
Appendix

A From NAG to QHM

In this appendix we will mention exact steps needed to come from the original NAG formulation to
the formulation assumed by the QHM algorithm. We refer the reader to the ([34] Appendix A.1) for
the derivation of NAG as the following momentum method 4

dk = βk−1dk−1 − αk−1∇ f (xk−1 + βk−1dk−1)

xk = xk−1 + dk

Next, we will move the learning rate out of the momentum into the iterates update:

dk = βk−1dk−1 + ∇ f (xk−1 − αk−1βk−1dk−1)

xk = xk−1 − αk−1dk

When αk and βk are constant, the two methods produce the same sequence of iterates xk if d0 is
initialized at 0. To make the notation more similar to the QHM algorithm, let’s move all indices
(except for dk) up by 1:

dk = βkdk−1 + ∇ f (xk − αk βkdk−1)

xk+1 = xk − αkdk

This again does not change the algorithm. Now, let’s normalize the momentum update by 1 − βk :

dk = βkdk−1 + (1 − βk)∇ f (xk − αk βkdk−1)

xk+1 = xk − αkdk

This version is equivalent to the unnormalized by re-scaling α→ α/(1 − β) for constant parameters5.
Finally, following [2] we need to make a change of variables yk = xk − αk βkdk−1 and additionally
assume that βk = β is constant:

dk = βdk−1 + (1 − β)∇ f (yk)
yk+1 = xk+1 − αk βdk = xk − αkdk − αk βdk = yk + αk βdk−1 − αkdk − αk βdk

= yk + αk (dk − (1 − β)∇ f (yk)) − αkdk − αk βdk
= yk − αk [(1 − β)∇ f (yk) + βdk]

Renaming yk back to xk and replacing ∇ f (yk) with stochastic gradient if necessary we obtain the
exact formula used in QHM update.
Overall, assuming d0 = 0 and βk is constant, the QHM version of NAG is indeed equivalent (up
to a change of variable) to the original NAG with re-scaling of α → α/(1 − β). However, if βk is
changing from iteration to iteration, the two algorithms are no longer equivalent.

B Asymptotic Convergence Proofs

In this section we prove Theorems 1 and 2. For simplicity, we assume throughout that αk , νk and βk
are nonrandom.

Proof of Theorem 1. Here we generalize the meta-analysis of Ruszczyński and Syski [33] to include
νk .

4Note that we change the notation to be consistent with the notation of QHM.
5In fact, for non-constant βk the algorithms are no longer equivalent.
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Summing over k from k1 to∞ and using Assumption A.2, we get that:

ε

2

∞∑
k=k1

αk(1 − νk βk)| |∇F(xk)| | ≤ F(xk1 ) − F∗ +
∞∑

k=k1

Wk .

The right-hand-side is finite by (27). But since | |∇F(xk)| | ≥ ε for all k ≥ k1 and βk ≤ β̄ < 1 and
0 ≤ νk ≤ 1, we have:

ε2

2
(1 − β̄)

∞∑
k=k1

αk ≤ F(xk1 ) − F∗ +
∞∑

k=k1

Wk .

This implies ∑∞
k=k1

αk < ∞, which contradicts (20). So we must have (7), i.e. lim infk | |∇F(xk)| | = 0.

To prove (8), we consider two cases. First, assume there exists k0 such that | |∇F(xk)| | ≥ Sk for all
k ≥ k0. Then by (7), there exists a subsequence K ⊂ N such that

lim
k∈K,k→∞

| |∇F(xk)| | = 0.

For every l, define the index k(l) = max{k ∈ K : k < l}. Since K is infinite, k(l) → ∞ as l → ∞.
Then for sufficiently large l, i.e., when k(l) ≥ k1, (25) becomes

F(xl) ≤ F(xk(l)) +
l−1∑

i=k(l)

Wi .

As l →∞, because of (27) and k(l) → ∞, we get ∑l−1
i=k(l)

Wi → 0, so

lim sup
l→∞

F(xl) ≤ lim sup
l→∞

F(xk(l)) ≤ lim sup
k∈K,k→∞

F(xk). (30)

Since the reverse inequality is trivial, we obtain (8).
In the second case, we have | |∇F(xk)| | < Sk fulfilled infinitely often. In that case, for each l define
the index k(l) = max{k : k < l and | |∇F(xk)| | < Sk}. As before, k(l) → ∞ as l →∞. Furthermore,
(26) implies | |∇F(xk(l))| | → 0 as l → ∞. Therefore, there exists K ⊂ N with {k(l)}l ⊂ K and
limk∈K,k→∞ | |∇F(xk)| | = 0. In this case, we obtain from (25) that

F(xl) ≤ F(xk(l)) + αk(l)(1 − νk(l)βk(l))| |∇F(xk(l))| |Sk(l) +
l−1∑

i=k(l)

Wi .

Because αk < ᾱ < ∞ for all k, νk , βk are in [0, 1], and | |∇F(xk(l))| | → 0 , the latter two terms in the
above inequality converge to zero as l →∞. So we obtain (30) again. This concludes the proof of
the lemma. �

All that remains now is to use the smoothness inequality (24) to identify the sequences Sk and Wk for
the dynamics of the modified algorithm (16)-(18), and prove (26) and (27).
From the update formula (18) and using gk = ∇F(xk) + ξk , we obtain

∆xk+1 = xk+1 − xk = −αkbk

= −αkbk + αk(1 − νk βk)
(
gk − ∇F(xk) − ξk

)
= −αk(1 − νk βk)∇F(xk) − αk

(
bk − (1 − νk βk)gk

)
− αk(1 − νk βk)ξk .
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By the smoothness assumption A.1, we have

F(xk+1) ≤ F(xk) + 〈∇F(xk),∆xk+1〉 +
L
2


∆xk+1

2

= F(xk) − αk(1 − νk βk)


∇F(xk)



2
− αk 〈∇F(xk), bk − (1 − νk βk)gk〉

− αk(1 − νk βk)〈∇F(xk), ξk〉 +
L
2


∆xk+1

2

≤ F(xk) − αk(1 − νk βk)


∇F(xk)



2
+ αk



∇F(xk)


 · 

bk − (1 − νk βk)gk




− αk(1 − νk βk)〈∇F(xk), ξk〉 +

L
2


∆xk+1

2

= F(xk) − αk(1 − νk βk)


∇F(xk)



 (

∇F(xk)


 − 

bk − (1 − νk βk)gk




(1 − νk βk)

)
− αk(1 − νk βk)〈∇F(xk), ξk〉 +

L
2


∆xk+1

2

Comparing with (25), we define

Sk =



bk − (1 − νk βk)gk




1 − νk βk
, (31)

Wk = −αk(1 − νk βk)
〈
∇F(xk), ξk

〉
+

L
2


∆xk+1

2

. (32)

First we show Sk → 0. From the update formula, we have

bk = (1 − νk)gk + νk
(
(1 − βk)gk + ik βkdk−1

)
= (1 − νk βk)gk + ikνk βkdk−1.

Then because ik | |dk−1 | | ≤ ρ, βk → 0, and supk βk = β̄ < 1, we have

lim
k→∞

Sk = lim
k→∞

| |bk − (1 − νk βk)gk | |
1 − νk βk

= lim
k→∞

ikνk βk | |dk−1 | |

1 − νk βk
≤ lim

k→∞

νk βk ρ

1 − νk β̄
≤ lim

k→∞

βk ρ

1 − β̄
= 0.

Because Sk ≥ 0, limk Sk = 0.
Now we show that Wk is summable almost surely. To begin, we need to show that | |∆xk+1 | |2 is
summable, for which we need the following lemma:

Lemma 2. There is a random variable C, constant in k, such that Ek[| |bk | |2] ≤ C for all k almost
surely.

Proof. To see this, observe that

| |bk | | = | |(1 − νk)gk + νk
(
(1 − βk)gk + ik βkdk−1

)
| | = | |gk − νkg

k + νkg
k − νk βkg

k + ikνk βkdk−1 | |

= | |(1 − νk βk)gk + ikνk βkdk−1 | | ≤ (1 − νk βk)| |gk | | + ikνk βk | |dk−1 | | ≤ (1 − νk βk)| |gk | | + νk βk ρ,

where in the last inequality we used ik | |dk−1 | | ≤ ρ. Then

Ek[| |bk | |2] ≤ (1 − νk βk)2Ek[| |g
k | |2] + (1 − νk βk)νk βk ρEk[| |g

k | |] + ν2
k β

2
k ρ

2

By assumption A.2 and A.3, the first and second conditional moments Ek[| |g
k | |] and Ek[| |g

k | |2] are
both bounded uniformly in k. Then because νk and βk are in [0, 1] and ρ is constant in k, we can put

Ek[| |bk | |2] ≤ (1 − νk βk)2C ′ + (1 − νk βk)νk βk ρC ′′ + ν2
k β

2
k ρ

2 ≤ C,

which is what we wanted. Note that C could be a random variable (depending on ω), but this bound
holds almost surely. �

Lemma 3. ∑∞
k=1 | |∆xk+1 | |2 < ∞ almost surely.

Proof. We will use the following useful proposition (known as Levy’s sharpening of Borel-Cantelli
Lemma, see e.g. Meyer [20, Chapter 1, Theorem 21]):
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Proposition 1. Let {bk} be a sequence of positive, integrable random variables, and let ai = E[bi |Fi],
where Fi = {b0, . . . bi−1}. Then defining the partial sums Bk =

∑k
i=1 bi , Ak =

∑k
i=1 ai ,

lim
k→∞

Ak < ∞ a.s. =⇒ lim
k→∞

Bk < ∞ a.s.

So to prove ∑∞
k=1 | |∆xk+1 | |2 < ∞, we only need to prove ∑∞

k=1 Ek[| |∆xk+1 | |2] < ∞. To see this,
observe that

∞∑
k=1

Ek[| |∆xk+1 | |2] =
∞∑
k=1

α2
kEk[| |bk | |2],

so because Ek[| |bk | |2] ≤ C a.s.,
∞∑
k=1

Ek[| |∆xk+1 | |2] ≤ C
∞∑
k=1

α2
k < ∞ a.s.,

where we used (21). Applying the proposition finishes the lemma. �

The last term remaining in Wk is −αk(1 − νk βk)〈∇F(xk), ξk〉. We show that

Mk =
k∑
i=0

αi(1 − νiβi)〈∇F(xi), ξi〉

is a convergent martingale. First, note that Ei[αi(1 − νiβi)〈∇F(xi), ξi〉] = 0, so Ek[Mk] = Mk−1, and
Mk is a martingale. Now we show that supk E[M2

k
] is bounded, which will imply a.s. convergence by

Doob’s forward convergence theorem [38, Section 11.5]. Indeed, E[M2
k
] = E[M2

0 ] +
∑k

i=1 E[(Mi −

Mi−1)
2] [38, Section 12.1].

E[M2
0 ] = E[〈∇F(x0), α0(1−ν0β0)ξ

0〉2] ≤ E[| |∇F(x0)| |2·α2
0(1−ν0β0)

2 | |ξ0 | |2] ≤ GE[α2
0(1−ν0β0)

2 | |ξ0 | |2].

Because ξ0 depends only on x0, we can upper bound this expectation with some constant C by using
Assumption A.3. Then we have that E[M2

0 ] ≤ C, so E[M2
k
] ≤ C +

∑k
i=1 E[(Mi − Mi−1)

2]. Therefore,

sup
k

E[M2
k ] ≤ C + sup

k

k∑
i=1

E[(αi(1 − νiβi)〈∇F(xi), ξi〉)2] ≤ C + G2
∞∑
i=1

E[α2
i | |ξ

i | |2],

where the last inquality used Assumption A.2 and the fact that 0 ≤ νiβi ≤ 1 almost surely. Moreover,
∞∑
i=1

E[α2
i | |ξ

i | |2] =
∞∑
i=1

E[Ei[α
2
i | |ξ

i | |2]] =
∞∑
i=1

E[α2
i Ei[| |ξ

i | |2] ≤ C2
∞∑
i=1

E[α2
i ],

where the first equality is by the law of total expectation and the inequality comes fromAssumption A.3.
Because ∑∞

i=1 α
2
i < ∞, we finally have

sup
k

E[M2
k ] < ∞,

so Mk is a convergent martingale. In particular,
∞∑
k=0
−αk(1 − νk βk)〈∇F(xk), ξk〉 > −∞ a.s.

Combining this with Lemma 3, we get
∞∑
k=0

Wk < ∞ a.s..

We have shown (26) and (27), which concludes the proof. �

Nowwe prove Theorem 2, where under a stronger noise assumption we show that βk → 1 is admissible
as long as it goes to 1 slow enough.
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Proof of Theorem 2. Assume the sequences {αk}, {βk}, and {νk} satisfy the following:
∞∑
k=0

αk = ∞ (33)

∞∑
k=0
(1 − νk βk)2 < ∞ (34)

∞∑
k=0

α2
k

1 − νk βk
< ∞ (35)

lim
k→∞

βk = 1 (36)

then sequence {xk} generated by the algorithm (6) satisfies

lim inf
k→∞

‖∇F(xk)‖ = 0 a.s. (37)

By the smoothness assumption, we have

F(xk+1) ≤ F(xk) +
〈
∇F(xk), xk+1 − xk

〉
+

L
2
‖xk+1 − xk ‖2

= F(xk) +
〈
∇F(xk), −αkbk

〉
+

L
2
α2
k ‖b

k ‖2

= F(xk) +
〈
∇F(xk), −αk

(
∇F(xk) + bk − ∇F(xk)

)〉
+

L
2
α2
k ‖b

k ‖2

= F(xk) − αk


∇F(xk)



2
− αk

〈
∇F(xk), bk − ∇F(xk)

〉
+

L
2
α2
k ‖b

k ‖2. (38)

Using the update formula in (6), we have

bk − ∇F(xk) = (1 − νk)gk + νkdk − ∇F(xk)

= (1 − νk βk)gk + νk βkdk−1 − ∇F(xk)

= (1 − νk βk)
(
gk − ∇F(xk)

)
+ νk βk

(
dk−1 − ∇F(xk)

)
= (1 − νk βk)ξk + νk βk

(
dk−1 − ∇F(xk)

)
. (39)

Substitution of (39) into (38) yields

F(xk+1) ≤ F(xk) − αk


∇F(xk)



2
− αkνk βk

〈
∇F(xk), dk−1 − ∇F(xk)

〉
−αk(1 − νk βk)

〈
∇F(xk), ξk

〉
+

L
2
α2
k ‖b

k ‖2

≤ F(xk) − αk


∇F(xk)



2
+ αkνk βk

(
1
4


F(xk)



2
+



dk−1 − ∇F(xk)


2

)
−αk(1 − νk βk)

〈
∇F(xk), ξk

〉
+

L
2
α2
k ‖b

k ‖2

≤ F(xk) −
3αk

4


∇F(xk)



2
+ αkνk βk



dk−1 − ∇F(xk)


2

−αk(1 − νk βk)
〈
∇F(xk), ξk

〉
+

L
2
α2
k ‖b

k ‖2. (40)

where in the second inequality we used 〈a, b〉 ≤ 1
4 ‖a‖

2 + ‖b‖2 for any two vectors a and b, and in
the last inequality we used 0 ≤ νk βk ≤ 1. Taking conditional expectation on both sides of the above
inequality and using E[ξk] = 0, we get

Ek

[
F(xk+1)

]
≤ F(xk) −

3αk
4



∇F(xk)


2
+ αkνk βk



dk−1 − ∇F(xk)


2
+

L
2
α2
kEk

[
‖bk ‖2

]
. (41)

Next we analyze the sequence {dk−1 − ∇F(xk)}. From the update formula in (6), we have

dk − ∇F(xk+1) = νk βkdk−1 + (1 − νk βk)gk − ∇F(xk+1) + ∇F(xk) − ∇F(xk)

= νk βk
(
dk−1 − ∇F(xk)

)
+ (1 − νk βk)

(
gk − ∇F(xk)

)
+

(
∇F(xk) − ∇F(xk+1)

)
= νk βk

(
dk−1 − ∇F(xk)

)
+ (1 − νk βk)ξk +

(
∇F(xk) − ∇F(xk+1)

)
.
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Therefore,

dk − ∇F(xk+1)


2
= (νk βk)

2

dk−1 − ∇F(xk)


2
+



(1 − νk βk)ξk + (
∇F(xk) − ∇F(xk+1)

)

2

+2νk βk
〈
dk−1 − ∇F(xk), (1 − νk βk)ξk +

(
∇F(xk) − ∇F(xk+1)

)〉
≤ (νk βk)

2

dk−1 − ∇F(xk)


2
+ 2(1 − νk βk)2



ξk

2
+ 2



∇F(xk) − ∇F(xk+1)


2

+2νk βk
〈
dk−1 − ∇F(xk), (1 − νk βk)ξk

〉
+2νk βk

〈
dk−1 − ∇F(xk),

(
∇F(xk) − ∇F(xk+1)

)〉
≤ (νk βk)

2

dk−1 − ∇F(xk)


2
+ 2(1 − νk βk)2



ξk

2
+ 2



∇F(xk) − ∇F(xk+1)


2

+2νk βk
〈
dk−1 − ∇F(xk), (1 − νk βk)ξk

〉
+νk βk

(
η


dk−1 − ∇F(xk)



2
+

1
η



∇F(xk) − ∇F(xk+1)


2

)
,

where in the first inequality we used ‖a + b‖2 ≤ 2‖a‖2 + 2‖b‖2, and in the second inequality we used
2〈a, b〉 ≤ η‖a‖2 + 1

η ‖b‖
2 for any η > 0. By the smoothness assumption, we have

∇F(xk) − ∇F(xk+1)



2
≤ L2

xk − xk+1

2

= α2
kL2

bk



2
,

which, combining with the previous inequality, leads to

dk − ∇F(xk+1)


2
≤

(
(νk βk)

2 + νk βkη
) 

dk−1 − ∇F(xk)



2
+ 2(1 − νk βk)2



ξk

2
+ 2α2

kL2

bk


2

+2νk βk
〈
dk−1 − ∇F(xk), (1 − νk βk)ξk

〉
+
νk βk
η

α2
kL2

bk



2

≤ νk βk(νk βk + η)


dk−1 − ∇F(xk)



2
+ 2(1 − νk βk)2



ξk

2
+ 2α2

kL2

bk


2

+2νk βk
〈
dk−1 − ∇F(xk), (1 − νk βk)ξk

〉
+

1
η
α2
kL2

bk



2
.

Choosing η = 1 − νk βk , we obtain

dk − ∇F(xk+1)


2
≤ νk βk



dk−1 − ∇F(xk)


2
+ 2(1 − νk βk)2



ξk

2
+ 2α2

kL2

bk


2

+2νk βk
〈
dk−1 − ∇F(xk), (1 − νk βk)ξk

〉
+

α2
k

1 − νk βk
L2

bk



2
. (42)

Taking expectation conditioned on {x0, g0, . . . , xk−1, dk−1, xk}, we have

Ek

[

dk − ∇F(xk+1)


2]

≤ νk βk


dk−1 − ∇F(xk)



2
+ 2(1 − νk βk)2Ek

[

ξk

2]
+ 2α2

kL2Ek

[

bk


2]

+
α2
k

1 − νk βk
L2Ek

[

bk


2]

. (43)

To show that | |dk−1 − ∇F(xk)| |2 is a convergent martingale, we prove the following lemma, similar to
Ermoliev [5].

Lemma 4. Assume we are given a sequence such that Ek[Xk+1] ≤ Xk + Yk , where 0 ≤ Xk ≤ C and
0 ≤ Yk ≤ C almost surely for some constant C, the random variables Yk are Fk-measurable, and they
satisfy ∑∞

k=0 Yk < ∞ almost surely. Then the sequence Xk converges almost surely.

Proof. We show that Zk = Xk +
∑∞

k=0 Yk is a convergent supermartingale. By Doob decomposition,
Zk is a supermartingale if and only if the sequence

Ak =
k∑
i=1

Ei−1[Zi − Zi−1]

satisfies P(Ak+1 ≤ Ak) = 1 for all k [38, section 12.11]. Here
Ei−1[Zi − Zi−1] = Ei−1[Xk] − Xk−1 − Yk−1,

and we assumed this is non-positive. So Ak+1 ≤ Ak almost surely. The upper bound on Xk and the
convergence of ∑∞

k=0 Yk implies that the supermartingale Z is in L1, so the sequence {Zk} converges
almost surely by Doob’s forward convergence theorem [38, chapter 11]. By the convergence of ∑Yk ,
this in turn implies that the sequence Xk converges almost surely. �
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We can apply the above lemma to show that


dk−1 − ∇F(xk)



2 is a convergent semimartingale.
Because the noise | |ξk | |2 is uniformly bounded almost surely and | |∇F(xk)| | ≤ G, | |dk−1 −∇F(xk)| |2
is uniformly bounded in k. The uniform bound on the noise | |ξk | |2 also implies that | |bk | |2 is uniformly
bounded in k. In the notation of the lemma, we have

Yk = 2(1 − νk βk)2Ek

[

ξk

2]
+ 2α2

kL2Ek

[

bk


2]
+

α2
k

1 − νk βk
L2Ek

[

bk


2]

.

Note that Yk ≥ 0. To show convergence of ∑Yk , note that the uniform bounds imply

Yk ≤ C

(
(1 − νk βk)2 + α2

k +
α2
k

1 − νk βk

)
for suitably large C. Then convergence follows from the conditions on the sequences (1 − νk βk)2, α2

k
,

and α2
k
/(1 − νk βk). This proves that | |dk−1 − ∇F(xk)| |2 converges almost surely.

Summing up the two inequalities (41) and (43) gives

Ek

[
F(xk+1) +



dk − ∇F(xk+1)


2

]
≤ F(xk) + (1 + αk)νk βk



dk−1 − ∇F(xk)


2
−

3αk
4



∇F(xk)


2

+2(1 − νk βk)2Ek

[

ξk

2]
+

5
2
α2
kL2Ek

[

bk


2]
+

α2
k

1 − νk βk
L2Ek

[

bk


2]

.

If (1 + αk)νk βk ≤ 1, then

Ek

[
F(xk+1) +



dk − ∇F(xk+1)


2

]
≤ F(xk) +



dk−1 − ∇F(xk)


2
−

3αk
4



∇F(xk)


2

+2(1 − νk βk)2Ek

[

ξk

2]
+

5
2
α2
kL2Ek

[

bk


2]
+

α2
k

1 − νk βk
L2Ek

[

bk


2]

.

Rearranging terms, we get
3αk

4


∇F(xk)



2
≤ F(xk) +



dk−1 − ∇F(xk)


2
− Ek

[
F(xk+1) +



dk − ∇F(xk+1)


2

]
+2(1 − νk βk)2Ek

[

ξk

2]
+

5
2
α2
kL2Ek

[

bk


2]
+

α2
k

1 − νk βk
L2Ek

[

bk


2]

.

Since αk/(1 − νk βk) → 0, there exists m such that (1 + αk)νk βk ≤ 1 for all k ≥ m. Taking full
expectation on both sides of the above inequality and summing up for all k ≥ m, we obtain

3
4

∞∑
k=m

E
[
αk



∇F(xk)


2

]
≤ E

[
F(xm) +



dm−1 − ∇F(xm)


2

]
− F∗

+
∞∑

k=m

2CξE
[
β2
k

]
+
∞∑

k=m

5
2

L2CdE
[
α2
k

]
+
∞∑

k=m

L2CdE

[
α2
k

βk

]
≤ M + C

(
∞∑

k=m

(1 − νk βk)2 +
∞∑

k=m

α2
k +

∞∑
k=m

α2
k

(1 − νk βk

)
.

The right-hand side is bounded by assumption (the index m is finite), so we have
3
4

∞∑
k=m

E
[
αk



∇F(xk)


2

]
< ∞.

This in turn implies that the series
3
4

∞∑
k=m

αk


∇F(xk)



2
< ∞ a.s.

So because ∑
k αk = ∞, there must be a subsequence kt with | |∇F(xkt )| |2 → 0. This proves (7). �
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C Local Convergence Rate Proofs

In this section we give a proof to Theorem 3 and it’s generalized version, which we present below.
We will denote with λi(A), ρ(A) the i-th eigenvalue and spectral radius of the matrix A respectively.
Let’s recall the equations of deterministic QHM algorithm (6) with constant parameters α, β, ν:

dk = (1 − β)∇F(xk) + βdk−1

xk+1 = xk − α
[
(1 − ν)∇F(xk) + νdk

]
.

(44)

In this section we will assume that d0 is initialized with zero vector.
Taking the gradient of the quadratic function F(x) = xT Ax + bT x + c and substituting it into (44)
yields

dk = (1 − β)(Axk + b) + βdk−1

xk+1 = xk − α(1 − νβ)(Axk + b) − ανβdk−1

Plugging in Ax∗ = −b we get

dk = (1 − β)A(xk − x∗) + βdk−1

xk+1 − x∗ = xk − x∗ − α(1 − νβ)A(xk − x∗) − ανβdk−1

We can write the above two equations as[
dk

xk+1 − x∗

]
=

[
βI (1 − β)A
−ανβI I − α(1 − νβ)A

] [
dk−1

xk − x∗

]
, T(θ)

[
dk−1

xk − x∗

]
= Tk(θ, A)

[
d0

x0 − x∗

]
,

where I denotes the n × n identity matrix and θ = {α, β, ν}. It is known that the sequence of Tk(θ, A)
converges to zero if and only if the spectral radius ρ(T) < 1. Moreover, Gelfand’s Formula states that
ρ(T) = limk→∞



Tk


 1

k , which means that ∃ {εk}∞0 , limk→∞ εk = 0 such that

xk+1 − x∗


 ≤ 



[ dk

xk+1 − x∗

]



 ≤ 

Tk(θ, A)


 



[ d0

x0 − x∗

]



 ≤ (ρ(T) + εk)k 

x0 − x∗


 ,

Thus, the behavior of the algorithm is determined by the eigenvalues of T(θ). To find them, we will
use a standard technique of changing basis. Let A = QΛQT be an eigendecomposition of the matrix
A. Then, multiplying A with Q and appropriate permutation matrix P6 we get

P
[
Q 0
0 Q

]
T(θ)

[
Q 0
0 Q

]T
PT =


T1 0 · · · 0
0 T2 · · · 0
...

...
. . .

...
0 0 · · · Tn


where Ti ∈ R2×2 is defined as

Ti = Ti(θ, λi(A)) =
[

β (1 − β)λi(A)
−ανβ 1 − α(1 − νβ)λi(A)

]
Thus, to compute eigenvalues of T , it is enough to compute the eigenvalues of all matrices Ti .
We use the following Lemma to establish the region when ρ(Ti) < 1:
Lemma 5. Let α > 0, β ∈ [0, 1), ν ∈ [0, 1], λi(A) > 0. Then

ρ(Ti(θ)) < 1 if α <
2(1 + β)

λi(A)(1 + β(1 − 2ν))
6See, e.g. [30] for the exact form of matrix P.
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Proof. Let’s denote with λ eigenvalues of Ti . Let’s also define l , λi(A). Then, λ satisfies the
following equation:

(β − λ) (1 − α (1 − νβ) l − λ) + ανβ (1 − β) l = 0⇔
β − λ − βα(1 − νβ)l + λα(1 − νβ)l − λβ + λ2 + ανβl − ανβ2l = 0⇔
β − λ − βαl + αβ2νl + λαl − λανβl − λβ + λ2 + αβνl − αβ2νl = 0⇔
λ2 − (1 − αl + ανβl + β)λ + β(1 − αl + ανl) = 0
D = (1 − αl + ανβl + β)2 − 4β(1 − αl + ανl)

Let’s denote by S(A) = {α, β, ν : A is true}. The final convergence set
S(|λ | < 1) = S(|λ | < 1 ∩ D ≥ 0) ∪ S(|λ | < 1 ∩ D < 0)

Let’s look at the case when D ≥ 0. Then S(|λ | < 1∩ D ≥ 0) = S(D ≥ 0) ∩ S(|λ1 | < 1) ∩ S(|λ2 | < 1)

λ1,2 =
1 − αl + ανβl + β ±

√
D

2
Let’s look at S(|λ1 | < 1) = S(λ1 < 1) ∩ S(λ1 > −1)

|λ1 | =

���1 − αl + ανβl + β +
√

D
���

2
< 1⇔

���1 − αl + ανβl + β +
√

D
��� < 2⇔

−2 < 1 − αl + ανβl + β +
√

D < 2⇔

−3 + αl − ανβl − β <
√

D < 1 + αl − ανβl − β

Let’s solve the second inequality: S(λ1 < 1). Since we are only interested in the case when D ≥ 0 we
get

√
D < 1 + αl − ανβl − β⇔ (1 − αl + ανβl + β)2 − 4β(1 − αl + ανl) < (1 + αl − ανβl − β)2 ⇔
0 < 4β(1 − αl + ανl) + 4(αl − ανβl − β) ⇔ 0 < 4αl(1 − β)

which is always satisfied.
Let’s solve the first inequality:
S(λ1 > −1) = S(−3+ αl − ανβl − β ≤ 0) ∪ S(−3+ αl − ανβl − β > 0∩−3+ αl − ανβl − β <

√
D)

We can rewrite the first term as

S(−3 + αl − ανβl − β ≤ 0) = S
(
α ≤

3 + β
l(1 − νβ)

)
Let’s compute the second term

(αl − ανβl − β − 3)2 < (αl − ανβl − β − 1)2 − 4β(1 − αl + ανl) ⇔
0 < 4(αl − ανβl − β) − 8 − 4β(1 − αl + ανl) ⇔
0 < −8β − 8ανβl + 4αl(1 + β) − 8⇔

2(1 + β) < αl(1 + β − 2βν) ⇔ α >
2(1 + β)

l(1 + β(1 − 2ν))

The last inequality is true since 1 + β(1 − 2ν) > 0. Thus
S(−3 + αl − ανβl − β > 0 ∩ −3 + αl − ανβl − β <

√
D) =

S
(
α >

3 + β
l(1 − νβ)

)
∩ S

(
α >

2(1 + β)
l(1 + β(1 − 2ν))

)
=

S
(
α >

3 + β
l(1 − νβ)

)
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Since 3 + β > 2(1 + β) and l(1 − νβ) ≤ l(1 + β(1 − 2ν)).
Therefore we have that λ1 > −1 always holds and thus |λ1 | < 1 always holds.
Now we compute S(|λ2 | < 1) = S(λ2 < 1) ∩ S(λ2 > −1). The first term is

λ2 =
1 − αl + ανβl + β −

√
D

2
< 1⇔ 1 − αl + ανβl + β −

√
D < 2⇔ −1 − αl + ανβl + β <

√
D

Which is always satisfied since

−1 − αl + ανβl + β = β − 1 + lα(νβ − 1) < 0

Let’s compute the second term:

λ2 =
1 − αl + ανβl + β −

√
D

2
> −1⇔

1 − αl + ανβl + β −
√

D > −2⇔
√

D < 3 − αl + ανβl + β⇔

(1 − αl + ανβl + β)2 − 4β(1 − αl + ανl) < (3 − αl + ανβl + β)2 ⇔

−8 + 4(αl − ανβl − β) − 4β(1 − αl + ανl) < 0⇔ α <
2(1 + β)

l(1 + β(1 − 2ν))

Thus we get

S(|λ2 | < 1) = S
(
α <

2(1 + β)
l(1 + β(1 − 2ν))

)
and therefore

S(|λ | < 1 ∩ D > 0) = S(D > 0) ∩ S
(
α <

2(1 + β)
l(1 + β(1 − 2ν))

)
Now let’s move to the second case and compute S(|λ | < 1 ∩ D < 0). If D < 0 we have that
1 − αl + ανl > 0 and then

��λ1,2
�� =

���1 − αl + ανβl + β ± i
√
−D

���
2

= 0.5
√
(1 − αl + ανβl + β)2 − D =√

β(1 − αl + ανl) < 1⇔ α >
β − 1

lβ(1 − ν)

which is always true, so

S(|λ | < 1 ∩ D < 0) = S(D < 0)

Finally, let’s find a simplified form of S(D ≥ 0) and S(D < 0).

D = (1 − αl + ανβl + β)2 − 4β(1 − αl + ανl) = (1 + β − αl(1 − νβ))2 − 4β + 4αlβ − 4αlβν

= 1 + 2β + β2 − 2αl(1 + β)(1 − νβ) + α2l2(1 − νβ)2 − 4β + 4αlβ − 4αlβν

= α2l2(1 − νβ)2 − 2αl − 2αlβ + 2αlνβ + 2αlνβ2 + 4αlβ − 4αlβν + 1 − 2β + β2

= α2l2(1 − νβ)2 − 2αl + 2αlβ − 2αlνβ + 2αlνβ2 + (1 − β)2

= α2l2(1 − νβ)2 − 2αl(1 − β + νβ − νβ2) + (1 − β)2

= α2l2(1 − νβ)2 − 2αl(1 − β)(1 + νβ) + (1 − β)2
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Let’s denote the discriminant of that equation (divided by 4) with respect to αl as D1:

D1 = (1 − β)2(1 + νβ)2 − (1 − νβ)2(1 − β)2 = 4νβ(1 − β)2 ≥ 0

αl1,2 =
(1 − β)(1 + νβ) ± 2(1 − β)

√
νβ

(1 − νβ)2
=
(1 − β)(1 + νβ ± 2

√
νβ)

(1 − νβ)2
=
(1 − β)(1 ± 2

√
νβ)2

(1 − νβ)2

Therefore

S(D ≥ 0) = S
(
α ≥
(1 − β)(1 +

√
νβ)2

l(1 − νβ)2
∪ α ≤

(1 − β)(1 −
√
νβ)2

l(1 − νβ)2

)
S(D < 0) = S

(
α ∈

[
(1 − β)(1 −

√
νβ)2

l(1 − νβ)2
,
(1 − β)(1 +

√
νβ)2

l(1 − νβ)2

] ) (45)

Now, notice that
(1 − β)(1 +

√
νβ)2

l(1 − νβ)2
=
(1 +
√
νβ)2

l(1−νβ)2
1−β

<
2(1 + β)

l(1 + β(1 − 2ν))

since (1 +
√
νβ)2 < 2(1 + β) (left side is less than 2 and right side is greater than 2) and also

l(1 − νβ)2

1 − β
≥ l(1 + β(1 − 2ν)) ⇔ 1 − 2νβ + ν2β2 ≥ 1 − β + β − β2 − 2νβ + 2νβ2 ⇔ β2(1 − ν)2 ≥ 0

Thus overall we get that

S(|λ | < 1 ∩ D ≥ 0) = S(D ≥ 0) ∩ S
(
α <

2(1 + β)
l(1 + β(1 − 2ν))

)
=

= S
(
α <

2(1 + β)
l(1 + β(1 − 2ν))

)
\ S(D < 0) ⇒

S(|λ | < 1) = S(|λ | < 1 ∩ D ≥ 0) ∪ S(|λ | < 1 ∩ D < 0)

= S
(
α <

2(1 + β)
l(1 + β(1 − 2ν))

)
\ S(D < 0) ∪ S(D < 0) =

= S
(
α <

2(1 + β)
l(1 + β(1 − 2ν))

)
�

Now, let’s establish a precise equation for the spectral radius ρ(Ti).
Lemma 6. Let α > 0, β ∈ [0, 1), ν ∈ [0, 1], λi(A) > 0. Let’s define l , λi(A) and

C1 = 1 − αl + αlνβ + β
C2 = β(1 − αl + αlν)

Then

r(θ, l) = ρ(Ti(θ)) =


0.5

(√
C2

1 − 4C2 + C1

)
if C1 ≥ 0,C2

1 − 4C2 ≥ 0

0.5
(√

C2
1 − 4C2 − C1

)
if C1 < 0,C2

1 − 4C2 ≥ 0
√

C2 if C2
1 − 4C2 < 0

In addition, r(θ, l) is non-increasing as a function of l for 0 < l < 1−β
α(1−

√
νβ)2

and is non-decreasing

for l > 1−β
α(1−

√
νβ)2

.
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Proof. Following derivations from the proof of Lemmas 5 we get

r(θ, l) =


max
{
0.5

����C1 +
√

C2
1 − 4C2

���� , 0.5 ����C1 −
√

C2
1 − 4C2

����} if C2
1 − 4C2 ≥ 0

√
C2 if C2

1 − 4C2 < 0
Considering 4 cases for different signs of C1 and C2, the first statement of the Lemma immediately
follows. To prove the second statement, let’s define the following 3 points:

p1 =
1 − β

α(1 +
√
νβ)2

, p2 =
1 − β

α(1 −
√
νβ)2

, p3 =
1 + β

α(1 − νβ)
From equation (45) and definition of C1 we get that

C1 ≥ 0⇔ l ≤ p3

C2
1 − 4C2 ≥ 0⇔ l ≤ p1 or l ≥ p2

and it is easy to check that if β ≥ ν ⇒ p1 ≤ p2 ≤ p3 and if β < ν ⇒ p1 ≤ p3 ≤ p2. Moreover, both
C1(l) and C2(l) are non-increasing function of l, and C2

1 (l) − 4C2(l) is non-increasing when l ≤ p2
and non-decreasing when l ≥ p1.
Let’s first prove the second statement of the Lemma for the case when β < ν. In that case, when
l < p1 the function is non-increasing, since both C1(l) and C2

1 (l) − 4C2(l) are non-increasing. When
p1 ≤ l ≤ p2, the function is non-increasing, because C2(l) is non-increasing. Finally, when l > p2,
the function is non-decreasing, because both C2

1 (l) − 4C2(l) and −C1(l) are non-decreasing.
When β ≥ ν, the same reasoning applies, but we additionally need to prove that the function is
non-decreasing when p2 ≤ l ≤ p3. In that case r(θ, l) = 0.5(

√
C2

1 (l) − 4C2(l) + C1(l)). Taking the
derivative of r with respect to l we get

∂r
∂l
=

2αβ(1 − ν) − α(1 − νβ)
(√

C2
1 (l) − 4C2(l) + C1(l)

)
2
√

C2
1 (l) − 4C2(l)

Let’s show that this derivative is always non-negative when l ≥ p2

2αβ(1 − ν) − α(1 − νβ)
(√

C2
1 (l) − 4C2(l) + C1(l)

)
2
√

C2
1 (l) − 4C2(l)

≥ 0⇔

2β(1 − ν) − (1 − νβ)
(√

C2
1 (l) − 4C2(l) + C1(l)

)
≥ 0⇔

4β(1 − ν)2 − 4β(1 − ν)(1 − νβ)C1(l) + (1 − νβ)C2
1 (l) ≥ (C

2
1 (l) − 4C2(l))(1 − νβ)2 ⇔

β(1 − ν)2 − β(1 − ν)(1 − νβ)C1(l) + C2(l)(1 − νβ)2 ≥ 0⇔
−β2(1 − ν2) + (1 − ν)(1 − νβ)(1 + β) − β(1 − νβ)2

α(1 − ν)(1 − νβ)2(1 − β)
≤ l ⇔

−
(1 − β)2νβ

α(1 − ν)(1 − νβ)2(1 − β)
≤ l

which is always true since left side is less than zero.
�

The last thing that we need in order to prove Theorem 3 is given by the following Lemma:
Lemma 7. Let µ ≤ mini λi(A) and L ≥ maxi λi(A). Then

ρ(T(θ)) ≤ R(θ, µ, L) = max (r(θ, µ), r(θ, L))
In addition, the minimal spectral radius with respect to θ depends on µ and L only through κ, i.e.
minθ R(θ, µ, L) , R∗(κ)
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Proof. To prove this first statement of the Lemma, let’s notice that by definition

ρ(T(θ)) = max
i
ρ(Ti(θ))

But Lemma 6 states that ρ(Ti(θ)) is first non-increasing and then non-decreasing with respect to the
eigenvalues of A. Thus, the maximum can only be achieved on the boundaries, which are precisely
equal to or smaller than r(θ, µ) and r(θ, L).
Let’s prove the second statement of the Lemma by contradiction. Let’s assume that the optimal
rate does in fact depend on µ and L not only through κ. That means that ∃µ1, L1, µ2, L2, such
that L1/µ1 = L2/µ2, but minθ R(θ, µ1, L1) , minθ R(θ, µ2, L2). Let’s consider the optimal rates
if the function f is divided by µ1 for the first case and by µ2 for the second. In that case,
minθ R(θ, 1, L1/µ1) = minθ R(θ, 1, L2/µ2). But on the other hand, they can’t be equal, since we have
that minθ R(θ, 1, L1/µ1) = minθ R(θ, µ1, L1) and minθ R(θ, 1, L2/µ2) = minθ R(θ, µ2, L2), because
multiplying learning rate by µ1 for the first case and by µ2 for the second yields exactly the same
sequence of iterates and thus the optimal rate can’t change. �

Now we are ready to prove Theorem 3. We restate it below for convenience
Theorem 3. Let’s denote θ = {α, β, ν}. For any function F(x) = xT Ax + bT x + c that satisfies
µ ≤ λi(A) ≤ L for all i = 1, . . . , n and any x0, the deterministic QHM algorithm zk+1 = T zk satisfies

xk − x∗



 ≤ (R(θ, µ, L) + εk)k


x0 − x∗



 ,
where x∗ = arg minx F(x), limk→∞ εk = 0 and R(θ, µ, L) = ρ(T), which can be characterized as

R(θ, µ, L) = max {r(θ, µ), r(θ, L)} , where

r(θ, λ) =


0.5

(√
C1(λ)2 − 4C2(λ) + C1(λ)

)
if C1(λ) ≥ 0,C1(λ)

2 − 4C2(λ) ≥ 0 ,

0.5
(√

C1(λ)2 − 4C2(λ) − C1(λ)
)

if C1(λ) < 0,C1(λ)
2 − 4C2(λ) ≥ 0 ,√

C2(λ) if C1(λ)
2 − 4C2(λ) < 0 ,

C1(λ, θ) = 1 − αλ + αλνβ + β ,
C2(λ, θ) = β(1 − αλ + αλν) .

To ensure R(θ, µ, L) < 1, the parameters α, β, ν must satisfy the following constraints:

0 < α <
2(1 + β)

L(1 + β(1 − 2ν))
, 0 ≤ β < 1, 0 ≤ ν ≤ 1 .

In addition, the optimal rate depends only on κ: minθ R(θ, µ, L) is a function of only κ.

Proof. Lemma 6 and Lemma 7 immediately give the first statement of the Theorem. One can also
get the bound on the function values by using definition of the Lipschitz continuous gradient:

F(xk) − F(x∗) ≤ ∇F(x∗)T (xk − x∗) +
L
2



xk − x∗


2
=

L
2



xk − x∗


2

Finally, to get the stability region, we apply Lemma 5 and notice that λi(A) ≤ L ∀i. �

To generalize this result, let’s define the following class of functions
Definition 1. F 1

µ,L is the class of all functions F : Rn → R that are continuously differentiable,
strongly convex with parameter µ and have Lipschitz continuous gradient with parameter L. We will
denote the condition number of F as κ = L/µ.

Then, Theorem 3 can be generalized to any function F ∈ F 1
µ,L in the following way:

Theorem 6. Let’s denote θ = {α, β, ν}. For any function F ∈ F 1
µ,L that is additionally twice

differentiable at the point x∗ = arg minx F(x), deterministic QHM algorithm locally converges to x∗
with linear rate, from any initialization x0 sufficiently close to x∗.
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Precisely, for any ε ∈ [0, 1 − R(θ, µ, L)) ∃ δ > 0 and c ≥ 0, such that ∀k ≥ 0 the following holds

xk − x∗


 ≤ c (R(θ, µ, L) + ε)k

F(xk) − F(x∗) ≤
c2L

2
(R(θ, µ, L) + ε)2k

R(θ, µ, L) = max {r(θ, µ), r(θ, L)}

r(θ, λ) =


0.5

(√
C1(λ)2 − 4C2(λ) + C1(λ)

)
if C1(λ) ≥ 0,C1(λ)

2 − 4C2(λ) ≥ 0

0.5
(√

C1(λ)2 − 4C2(λ) − C1(λ)
)

if C1(λ) < 0,C1(λ)
2 − 4C2(λ) ≥ 0√

C2(λ) if C1(λ)
2 − 4C2(λ) < 0

C1(λ, θ) = 1 − αλ + αλνβ + β
C2(λ, θ) = β(1 − αλ + αλν)

if


x0 − x∗



 ≤ δ and α, β, ν satisfy the following constraints:

0 < α <
2(1 + β)

L(1 + β(1 − 2ν))
, 0 ≤ β < 1, 0 ≤ ν ≤ 1

In addition, the optimal rate depends on µ and L only through κ, i.e. minθ R(θ, µ, L) , R∗(κ).

Proof. To prove this result we apply Lyapunov’s method (see e.g. Chapter 2, Theorem 1 of [28]) to
the QHM equations. The proof is then identical to the proof of Theorem 3, with matrix A replaced by
∇2F(x∗). �

D Numerical Evaluation of the Convergence Rate

In this section we provide details on the numerical evaluation of the local convergence rate of QHM.
We need to numerically estimate the following function

R∗(ν, κ) = min
α,β

max{r(α, β, ν, µ), r(α, β, ν, L)}

From Lemma 6 (Appendix C) we know that r(α, β, ν, l) is a non-increasing function of l until some
point and non-decreasing after. Also note that in fact dependence of r on α is the same as on l, since
they only appear in formulas as a product αl. Thus, it is easy to see that for optimal α we will have

r(α, β, ν, µ) = r(α, β, ν, L), (46)

because otherwise α could be changed to decrease the value of the maximum.
Thus, to find optimal α for fixed β, ν, we can solve equation (46) for α using binary search (with
precision set to 10−8). To find optimal β or ν we just use grid search (with grid size equal to 103) on
[0, 1 − 10−5] for β and [0, 1] for ν.
To numerically verify that the dependence of the optimal rate on ν is monotonic, we run this procedure
for 103 values of κ which are sampled (on a uniform grids) in the following way: 100 values on [1, 10],
100 values on [10, 100], 100 values on [100, 1000], 150 values on [103, 104], 150 values on [104, 105],
200 values on [105, 106], 200 values on [106, 107]. All experiments were run in parallel using GNU
Parallel Command-Line Tool [35].
Since rate estimation is non-exact, it happens sometimes that very close points ν show non-monotonic
rate dependence, but it is always the case that the rate is approximately non-increasing in ν. Precisely,
we verify that the following condition holds for all estimated values of κ:

R̄∗(νi+10, κ) − R̄∗(νi, κ) < 10−3 ∀i = 1, . . . , 990

where R̄∗ is estimated rate and νi is i-th sample of ν. Figure 5 shows the dependence of R∗(ν, κ) on ν
for different values of κ.
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Figure 5: This Figure shows the dependence of optimal (across α, β) local convergence rate on ν
for QHM algorithm across different values of condition number κ. Note that R∗(ν, κ) always shows
monotonic non-decreasing dependence on ν.

E Stationary Distribution Proofs

In this section we present proofs of Theorems 4, 5. We will restate the combined statement of both
theorems below for convenience.
Theorems 4, 5. Suppose F(x) = 1

2 xT Ax, where A is symmetric positive definite matrix. The stochastic
gradients satisfy gk = ∇F(xk) + ξ, where ξ is a random vector independent of xk with zero mean
E [ξ] = 0 and covariance matrix E

[
ξξT

]
= Σξ . Also suppose the parameteres α, β, ν satisfy (13),

then QHM algorithm (6), equivalently (10) in this case, converges to stationary distribution satisfying

AΣx + Σx A = αAΣξ +O(α2)

tr(AΣx) =
α

2
tr(Σξ ) +

α2

4

(
1 +

2νβ
1 − β

[
2νβ

1 + β
− 1

] )
tr(AΣξ ) +O(α3)

Consequently, when ν = 0 (SGD), Σx satisfies

tr(AΣx) =
α

2
tr(Σξ ) +

α2

4
tr(AΣξ ) +O(α3)

When ν = 1 (SHB), Σx satisfies

tr(AΣx) =
α

2
tr(Σξ ) +

α2

4
1 − β
1 + β

tr(AΣξ ) +O(α3)

When ν = β (NAG), Σx satisfies

tr(AΣx) =
α

2
tr(Σξ ) +

α2

4

(
1 −

2β2(1 + 2β)
1 + β

)
tr(AΣξ ) +O(α3)

Proof. We consider the behavior of QHM with constant α, β, and ν, described in (47).

dk = (1 − β)gk + βdk−1

xk+1 = xk − α
[
(1 − ν)gk + νdk

]
.

(47)

Under assumptions of Theorems 4, 5 we have that stochastic gradient gk is generated as

gk = ∇F(xk) + ξk = Axk + ξk, (48)
where the noise ξk is independent of xk , has zero mean and constant covariance matrix. More
explicitly, for all k ≥ 0,

E
[
ξk

]
= 0, E

[
ξk(ξk)T

]
= Σξ,
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where Σξ is a constant covariance matrix. Substituting the expression of gk in (48) into (47) yields

dk = (1 − β)gk + βdk−1 = (1 − β)Axk + (1 − β)ξk + βdk−1,

xk+1 = xk − ανdk − α(1 − ν)gk = xk − α(1 − νβ)Axk − ανβdk−1 − α(1 − νβ)ξk .

We can write the above two equations as[
dk

xk+1

]
=

[
βI (1 − β)A
−ανβI I − α(1 − νβ)A

] [
dk−1

xk

]
+

[
(1 − β)I
−α(1 − νβ)I

]
ξk, (49)

where I denotes the n × n identity matrix.
Let L > 0 be the largest eigenvalue of A. From Theorem 3 we know that under the conditions (13)
the dynamical system (49) is stable, i.e., the spectral radius of the matrix[

βI (1 − β)A
−ανβI I − α(1 − νβ)A

]
is smaller than one.
To simplify notation, we rewrite Equation (49) as

zk+1 = zk − Bzk + Cξk, (50)

where
zk =

[
dk−1

xk

]
, B =

[
(1 − β)I −(1 − β)A
ανβI α(1 − νβ)A

]
, C =

[
(1 − β)I
−α(1 − νβ)I

]
.

As k →∞, the effect of the initial point z0 dies out and the covariance matrix of the state zk becomes
constant. Let

Σz =

[
Σd Σdx
Σxd Σx

]
, lim

k→∞
E
[
zk(zk)T

]
= lim

k→∞

[
E
[
dk−1(dk−1)T

]
E
[
dk−1(xk)T

]
E
[
xk(dk−1)T

]
E
[
xk(xk)T

] ]
.

Then using the linear dynamics (50) and the assumption that {ξk} is i.i.d. and has zero mean, we
obtain

BΣz + ΣzBT − BΣzBT = CΣξCT .

Following the partition of Σz , we partition the above matrix equation into 2 by 2 blocks and obtain

(1, 1) : (1 − β2)Σd − β(1 − β)(AΣxd + Σdx A) − (1 − β)2 AΣx A = (1 − β)2Σξ, (51)
(1, 2) : ανβ2

Σd + (1 − β)Σdx − (1 − β)AΣx + ανβ(1 − β)AΣxd + αβ(1 − νβ)Σdx A
+α(1 − νβ)(1 − β)AΣx A = −α(1 − νβ)(1 − β)Σξ, (52)

(2, 1) : ανβ2
Σd + (1 − β)Σxd − (1 − β)Σx A + αβ(1 − νβ)AΣxd + ανβ(1 − β)Σdx A

+α(1 − νβ)(1 − β)AΣx A = −α(1 − νβ)(1 − β)Σξ, (53)
(2, 2) : −(ανβ)2Σd + ανβ(Σxd + Σdx) + α(1 − νβ)(AΣx + Σx A)

−α2νβ(1 − νβ)(AΣxd + Σdx A) − α2(1 − νβ)2 AΣx A = α2(1 − νβ)2Σξ . (54)

Or, letting V be the column block matrix with entries [Σd, Σxd, Σdx, AΣx, Σx A, AΣxd, Σdx A, AΣx A],
and defining symbolically U to be the block matrix with coefficients:
(1 − β2) 0 0 0 0 −β(1 − β) −β(1 − β) −(1 − β)2
ανβ2 0 (1 − β) −(1 − β) 0 ανβ(1 − β) αβ(1 − νβ) α(1 − νβ)(1 − β)
ανβ2 (1 − β) 0 0 −(1 − β) αβ(1 − νβ) ανβ(1 − β) α(1 − νβ)(1 − β)
−(ανβ)2 ανβ ανβ α(1 − νβ) α(1 − νβ) −α2νβ(1 − νβ) −α2νβ(1 − νβ) −α2(1 − νβ)2,


(55)

(each block is an n × n identity matrix), we have

UV =


(1 − β)2

−α(1 − νβ)(1 − β)
−α(1 − νβ)(1 − β)

α2(1 − νβ)2

 Σξ . (56)
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Next we use combinations of the above equations to obtain simplified relations: First, we can do

α2(1 − νβ)2

(1 − β)2
(1, 1) +

α(1 − νβ)
1 − β

[(1, 2) + (2, 1)] + (2, 2)

to get
α(1 + β − 2νβ)

1 − β
Σd + Σxd + Σdx = 0.

We take the following asymptotic expansion of Σz :[
Σd Σdx
Σxd Σx

]
=

[
Σ
(0)
d
+ αΣ

(1)
d
+ α2Σ

(2)
d
/2 αΣ

(1)
dx
+ α2Σ

(2)
dx
/2

αΣ
(1)
xd
+ α2Σ

(2)
xd
/2 αΣ

(1)
x + α

2Σ
(2)
x /2

]
. (57)

Here, we explicitly write the zero’th order of (Σdx, Σxd, Σx) to be zero. This can be easily proved from
(51)-(54).
The zero’th order term of (51) gives

(1 − β2)Σ
(0)
d
= (1 − β)2Σξ . (58)

The first order term of (52) (and (53)) gives

νβ2
Σ
(0)
d
+ (1 − β)(Σ(1)

dx
− AΣ(1)x ) = −(1 − νβ)(1 − β)Σξ, (59)

νβ2
Σ
(0)
d
+ (1 − β)(Σ(1)

xd
− Σ
(1)
x A) = −(1 − νβ)(1 − β)Σξ . (60)

The second order term of (54) gives

νβ(Σ
(1)
xd
+ Σ
(1)
dx
) + (1 − νβ)(AΣ(1)x + Σ

(1)
x A) = ν2β2

Σ
(0)
d
+ (1 − νβ)2Σξ . (61)

From (58) we solve
Σ
(0)
d
=

1 − β
1 + β

Σξ,

and from (58), (59) and (60), we solve

Σ
(1)
xd
+ Σ
(1)
dx
= AΣ(1)x + Σ

(1)
x A −

2(1 + β − νβ)
1 + β

Σξ . (62)

After plugging them into (61), we obtain

AΣ(1)x + Σ
(1)
x A = Σξ, (63)

thus
AΣx + Σx A = αΣξ +O(α2),

which concludes the proof of Theorem 4.
Let’s now extend this result to the second-order in α. The first order term of (51) gives

(1 + β)Σ(1)
d
= β(AΣ(1)

xd
+ Σ
(1)
dx

A) + (1 − β)AΣ(1)x A. (64)

The second order term of (52) (and (53)) gives

νβ2
Σ
(1)
d
+

1 − β
2
(Σ
(2)
dx
− AΣ(2)x ) = −β(1 − νβ)Σ

(1)
dx

A− νβ(1 − β)AΣ(1)
xd
− (1 − νβ)(1 − β)AΣ(1)x A, (65)

νβ2
Σ
(1)
d
+

1 − β
2
(Σ
(2)
xd
− Σ
(2)
x A) = −β(1− νβ)AΣ(1)

xd
− νβ(1− β)Σ(1)

dx
A− (1− νβ)(1− β)AΣ(1)x A. (66)

The third order term of (54) gives

−ν2β2
Σ
(1)
d
+
νβ

2
(Σ
(2)
xd
+Σ
(2)
dx
)+

1 − νβ
2
(AΣ(2)x +Σ

(2)
x A) = νβ(1−νβ)(Σ(1)

dx
A+ AΣ(1)

xd
)+ (1−νβ)2 AΣ(1)x A.

(67)
Plugging (64) into (65) and (66), we obtain

(Σ
(2)
xd
+Σ
(2)
dx
)− (AΣ(2)x +Σ

(2)
x A) = −

2β(1 + ν + β − νβ)
1 − β2 (Σ

(1)
dx

A+ AΣ(1)
xd
)−

4(1 + β − νβ)
1 + β

AΣ(1)x A. (68)
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Plugging (64) into (67), we obtain

νβ(Σ
(2)
xd
+Σ
(2)
dx
)+(1−νβ)(AΣ(2)x +Σ

(2)
x A) =

2νβ(1 + β − νβ)
1 + β

(Σ
(1)
dx

A+AΣ(1)
xd
)+2(1−2νβ+

2ν2β2

1 + β
)AΣ(1)x A.

(69)
Combining (68) and (69), we obtain

AΣ(2)x + Σ
(2)
x A =

2νβ
1 − β

(Σ
(1)
dx

A + AΣ(1)
xd
) + 2AΣ(1)x A. (70)

Let’s get an expression for tr(AΣξ ). From (70) we get (by taking trace and dividing by 2)

tr(AΣ(2)x ) =
2νβ

1 − β
tr(Σ(1)

dx
A) + tr(AΣ(1)x A) (71)

From (62) we get (by multiplying by A, taking trace and dividing by 2)

tr(Σ(1)
dx

A) = tr(AΣ(1)x A) −
(1 + β − νβ)

1 + β
tr(AΣξ ) (72)

Plugging (72) into (71) we get

tr(AΣ(2)x ) =
2νβ

1 − β

(
tr(AΣ(1)x A) −

(1 + β − νβ)
1 + β

tr(AΣξ )
)
+ tr(AΣ(1)x A)

=

(
2νβ

1 − β
+ 1

)
tr(AΣ(1)x A) −

2νβ
1 − β

(1 + β − νβ)
1 + β

tr(AΣξ )
(73)

From (63) we get (by multiplying by A and taking trace)

tr(AΣ(1)x A) =
1
2

tr(AΣξ ) (74)

and also by taking trace

tr(AΣ(1)x ) =
1
2

tr(Σξ ) (75)

Finally we get

tr(AΣx) = αtr(AΣ(1)x ) +
α2

2
tr(AΣ(2)x ) +O(α3)

=
α

2
tr(Σξ ) +

α2

2

[(
2νβ

1 − β
+ 1

)
tr(AΣ(1)x A) −

2νβ
1 − β

(1 + β − νβ)
1 + β

tr(AΣξ )
]
+O(α3)

=
α

2
tr(Σξ ) +

α2

2

[(
2νβ

1 − β
+ 1

)
1
2

tr(AΣξ ) −
2νβ

1 − β
(1 + β − νβ)

1 + β
tr(AΣξ )

]
+O(α3)

=
α

2
tr(Σξ ) +

α2

4

[(
2νβ

1 − β
+ 1

)
−

4νβ
1 − β

(1 + β − νβ)
1 + β

]
tr(AΣξ ) +O(α3)

=
α

2
tr(Σξ ) +

α2

4
tr(AΣξ ) +

α2

4
2νβ

1 − β

[
1 −

2(1 + β − νβ)
1 + β

]
tr(AΣξ ) +O(α3)

=
α

2
tr(Σξ ) +

α2

4
tr(AΣξ ) +

α2

4
2νβ

1 − β

[
2νβ

1 + β
− 1

]
tr(AΣξ ) +O(α3)

The special cases of SGD, SHB and NAG can be straightforwardly obtained by substituting corre-
sponding value of ν into the general formula.

�
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Figure 6: Approximation error of equation (15). Relative error is shown with color and we threshold
it at 0.2.

F Evaluation of Stationary Distribution Size

In this section we describe experimental details for evaluation of stationary distribution size on different
machine learning problems (Section 5). The first problem we consider is a simple 2-dimensional
quadratic function, where we add additive zero-mean Gaussian noise independent of the point x, so
that all assumptions of Theorem 5 are fully satisfied. For this function we have

µ = 0.1, L = 10.0, Σξ =
[
0.3 0
0 0.3

]
We run the QHM algorithm for 1000 iterations starting at the optimal value and plot final loss as
average across all 1000 iterations. We evaluate QHM for the following sweeps of hyperparameters:
30 values of α on a uniform grid on [0.01, 1.5], 30 values of β on a uniform grid on [0, 0.999], 30
values of ν on a uniform grid on [0, 1]. For each combination of hyperparameters we verify that
α→ 1, β→ 1 indeed decreases the average loss. However, for smaller values of ν the effect of β is
smaller, as expected. The dependence on ν can be described by a quadratic function with minimum at
some ν < 1. Note that from formula (15) the dependence on ν is indeed quadratic with optimal ν
given by

ν∗(β) =

{
1+β
4β , 1

3 ≤ β < 1
1 , 0 ≤ β < 1

3
(76)

From this equation the optimal ν∗(β) ≥ 0.5 and ν∗(β) → 0.5 as β → 1. In the experiments we
see the same qualitative behavior, but the optimal value of ν is much closer to 1 than predicted by
equation (76).
The second problem we consider is logistic regression on MNIST dataset. We run QHM for 50
epochs with batch size of 128 and weight decay (applied both to weights and biases) of 10−4 (thus,
µ ≈ 10−4). The final loss is averaged across last 1000 batches. We evaluate algorithm for 50 values of
α ∈ [0.01, 30] (log-uniform grid), 20 values of β ∈ [0, 0.999] (uniform grid), 20 values of ν ∈ [0, 1]
(uniform grid).
The final problem we consider is ResNet-18 on CIFAR-10 dataset. We run QHM with batch
size of 256 and weight decay of 10−4 (applied only to weights). We run algorithm for 80
epochs with constant parameters and average final loss across last 100 batches. We evaluate
α ∈ {0.01, 0.05, 0.1, 0.5, 1.0, 2.0, 3.0, 5.0, 7.0, 8.5}, β ∈ {0.0, 0.01, 0.2, 0.5, 0.7, 0.9, 0.99, 0.999}. In
this experiment we always set ν = 1.

G Approximation error of Theorem 5

In this section we run a set of experiments to check for which values of parameters the equation (15)
is not accurate. In fact, we can immediately see that the approximation error grows unboundedly
as β → 1 if ν < {0, β, 1}, because the right-hand-side of equation (15) converges to −∞, while the
left-hand-side is bounded from below.
Since we are interested in the approximation error from the higher-order terms, we run experiments
on a 2-dimensional quadratic problem where all assumptions are satisfied. We follow the same
experimental settings as in the appendix F. We test a uniform grid of 20 β and 20 ν values on [0, 1] for
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α ∈ {0.05, 0.1, 0.2}. Note, that we can compute the right-hand-side of equation (15) exactly, but need
to estimate the left-hand-side. For that we run QHM for 10000 iterations and compute an empirical
covariance of the iterates. Figure 6 shows the results of this experiment. We plot a relative error with
color and threshold it at 0.2 (i.e. we consider the formula to be inaccurate if the relative difference
between right-hand-side and left-hand-side is bigger than 20%). We can see that indeed when α is
moderately big, the formula becomes imprecise for many different values of ν and β. However, when
α is small, the formula is only imprecise for a very large values of β and it becomes more inaccurate
when ν is far from 0 or 1.
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