(xt), αt)〉︸ ︷︷ ︸
C

(65)

Next, we bound the three terms in RHS of (65).

Let’s bound term A first, with the assumption V̂1/2 ≥ cI, by Lemma 2.6, (7) and Cauchy-Schwartz
inequality, we have:

A =〈ĝt −∇fµ(xt), PX ,V̂1/2
t

(xt, ĝt, αt)− PX ,V̂1/2
t

(xt,∇fµ(xt), αt)〉 ≤
1

c
‖ĝt − fµ(xt)‖2 (66)

Now let’s bound term C, because E[ĝt] = ∇fµ(xt) and the noise in ĝt is independent of ∇fµ(xt)

and V̂t−1, we have
E[〈∇fµ(xt)− ĝt, PX ,V̂1/2

t−1
(xt,∇fµ(xt), αt)〉] = 0 (67)

Substituting the above bounds for A and C, into (65) and (64), using Young’s inequality on term B,
we have
− E[〈∇fµ(xt), PX ,V̂1/2

t
(xt, ĝt, αt)〉]

≤− E[‖V̂1/4
t PX ,V̂1/2

t
(xt, ĝt, αt)‖2] +

1

c
E[‖ĝt − fµ(xt)‖2] +

1

2
E[‖ĝt − fµ(xt)‖2] +

1

2
E[B2]

(68)
where we define

B2 :=
∥∥∥(PX ,V̂1/2

t−1
(xt,∇fµ(xt), αt)− PX ,V̂1/2

t
(xt,∇fµ(xt), αt))

∥∥∥2 .
What remains is to bound the term B2 which is given by Lemma 2.7.

Combining (63), (68), (60), we have

E[fµ(xt+1)] ≤E[fµ(xt)]− αtE[‖V̂1/4
t PX ,V̂1/2

t
(xt, ĝt, αt)‖2] + αt(

1

c
+

1

2
)E[‖ĝt − fµ(xt)‖2]

+ αt
1

2
E
[ d∑
i=1

v̂
1/2
t,i (v̂

1/2
t,i − v̂

1/2
t−1,i)

1

c4
η2
]

+
L

2
α2
tE
[

1

c2
‖V̂1/4

t PX ,V̂1/2
t

(xt, ĝt, αt)‖2
]
(69)

which can be rearranged into

(αt −
L

2c2
α2
t )E[‖V̂1/4

t PX ,V̂1/2
t

(xt, ĝt, αt)‖2]

≤E[fµ(xt)]− E[fµ(xt+1)] + αt(
1

c
+

1

2
)E[‖ĝt − fµ(xt)‖2]

+ αt
1

2
E

[
d∑
i=1

v̂
1/2
t,i (v̂

1/2
t,i − v̂

1/2
t−1,i)

1

c4
η2

]
. (70)
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In addition, we have

‖V̂1/4
t PX ,V̂1/2

t
(xt,∇f(xt), αt)‖2 ≤ 3‖V̂1/4

t PX ,V̂1/2
t

(xt, ĝt, αt)‖2

+ 3 ‖V̂1/4
t (PX ,V̂1/2

t
(xt,∇fµ(xt), αt) −PX ,V̂1/2

t
(xt,∇f(xt), αt))‖2

+ 3‖V̂1/4
t (PX ,V̂1/2

t
(xt, ĝt, αt) −PX ,V̂1/2

t
(xt,∇fµ(xt), αt))‖2

≤3‖V̂1/4
t PX ,V̂1/2

t
(xt, ĝt, αt)‖2 +

3

c
‖∇fµ(xt)−∇f(xt)‖2 +

3

c
‖ĝt −∇fµ(xt)‖2 (71)

where the second inequality is by (7) and Lemma (2.6)

Combining (71) and (70), we have(
αt −

L

2c2
α2
t

)
‖V̂1/4

t PX ,V̂1/2
t

(xt,∇f(xt), αt)‖2

≤3(E[fµ(xt)]− E[fµ(xt+1)]) + (3αt(
1

c
+

1

2
) +

3

c
(αt −

L

2c2
α2
t ))E[‖ĝt − fµ(xt)‖2]

+
3

2
αtE[

d∑
i=1

v̂
1/2
t,i (v̂

1/2
t,i − v̂

1/2
t−1,i)

1

c4
η2] +

3

c
(αt −

L

2c2
α2
t )‖∇fµ(xt)−∇f(xt)‖2 (72)

Summing over t from 1 to T , setting αt = α, and dividing both sides by T (α− Lgα
2

2c2 ), we get

1

T

T∑
t=1

E[‖V̂1/4
t PX ,V̂1/2

t
(xt∇f(xt), αt)‖2]

≤ 3

T (α− Lgα2

2c )
(E[fµ(x1)]− E[fµ(xT+1)]) +

(
3α(c+ 2)

2Tc(α− Lgα2

2c )
+

3

Tc

)
T∑
t=1

E[‖ĝt − fµ(xt)‖2]

+
3α

2T (α− Lgα2

2c )
E[

d∑
i=1

v̂T,i]
1

c4
η2 +

3

Tc

T∑
t=1

E[‖∇fµ(xt)−∇f(xt)‖2]. (73)

Choose α ≤ c
L , we have

α− Lgα
2

2c
= α

(
1− Lgα

2c

)
≥ α(1− 1

2
) =

α

2
(74)

and (73) becomes

1

T

T∑
t=1

E
[
‖V̂1/4

t PX ,V̂1/2
t

(xt∇f(xt), αt)‖2
]

≤ 6

Tα
Df +

1

T
(
9

c
+ 3)

T∑
t=1

E
[
‖ĝt − fµ(xt)‖2

]
+

3

T

1

c4
η2E

[
d∑
i=1

v̂T,i

]
+

3

c

µ2d2L2
g

4
(75)

where we defined Df := E[fµ(x1)]−minx fµ(x) and used the fact that ‖∇fµ(xt)−∇f(xt)‖2 ≤
µ2d2L2

g

4 by Lemma A1.

Further, we have

E

[
d∑
i=1

v̂T,i

]
= E

[
d∑
i=1

max
t∈[T ]

(1− β2)

t∑
k=1

βt−k2 ĝ2k,i

]

≤E

[
dmax
t∈[T ]

(1− β2)

t∑
k=1

βt−k2 ‖ĝk‖∞

]

≤E
[
dmax
t∈[T ]

‖ĝt‖∞
]

(76)

where the last inequality holds since
∑T
k=1 β

T−k
2 ≤ 1/(1− β2).

Uniformly randomly picking R from 1 to T and substituting (76) into (75) finishes the proof. �

23



3 Proof for Convex Optimization

3.1 Proof of Proposition 4

We follow the analytic framework in [18, Theorem 4] Based on Lemma A1, we obtain that ft,µ
defined in (2) (with respect to ft) is convex. The convexity of ft,µ yields

ft,µ(xt)− ft,µ(x∗) ≤ 〈Eu[ĝt],xt − x∗〉, (77)
where we have used the fact that Eu[ĝt] = ∇ft,µ(xt) given by Lemma A1. Taking the expectation
with respect to all the randomness in (77), we then obtain

E[ft,µ(xt)− ft,µ(x∗)] ≤ E〈ĝt,xt − x∗〉. (78)

Further, recall that Π
X ,
√

V̂t
(x∗) = arg minx∈X ‖V̂1/4

t (x− x∗)‖2 = x∗, where for ease of notation,

let ‖ · ‖ denote the Euclidean norm. Applying [18, Lemma 4] to ZO-AdaMM, we obtain that∥∥∥V̂1/4
t (xt+1 − x∗)

∥∥∥2 ≤ ∥∥∥V̂1/4
t (xt − αtV̂−1/2t mt − x∗)

∥∥∥2
=
∥∥∥V̂1/4

t (xt − x∗)
∥∥∥2 + α2

t ‖V̂
−1/4
t mt‖2 − 2αt〈β1,tmt−1 + (1− β1,t)ĝt,xt − x∗〉. (79)

Rearranging the above inequality, and using the Cauchy-Schwarz inequality 2〈a,b〉 ≤ c‖a‖2+
1

c
‖b‖2

for c > 0, we obtain

〈ĝt,xt − x∗〉 ≤‖V̂
1/4
t (xt − x∗)‖2 − ‖V̂1/4

t (xt+1 − x∗)‖2

2αt(1− β1,t)
+
αt‖V̂−1/4t mt‖2

2(1− β1,t)

+
β1,t

1− β1,t
αt‖V̂−1/4t mt−1‖2

2
+

β1,t
1− β1,t

‖V̂1/4
t (xt − x∗)‖2

2αt
. (80)

Taking the sum over t for (80), we obtain

E

[
T∑
t=1

〈ĝt,xt − x∗〉

]
≤ 1

2(1− β1)
E

[
T∑
t=1

αt‖V̂−1/4t mt‖2
]

︸ ︷︷ ︸
A

+
β1

2(1− β1)
E

[
T∑
t=1

αt‖V̂−1/4t mt−1‖2
]

︸ ︷︷ ︸
B

+
T∑
t=1

E

[
‖V̂1/4

t (xt − x∗)‖2 − ‖V̂1/4
t (xt+1 − x∗)‖2

2αt(1− β1,t)

]
+

T∑
t=1

E
[

β1,t
2αt(1− β1)

‖V̂1/4
t (xt − x∗)‖2

]
,

(81)
where we have used the facts that β1,t ≤ β1 and 1/(1− β1,t) ≤ 1/(1− β1).

We next bound term A in (81). Based on (4), we can directly apply [18, Lemma 2] to obtain that

A ≤ α
√

1 + log T

(1− β1)(1− γ)
√

1− β2

d∑
i=1

‖ĝ1:T,i‖2. (82)

Furthermore, we bound term B in (81). Based on (4), we obtain that

B =

T−1∑
t=1

αt‖V̂−1/4t mt−1‖2 + αT

d∑
i=1

m2
T−1,i√
v̂T,i

≤
T−1∑
t=1

αt‖V̂−1/4t mt−1‖2 + αT

d∑
i=1

m2
T−1,i√
vT,i

, (83)
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where we have used the fact that vt ≤ v̂t given in Algorithm 1. The last term in (83) can be further
derived via (4),

αT

d∑
i=1

m2
T−1,i√
vT,i

= α

d∑
i=1

(∑T−1
j=1

[(∏T−j−1
k=1 β1,T−k

)
ĝj,i(1− β1,j)

])2
√
T (1− β2)

∑T
j=1(βT−j2 ĝ2j,i)

≤ α
d∑
i=1

(∑T−1
j=1 β

T−1−j
1 (1− β1,j)2

)(∑T−1
j=1 β

T−1−j
1 ĝ2j,i

)
√
T (1− β2)

∑T
j=1(βT−j2 ĝ2j,i)

≤ α
d∑
i=1

(∑T
j=1 β

T−1−j
1

)(∑T−1
j=1 β

T−1−j
1 ĝ2j,i

)
√
T (1− β2)

∑T
j=1(βT−j2 ĝ2j,i)

≤ α

(1− β1)
√
T (1− β2)

d∑
i=1

T∑
j=1

βT−1−j1 ĝ2j,i√
βT−j2 ĝ2j,i

=
α

β1(1− β1)
√
T (1− β2)

d∑
i=1

T∑
j=1

γT−j |ĝj,i|, (84)

where the first inequality holds due to Cauchy-Schwarz inequality and β1,T−k ≤ β1 for ∀k, the second
inequality holds due to 1−β1,j ≤ 1, and the third inequality holds due to

∑T
j=1 β

T−1−j
1 ≤ 1/(1−β1)

and βT−j2 ĝ2j,i ≤
∑T
j=1 β

T−j
2 ĝ2j,i. Based on (84), we then applies the proof of [18, Lemma 2], which

yields

B ≤ α
√

1 + log T

β1(1− β1)(1− γ)
√

1− β2

d∑
i=1

‖ĝ1:T,i‖2 (85)

Substituting (82) and (85) into (81), we obtain that

E

[
T∑
t=1

〈ĝt,xt − x∗〉

]
≤
α
√

1 + log T
∑d
i=1 E‖ĝ1:T,i‖

(1− β1)2(1− γ)
√

1− β2

+ E

[
T∑
t=1

‖V̂1/4
t (xt − x∗)‖2 − ‖V̂1/4

t (xt+1 − x∗)‖2

2αt(1− β1,t)

]
︸ ︷︷ ︸

C

+E

[
T∑
t=1

β1,t‖V̂1/4
t (xt − x∗)‖2

2αt(1− β1)

]
︸ ︷︷ ︸

D

. (86)

In (86), the term D yields

D ≤ β1D
2
∞

2(1− β1)

T∑
t=1

d∑
i=1

v̂
1/2
t,i

αt
. (87)

We remark that it was shown in [39] that the proof in [18] to bound the term C is problematic.
Compared to [39], we propose a simpler fix to bound C when 0 < β1,t ≤ β1,t−1 ≤ 1. We rewrite C
in (86) as

C =
‖V̂1/4

1 (x1 − x∗)‖2

2α1(1− β1,1)
+

T∑
t=2

‖V̂1/4
t (xt − x∗)‖2

2αt(1− β1,t)

−
T∑
t=2

‖V̂1/4
t−1(xt − x∗)‖2

2αt−1(1− β1,t−1)
−
‖V̂1/4

T (xT+1 − x∗)‖2

2αT (1− β1,T )

=

T∑
t=2

[
‖V̂1/4

t (xt − x∗)‖2

2αt(1− β1,t)
−
‖V̂1/4

t−1(xt − x∗)‖2

2αt−1(1− β1,t−1)

]

+
‖V̂1/4

1 (x1 − x∗)‖2

2α1(1− β1,1)
−
‖V̂1/4

T (xT+1 − x∗)‖2

2αT (1− β1,T )
. (88)
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Further, the first term in RHS of (88) can be bounded as
T∑
t=2

[
‖V̂1/4

t (xt − x∗)‖2

2αt(1− β1,t)
−
‖V̂1/4

t−1(xt − x∗)‖2

2αt−1(1− β1,t−1)

]

=

T∑
t=2

[
‖V̂1/4

t (xt − x∗)‖2

2αt(1− β1,t)
−
‖V̂1/4

t−1(xt − x∗)‖2

2αt−1(1− β1,t)

]

+

T∑
t=2

[(
1

1− β1,t
− 1

1− β1,t−1

) ‖V̂1/4
t−1(xt − x∗)‖2

2αt−1

]
(a)

≤ 1

2(1− β1)

T∑
t=2

[
d∑
i=1

(
v̂
1/2
t,i (xt,i − x∗i )2

αt
−
v̂
1/2
t−1,i(xt,i − x∗i )2

αt−1

)]

(b)

≤
D2
∞
∑d
i=1

∑T
t=2

[
v̂
1/2
t,i

αt
− v̂

1/2
t−1,i

αt−1

]
2(1− β1)

≤
D2
∞
∑d
i=1 v̂

1/2
T,i

2αT (1− β1)
(89)

where the inequality (a) holds since β1,t ≤ β1,t−1 ≤ β1 and 1/(1− β1,t)− 1/(1− β1,t−1) ≤ 0, and

the inequality (b) holds due to ‖xt − x∗‖∞ ≤ D∞ and
v̂
1/2
t,i

αt
− v̂

1/2
t−1,i

αt−1
≥ 0. Substituting (89) into

(88), we obtain that

C ≤
D2
∞
∑d
i=1 v̂

1/2
T,i

2αT (1− β1)
+
D2
∞
∑d
i=1 v̂

1/2
1,i

2α1(1− β1)
≤
D2
∞
∑d
i=1 v̂

1/2
T,i

αT (1− β1)
, (90)

where the last inequality holds since v̂1/2t+1,i ≥ v̂
1/2
t,i and α1 ≥ αT .

We highlight that although the proof on bounding C in [18, Theorem 4] is problematic, the conclusion
of [18, Theorem 4] keeps correct.

Substituting C and D into (86), we obtain that

E

[
T∑
t=1

〈ĝt,xt − x∗〉

]
≤
α
√

1 + log T
∑d
i=1 E‖ĝ1:T,i‖

(1− β1)2(1− γ)
√

1− β2

+
D2
∞
∑d
i=1 E[v̂

1/2
T,i ]

αT (1− β1)
+

D2
∞

2(1− β1)

T∑
t=1

d∑
i=1

β1,tE[v̂
1/2
t,i ]

αt
. (91)

In (91), since
√
· is a concave function, the Jensen’s inequality yields

E[
√
v̂t,i] ≤

√
E[v̂t,i]. (92)

Substituting (92) into (91) and (78), we complete the proof.

�

4 Supplementary Material of Experiments

4.1 Problem and experiment setup

It is known that DNN-based image classifiers are vulnerable to adversarial examples—one can
carefully craft images with imperceptible perturbations (a.k.a. adversarial perturbations or adversarial
attacks) that can fool image classifiers even under a black box threat model, where details of the
model are unknown to the attacker [5, 6, 48, 49].

We focus on two problem settings of black-box adversarial attacks: per-image adversarial perturbation
and universal adversarial perturbation. Let (x, t) denote a legitimate image x with the true label
t ∈ {1, 2, . . . ,K}, where K is the total number of image classes. And let x′ = x + δ denote an
adversarial example, where δ is the adversarial perturbation. Our goal is to design δ for a single
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image x or multiple images {xi}Mi=1. Spurred by [51], we consider the optimization problem

minimize
δ

λ
M

∑M
i=1 f(xi + δ) + ‖δ‖22

subject to (xi + δ) ∈ [−0.5, 0.5]d,∀i,
(93)

where f(x0 + δ) denotes the (black-box) attack loss function, λ > 0 is a regularization parameter
that strikes a balance between minimizing the attack loss and the `2 distortion, and we normalize
the pixel values to [−0.5, 0.5]d. In problem (93), we specify the loss function for untargeted attack
[51], f(x′) = max{Z(x′)t −maxj 6=t Z(x′)j ,−κ}, where Z(x′)k denotes the prediction score of
class k given the input x′, and the parameter κ > 0 governs the gap between the confidence of the
predicted label and the true label t. In experiments, we choose κ = 0, and the attack loss f reaches
the minimum value 0 as the perturbation succeeds to fool the neural network.

In problem (93), if M = 1, then it becomes our first task to find per-image adversarial perturbations.
If M > 1, then the problem corresponds to the task of finding universarial adversarial perturbations
to M images. Problem (93) yields a constrained formulation for the design of black-box adversarial
attacks. Since some ZO algorithms are designed only for unconstrained optimization (see Table 1),
we also consider the unconstrained version of problem (93) [24],

minimize
w∈Rd

λ
M

∑M
i=1

[
f
(
0.5 tanh(tanh−1(2xi) +w)

)
+‖0.5 tanh(tanh−1(2xi) +w)− xi‖22

]
,

(94)

where w ∈ Rd are optimization variables, and we eliminate the inequality constraint in (93) by
leveraging 0.5 tanh(tanh−1(2xi) + w) = xi + δ ∈ [−0.5, 0.5]d.

The experiments of generating black-box adversarial examples will be performed on Inception V3
[45] under the dataset ImageNet [46]. We will compare the proposed ZO-AdaMM method with
6 existing ZO algorithms, ZO-SGD [9], ZO-SCD [22] and ZO-signSGD [14] for unconstrained
optimization, and ZO-PSGD [27], ZO-SMD [23] and ZO-NES [6] for constrained optimization.
The first 5 methods have been summarized in Table 1, and ZO-NES refers to the black-box attack
generation method in [6], which applies a projected version of ZO-signSGD using natural evolution
strategy (NES) based random gradient estimator. In all the aforementioned ZO algorithms, we adopt
the random gradient estimator (14) and set b = 1 and q = 10 so that every method takes the same
query cost per iteration. Accordingly, the total query complexity is consistent with the number of
iterations.

In Fig. A1, we show the influence of exponential averaging parameters β1 and β2 on the convergence
of ZO-AdaMM, in terms of the converged total loss while designing the per-image (ID 11 in
ImageNet) and universal adversarial attack. As we can see, the typical choice of β2 > 0.9 is no
longer the empirically optimal choice in the ZO setting. In all of our experiments, we find that the
choice of β1 ≥ 0.9 and β2 ∈ [0.3, 0.5] performs well in practice. In Table A1 and A2, we present the
best learning rate parameter α founded by greedy search at each experiment, in the sense that the
smallest objective function (corresponding to the successful attack) is achieved given the maximum
number of iterations T .
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Figure A1: The heat map of the converged objective value at 1000 iterations versus different combinations of β1
and β2 of ZO-AdaMM. (a) Unconstrained per-image (ID 11) adversarial attack problem (94); (b) Constrained
per-image (ID 11) adversarial attack problem (93); (c) Universal adversarial attack problem (93) with M = 10.
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Methods Learning rate α Converged
objective value

Success of
attack

ZO-PSGD

4× 10−4 245.92 ×
2× 10−4 78.66 X
1× 10−4 31.42 X
9× 10−5 30.98 ×

ZO-SMD

8× 10−4 245.92 ×
5× 10−4 97.42 X
3× 10−4 35.19 X
9× 10−5 36 ×

ZO-NES

5× 10−2 3997 ×
1× 10−2 194.22 X
9× 10−3 158.02 X
8× 10−3 129.30 ×

ZO-SCD

8× 10−3 330.12 ×
2× 10−3 77.14 X
1× 10−3 42.87 X
9× 10−3 39.60 ×

ZO-SGD

5× 10−3 1089.57 ×
8× 10−4 33.60 X
5× 10−4 31.11 X
4× 10−4 33.13 ×

ZO-signSGD

8× 10−2 1590.02 ×
2× 10−2 113.43 X
1× 10−2 41.96 X
9× 10−3 39.60 ×

Table A1: Greedy search on the best learning rate parameterα for generating per-image adversarial perturbations.

Methods Learning rate α Converged
objective value

Success of
attack

ZO-PSGD

1× 10−2 1072.05 ×
1× 10−3 147.46 X
4× 10−4 56.99 X
3× 10−4 36.86 X
2× 10−5 24.91 ×

ZO-SMD

1× 10−2 788.46 ×
1× 10−3 60.98 X
6× 10−4 36.86 X
5× 10−4 29.56 X
4× 10−4 24.91 ×

ZO-NES

1× 10−2 1230.15 ×
4× 10−2 107.74 X
7× 10−3 65.64 X
6× 10−3 54.00 X
5× 10−3 42.57 ×

Table A2: Greedy search on the best learning rate parameter α for design of universal adversarial perturbations
by solving problem (93).

4.2 Per-image black-box adversarial attack

We consider the task of per-image adversarial perturbation by solving problems (93) and (94),
where M = 1 and λ = 10. In ZO-AdaMM (Algorithm 1), we set v0 = v̂0 = 10−5, m0 = 0,
β1t = β1 = 0.9, β2 = 0.3 and T = 1000. Here the exponential moving average parameters (β1, β2)
are exhaustively searched over {01, 0.3, 0.5, 0.7, 0.9}2; see Fig. A1-(a) & (b) in Appendix 4 as an
example. In ZO-AdaMM, we also choose a decaying learning rate αt = α/

√
t with α = 0.01. For

fair comparison, we use the decaying strategy for all other ZO algorithms, and we determine the best
choice of α by greedy search over the interval [10−4, 10−2]; see Table A1 in Appendix 4 for more
results on selecting α.

In Table A3, we summarize the key statistics of each ZO optimization method for solving the per-
image adversarial attack problem over 100 images randomly selected from ImageNet. For solving
the unconstrained problem (94), ZO-SCD has the worst attack performance in general, i.e., leading
to the largest number of iterations to reach the first successful attack and the largest final distortion.
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We also observe that ZO-signSGD and ZO-AdaMM achieve better attack performance. However,
the downside of ZO-signSGD is its poor convergence accuracy, given by the increase in distortion
from the first successful attack to the final attack (i.e., 23.00→ 28.52 in Table A3). For solving the
constrained problem (93), ZO-AdaMM achieves the best attack performance except for a slight drop
in the attack success rate (ASR). Similar to ZO-signSGD, ZO-NES has a poor convergence accuracy
in terms of the increase in `2 distortion after the attack becomes successful.

Problem Methods ASR Ave. iters
(1st succ.)

‖δt‖22
(1st succ.)

Final
‖δT ‖22

(94)

ZO-SCD 78% 240 57.88 57.51
ZO-SGD 78% 159 38.36 37.85

ZO-signSGD 74% 179 23.00 28.52
ZO-AdaMM 81% 173 28.58 28.20

ZO-NES 82% 229 82.78 84.41

(93)

ZO-PSGD 78% 112 60.32 58.10
ZO-SMD 76% 198 35.08 35.05

ZO-AdaMM 78% 197 23.77 23.72

Table A3: Performance of per-image attack over 100 images under T = 1000 iterations, where ASR represents
attack success rate, and the distortion ‖δ‖22 is averaged over successful attacks only.

4.3 Universal black-box adversarial attack

In this experiment, we solve the constrained problem (93) for designing a universal adversarial
perturbation δ, where we attack M = 10 images with the true class label ‘brambling’ and we set
λ = 10 in (93). The setting of algorithmic parameters is similar to Appendix 4.2 except T = 20000.
For ZO-AdaMM, we choose α = 0.002, β1 = 0.9, and β2 = 0.3, where the sensitivity of exponential
moving average parameters (β1, β2) is shown in Fig. A1-(c). For the other ZO algorithms, we greedily
search α over [10−2, 10−4] and choose the value that achieves the best convergence accuracy as
shown in Table A2.

In Fig. A2, we visualize the pattern of universal adversarial perturbation obtained from different
methods. As we can see, the resulting universal perturbation pattern identifies the most discriminative
image regions corresponding to the true label ‘brambling’. We also observe that although each
method successfully generates the black-box adversarial example, ZO-AdaMM yields the strongest
attack that requires the least distortion strength.
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Iter = 1000 5000 10000 20000 Adv. examples generated by universal perturbation

Z
O

-P
SG

D

‖δ‖∞= 0.118 0.131 0.138 0.137 goldfinch robin linnet indigo bunting

Z
O

-S
M

D

‖δ‖∞= 0.096 0.096 0.099 0.100 goldfinch robin ruddy turnstone indigo bunting

Z
O

-N
E

S

‖δ‖∞= 0.103 0.107 0.121 0.125 goldfinch robin ruddy turnstone indigo bunting

Z
O

-A
da

M
M

‖δ‖∞= 0.055 0.071 0.081 0.079 goldfinch robin ruddy turnstone indigo bunting

Figure A2: Visualization of universal perturbation versus different iterations and the eventually generated
adversarial examples. Left four columns present universal perturbations found by different ZO algorithms at the
iteration number 1000, 5000, 10000 and 20000, where the depth of the color corresponds to the strength of the
perturbation, and the maximum distortion ‖δ‖∞ (with deepest green) is given at the bottom of each subplot.
The right four columns are 4 of 10 adversarial examples that lead to missclassfication from the original label
‘brambling’ to an incorrectly predicted label given at the bottom of each subplot.
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