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A Details of implementation

A.1 Evaluation

Our results for other methods are obtained using the code and default trained models provided by the
authors. Specifically, the references and link to the official code that we use to evaluate are provided
in Table 1.

Table 1: References and link to the code for compared algorithms
Method link to the official code
TCDCN [12] https://github.com/zhzhanp/TCDCN-face-alignment [11]
CFSS [15] https://github.com/zhusz/CVPR15-CFSS [14]
3DDFA [16] http://www.cbsr.ia.ac.cn/users/xiangyuzhu/projects/3DDFA/main.htm [17]
CLNF [1] https://github.com/TadasBaltrusaitis/OpenFace [2]
CE-CLM [10] https://github.com/TadasBaltrusaitis/OpenFace [2]
FAN [5] https://github.com/1adrianb/2D-and-3D-face-alignment [4]
SAN [7] https://github.com/D-X-Y/landmark-detection/tree/master/SAN [6]

A.2 Implementation details

We use Tensorflow 1.14 as our deep learning framework, and one NVIDIA GeForce RTX 2080
Ti GPU for training. The optimizer we use is Adam. For evaluation on all datasets except for
Menpo-profile dataset, we train on 300W-LP and fine-tuned on 300W trainset and the 3D deformable
model was trained on 300W-trainset. For evaluation on Menpo-profile dataset, we train on 300W-LP
and the 3D deformable model was trained on 300W-LP dataset. Our code will be available at https:
//github.com/lisha-chen/Deep-structured-facial-landmark-detection.

B Additional Experiment Results

B.1 Prediction visualization

We show in Fig. 1 the predictions of different methods on some benchmark datasets and their ground
truth annotations for a visual comparison. On Fig. 1b, only predictions of visible landmark points on
the profile faces as well as the ground truth annotations are drawn for a clearer comparison. We can
see from the results that hybrid methods such as CFSS and CE-CLM preserves plausible face shape
but their predictions may be wrong for large pose. While purely deep learning based method such as
FAN can handle large poses for some samples or points but does not preserve the face shape.
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Figure 1: Challenging example images with red dots and lines representing ground truth annotations
and white dots and lines representing predictions from different methods.

C Derivation

C.1 Mean-field approximation

In this section, we show some derivations to analyze the effect of some approximate learning and
inference methods, thus to compare with our exact learning and inference to show the pros and cons.
We focus on the part of estimating Θt+1 given a known ζt as shown in Eq. (1)
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In Eq. (1), we estimate Θt+1 by minimizing the negative log joint probability of facial landmarks
pΘ(ym | ζtm,xm). However, in some works [9], it is proposed to use mean-field approximation
to speed up the learning and inference process especially for large scale problems such as image
labeling.

In our work, we can also use mean-field inference. We thus derive the result from the mean-field
inference and compare with the result from the exact method.

C.1.1 General equation for mean-field inference

To derive the general equation for mean-field inference. Denote the distribution we want to ap-
proximate as P (y), P (y) = 1

Z P̃ (y) and the mean-field distribution as Q(y) where y is the random
variable. By minimizing the KL divergence between Q and P , we have Eq. (2) which is also given
in [3].
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where the first term
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In order to minimize DKL(Q||P ), we need to take derivative w.r.t. each Qi using the Lagrangian
method and set it to zero for a constrained optimization problem.

L = DKL(Q||P ) + λ
∑
i

(

∫
Qi(yi)dyi − 1) (5)

Therefore,
∂L

∂Qi(yi)
= −EQ(y/yi)[ln P̃ (y)] + lnQi(yi) + 1 + λ = 0 (6)

Qi(yi) = exp(−λ− 1) exp{EQ(y/yi)[ln P̃ (y)]} =
1

Zi
exp{EQ(y/yi)[ln P̃ (y)]} (7)

C.1.2 Mean-field approximation of multivariate Gaussian distribution

In our case, where P is a multivariate Gaussian distribution, therefore Q is also a multivariate
Gaussian distribution by minimizing the KL divergence. Therefore

Eq[yi] = arg max
yi

Qi(yi) = arg max
yi

EQ(y/yi)[ln P̃ (y)] (8)

Thus to compute Eq[yi], we take derivative of EQ(y/yi)[ln P̃ (y)] w.r.t. yi and set it to zero. Then we
have

∂EQ(y/yi)[ln P̃ (y)]

∂yi
= EQ(y/yi)

[∂ ln P̃ (y)

∂yi

]
= 0 (9)

EQ(y/yi)

[
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]
= 0 for i = 1, . . . , N . (10)
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j
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]

= 0 for i = 1, . . . , N . (11)∑
j

Λpij(Eq[yj ]− Ep[yj ]) = Λpi(Eq[y]− Ep[y]) = 0 for i = 1, . . . , N . (12)

From Eq. (12), we can get a linear system of equations to solve for Eq[y], that is

Λp(Eq[y]− Ep[y]) = 0 (13)

The solution to Eq. (13) is Eq[y] = Ep[y]. Now we compute the precision matrix of the mean-field
distribution Λq . From Eq. (7) we have
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1
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1

2
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Since Eq = Ep, EQj(yj)[Λpij(yj − Ep[yj ])] = 0,

Qi(yi) =
1

Zi
exp{−1

2
(yi − Ep[yi])TΛpii(yi − Ep[yi])} (15)

Therefore Eq = Ep, Covq[yi] = Λ−1
pii . This conclusion is also given in [3] that the model variable

mean is correct but the variance of Q is determined by the direction of smallest variance of P .

And the strength of mean-field is that it is a simpler form without computing the inverse or determinant
for the whole matrix Λp. And during learning, if we use the result of the mean-field to directly
optimize the mean-field prediction performance as did in [13], it will affect the gradient forCij , µi,Σi.
During inference, the predicted mean is the same as the exact method but the predicted covariance
is different, it will be a diagonal (or band) matrix. This is known as a major failing of mean-field
method that it underestimates the uncertainty of model variables and does not capture their covariance
(structured uncertainty) [8].

C.2 Optimize deformable model parameters given landmarks

To solve ζ = [S̃, R,q], where R =

[
r1

r2

r3

]
, S̃ = 1

λ
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]
. We first solve R and S̃, then q and

iterate this process. Let M2×3 = 1
λ
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] [
r1

r2

]
. Rearrange the problem in matrix format
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Let L = [y2d
IJ − append(M ȳ3d

IJ)]TΛCIJ
[y2d
IJ − append(M ȳ3d

IJ)] and take the derivative and set to
zero we have

∂L

∂M
=
∂(y2d

IJ − f(M))

∂M

∂L

∂(y2d
IJ − f(M))

= FTΛCIJ
(y2d
IJ − FM) = 0

(18)

Therefore FTΛCIJ
FM = FTΛCIJ

y2d
IJ , M = (FTΛCIJ

F )−1FTΛCIJ
y2d
IJ . Given M , R is ob-

tained via SVD.
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Note that: FTΛCIJ
F is invertible when ΛCIJ

� 0. Because if we take v ∈ R6,v 6= 0, then
Fv 6= 0 since if Fv = 0,vT = [vT1 ,v

T
2 ] then there exists a plane with normal v1 or v2 such

that the 3D landmarks ȳ3d
i , i = 2, . . . , N are on the same plane, which is not true in our case.

vTFTΛCIJ
Fv > 0, therefore FTΛCIJ

F � 0.

To solve q: Given R,S, λ, we can solve q linearly as below

q = arg min
q

N∑
i=1

N∑
j=i+1

[yij − µij(ζ)]TCij [yij − µij(ζ)]

= arg min
q

N∑
i=1

N∑
j=i+1

[yij −M(ȳ3d
ij + Φijq)]TCij [yij −M(ȳ3d

ij + Φijq)]

= arg min
q

[yIJ − append(M(ȳ3d
IJ + ΦIJq))]TΛCIJ

[yIJ − append(M(ȳ3d
IJ + ΦIJq))]

(19)

take the derivative and set to zero we have

∂L

∂q
=
∂(y2d − g(q))

∂q

∂L

∂(y2d − g(q))

= GTΛCIJ
(y2d
IJ − g(q)) = 0

(20)

g(q) = Gq + T,G = append(MΦIJ), T = append(M ȳ3d
IJ). Therefore GTΛCIJ

Gq =
GTΛCIJ

(y2d
IJ − T ), q = (GTΛCIJ

G)−1GTΛCIJ
(y2d
IJ − T ). We conduct the two steps of solving

M and q iteratively until convergence.

Note that: GTΛCIJ
G is invertible when ΛCIJ

� 0.
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