
PVCNN SSCN O-CNN

Mean IoU 86.2 86.0 85.9

Preprocess 0 ms 0 ms 86.9 ms
Inference 50.7 ms 241.8 ms 5.3 ms
Postprocess 0 ms 0 ms 842.4 ms

Table 1: Results on ShapeNet Part.

We thank all reviewers for their comments. All responses and changes will be1

incorporated into the revision. Code will be released for full reproducibility.2

Baselines (R1, R3, R4). We compared PVCNN with SSCN (sparse-conv)3

and O-CNN (octree) as suggested by three reviewers. PVCNN is 4.8× faster4

than SSCN with superior performance (Table 1). For O-CNN, the inference5

is fast; however, it is more than 10× slower to preprocess the input data (i.e.,6

condense the point cloud and construct the octree) and postprocess the output7

(i.e., refine the boundaries using the dense CRF). Also, as pointed out by R1, these two approaches are orthogonal to our8

method and can be combined together: replacing the volumetric convolution with the sparse/octree-based convolution.9

mIoU

PVCNN (on S3DIS) 54.33

w/o scale normalization 52.62

mIoU

PVCNN (on ShapeNet) 86.2

devoxelization w/o TI 85.7
feature fusion by concat 86.1

voxel resolution (0.75×) 85.7
voxel resolution (1.25×) 86.1

1 voxel-conv per block 85.6
3 voxel-convs per block 86.1

Table 2: Ablation studies.

Scale Normalization (R4). We only normalize the point cloud in the voxel branch10

while keeping the coordinates in the point branch unchanged; therefore, there is no11

information loss after two branches are merged together. Without instance scale nor-12

malization, the voxel grids are more than 10× sparser on average, and the volumetric13

convolution is no longer effective to extract features. An alternative is to drop outlier14

points that do not lie in any voxel grids, which will inevitably induce information loss15

(see Table 2). Thus, the instance scale normalization is critical in the voxel branch.16

Devoxelization (R1, R4). We compared different implementations of devoxeliza-17

tion. From Table 2, the trilinear interpolation (w/ TI) performs better than the nearest18

neighbor (w/o TI), which is because the points near the voxel boundaries will introduce19

larger fluctuations to the gradient, making it harder to optimize, as mentioned by R4.20

Ablation Studies (R4). More analyses are provided in Table 2, including different21

feature fusion methods, voxel resolutions (also see Table 2 in the paper), and number22

of convolutions per block. Our design choice is the best. We’ll add them to the paper.23

Evaluation on S3DIS (R4). We follow exactly the same data processing and evalu-24

ation protocol as PointCNN (L252) to make sure that the improvements are entirely from our proposed PVConv rather25

than different evaluation protocols. We thank R4 for suggesting the ScanNet2 dataset which we will experiment on.26

Evaluation on KITTI (R1, R3). We choose F-PointNet as our baseline, which is a popular open-source 3D detection27

model. We do not compare with other state-of-the-art (voxel/point-based) models because the region proposal network28

has a large impact on the final results; we want to remove the influence of different region proposal networks and only29

evaluate the effectiveness of our convolution primitive. Besides, we do not present results on the testing set because30

F-PointNet only provides the 2D region proposals on the training and validation set.31 (a) voxel branch (b) point branch

Figure 1: Feature visualization.

Feature Visualization (R3). We illustrate the voxel and point branch features from32

the final PVConv in Figure 1. Note that warmer color represents larger magnitude.33

It is interesting to see that the voxel branch captures large, continuous parts while the34

point branch captures isolated, discontinuous details (e.g., table legs, lamp necks).35

The two branches provide complementary information and can be explained by the36

fact that the convolution operation extracts features with continuity and locality.37

Statistical Significance (R1). On KITTI, our model has already been evaluated for38

20 times to reduce the variance (L266). On ShapeNet and S3DIS, our results have39

relatively small variances: PVCNN achieves (86.13 ± 0.04)% in mIoU on ShapeNet,40

and PVCNN++ achieves (58.95 ± 0.08)% in mIoU on S3DIS (trained for 4 times41

on both datasets). We want to emphasize that our goal is to achieve high accuracy as well as better efficiency. Some42

improvements over PointCNN might be small in accuracy (0.1% in Table 1); however, the speedup is significant (2.7×).43

Improvement Breakdown (R1). The speedup comes from our better algorithm with lower complexity rather than44

the implementation: PVCNN can theoretically save the number of incontiguous memory accesses by k times (where k45

is the number of neighbors) and achieve better locality (L190-194). Both baselines and our models are implemented46

using well-optimized deep learning libraries (PyTorch and TensorFlow). We do nothing further to optimize the speed.47

Sublinear Memory Growth (R1). Asymptotically, the memory indeed grows cubically; however, the voxel resolution48

of PVCNN is kept very low thanks to the high-resolution point branch (L246-247). With low resolutions (L242-244),49

the memory consumption is dominated by the point branch, not the voxel branch. Thus, the memory grows sub-linearly.50

0 30 60 90 120 150 180 210
Latency (ms)

83.5

84.0

84.5

85.0

85.5

86.0

M
ea

n 
Io

U

PVCNN
3D-UNet

PointCNN
SpiderCNN

DGCNN
PointNet++

RSNet
PointNet

0.7 1.0 1.3 1.6 1.9 2.2 2.5 2.8 3.1
GPU Memory (GB)

83.5

84.0

84.5

85.0

85.5

86.0

M
ea

n 
Io

U

PVCNN
3D-UNet

PointCNN
SpiderCNN

DGCNN
PointNet++

RSNet
PointNet

Paper Presentation (R1, R4). We will revise our51

paper to make it concise and objective. We would52

like to clarify that the groups are assigned by the ac-53

curacy in Table 1 and 3 in the paper, and we put our54

PVCNN’s into groups to highlight the speedup with55

similar accuracy. As suggested, we also compared56

both point-based and voxel-based models (see right)57

to make Figure 4 in the paper more comprehensive.58


