Appendix

A From NAG to QHM

In this appendix we will mention exact steps needed to come from the original NAG formulation to
the formulation assumed by the QHM algorithm. We refer the reader to the ([34] Appendix A.1) for
the derivation of NAG as the following momentum method

di = Br-1dk—1 — ax—1V f(xx-1 + Br—1dk-1)
Xk = Xk—1 + dk

Next, we will move the learning rate out of the momentum into the iterates update:

di = Br-1dk-1 + V f(xr-1 — ar-1Br-1dk-1)
X = X1 — ar-1dk

When o, and S; are constant, the two methods produce the same sequence of iterates x if dj is
initialized at 0. To make the notation more similar to the QHM algorithm, let’s move all indices
(except for di) up by 1:
dy = Brdk-1 + V f(xx — axBrdi-1)
Xial = Xg — ardi

This again does not change the algorithm. Now, let’s normalize the momentum update by 1 — Si:

d = Brdi—1 + (1 = B)V f (xx — axBrdy-1)
Xkl = Xk — ardi

This version is equivalent to the unnormalized by re-scaling @ — «/(1 — j) for constant parameters’}
Finally, following [2]] we need to make a change of variables y; = x; — axSrdr-1 and additionally
assume that 8y = (8 is constant:

di = Bdi-1 + (1 = BV f(yr)
Vi1 = X+l — i fdy = Xk — ardi — i fdi = Y + i fdi—1 — ardi — axBdi
Vi + ar (di = (1 = B)V () — awdi — axPdy
= yk —ax [(1 = B)Vf(yk) + Bdi]

Renaming y; back to x; and replacing V f(yx) with stochastic gradient if necessary we obtain the
exact formula used in QHM update.

Overall, assuming dy = 0 and Sy is constant, the QHM version of NAG is indeed equivalent (up
to a change of variable) to the original NAG with re-scaling of @« — /(1 — 8). However, if By is
changing from iteration to iteration, the two algorithms are no longer equivalent.

B Asymptotic Convergence Proofs

In this section we prove Theorems [l|and 2] For simplicity, we assume throughout that oy, vx and Sx
are nonrandom.

Proof of Theorem[l| Here we generalize the meta-analysis of Ruszczyiiski and Syski [33]] to include
Vi -

4Note that we change the notation to be consistent with the notation of QHM.
5In fact, for non-constant S the algorithms are no longer equivalent.
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Summing over k from k; to co and using Assumption[A]2, we get that:

€ [e9) N (o)
Ekzkl (1 = veBlIVF (M) < F(x*) - F +ka] We.
=K1 =K1

The right-hand-side is finite by 7). But since ||VF(x¥)|| > € forall k > k; and B < 8 < 1 and
0 < vi <1, we have:

2 =) 00
%(1 -B D e < FGRM) - F + > W

k=k| k=k;

This implies 3,7, ax < oo, which contradicts [0). So we must have (), i.e. liminfy ||[VF(x¥)|| = 0.

To prove (8), we consider two cases. First, assume there exists ko such that || VF(x¥)|| > Sy for all
k > ko. Then by (), there exists a subsequence K C N such that

li VEGR)| = 0.
kqu’rkn%II (x5

For every [, define the index k() = max{k € K : k < [}. Since K is infinite, k(/) — oo as [ — co.
Then for sufficiently large /, i.e., when k() > k;, 25) becomes

-1
F(x'y < FGMDy+ > w;.
i=k(1)

As | — oo, because of (27) and k(I) — oo, we get 25;11(1) W; — 0, so
lim sup F(x!) < lim sup F(x* (1)) < limsup F(xk). (30)
>0 >0 keK,k—oco

Since the reverse inequality is trivial, we obtain ().

In the second case, we have ||VF(x*)|| < Sy fulfilled infinitely often. In that case, for each / define
the index k(I) = max{k : k < [ and ||VF(x*¥)|| < Si}. As before, k(I) — co as [ — co. Furthermore,
[286) implies ||VF(x*)|| — 0 as I — co. Therefore, there exists K ¢ N with {k(/)}; ¢ K and
limg exc ko0 [|[VF(x%)|| = 0. In this case, we obtain from (23) that

-1

F(x') < FGRO) + ey (1 = vie Bra) IVFCFO) 1Sy + > Wi
i=k()

Because a; < @ < oo for all k, vg, Bx are in [0, 1], and ||[VF(x*¥)|| — 0, the latter two terms in the
above inequality converge to zero as [ — o0. So we obtain (30) again. This concludes the proof of
the lemma. m}

All that remains now is to use the smoothness inequality (24) to identify the sequences Sx and Wy, for
the dynamics of the modified algorithm (T6)-(T8), and prove (26) and 27).

From the update formula (T8) and using g = VF(x¥) + £X, we obtain

Axk+l — xk+l _ xk — —kak

= —ax b + ar (1 - v ) (g - VF(x*) - £5)
= —a(1 = viB) VF(xX*) — e (b* = (1 = v Bi)g") — aw(1 — viBr)€".
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By the smoothness assumption[A} 1, we have
F(x**1) < F(x*) + (VF(xX5), AxK*1Y + %HAXMHZ
= F(x*) = ax(1 = i BO||VF )| = aw(VF(xk), BE = (1 = viBi)gh)
— (1= W BHTE(), ) + 5 A
< F(x*) = ax (1 = i BO|[VF )| + e [VFG)|| - |55 = (1 = v
- (1 = BHVEH), €4 + 5 Ak

6% = (1 = viBi)g”|
(1 — v fBr)

= F(x*) — (1 = v Bio)||[VF )| IV F (5| -

L
— a1 = veB)(VF(). 65 + S|axk |
Comparing with (23), we define

= - wBog|
o= 1 =ik ’ Gh

L
Wi = —ax(1 = vi i) (VF(x), €5) + 5||Ax’<+1||2. (32)

First we show S — 0. From the update formula, we have
b = (1 - vi)gk + v ((1 - Bk + ikﬁkdk_l) = (1 = viB)g" +ikvifrd "
Then because ix||d*~!|| < p, Bx — 0, and sup, B = B < 1, we have

bk —(1- k . dk—l
lim S, = tim WU ZveBOSN BBl Ly vBre oy Bre
k—oo k—co 1 — v Bk k—oo 1 — v Bx k—oo 1 =y k—ool—-f

Because S, > 0, limg S = 0.

Now we show that W, is summable almost surely. To begin, we need to show that [|Ax**1||? is
summable, for which we need the following lemma:

Lemma 2. There is a random variable C, constant in k, such that B¢ [||b¥||*] < C for all k almost
surely.

Proof. To see this, observe that

5| = [1(1 = vie)g® + v ((1 - Br)g" + ikﬂkdk_l) Il =11g" — vig" + vig" — viBig® + ixvid "l
=11 = vieB)g® + iviBed M| < (1= viBONIE | + v Biclld* M < (1 = v BOlIgE || + viBrps

where in the last inequality we used ix||d*~!|| < p. Then

E([[16°1%] < (1 = viB) Exlllg 1] + (1 = viBeviBepExlllg 11 + vi B p®

By assumption[A]2 and[A]3, the first and second conditional moments Ey [[|g*||] and E[||g¥|[*] are
both bounded uniformly in k. Then because v, and By are in [0, 1] and p is constant in k, we can put

Ei[[16411°] < (1 = viB)*C” + (1 = v BrpC” + viBep® < C,

which is what we wanted. Note that C could be a random variable (depending on w), but this bound
holds almost surely. o

Lemma 3. > | [|Ax**1||? < oo almost surely.

Proof. We will use the following useful proposition (known as Levy’s sharpening of Borel-Cantelli
Lemma, see e.g. Meyer [20, Chapter 1, Theorem 21]):
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Proposition 1. Let {by} be a sequence of positive, integrable random variables, and let a; = E[b;|F;],
where F; = {by, ... b;_1}. Then defining the partial sums By = fo:l bi, Ax = XX a;,

i=1

lim Ay < o0 a.s. = lim By < o a.s.

k—o0 k—oo

k+l||2

So to prove 277 | [|Ax < oo, we only need to prove X° | E[[|Ax**1||?] < co. To see this,

observe that

STENA ] = 7 afEe[1168] P,
k=1 k=1

so because E[||b¥||%] < C as.,

o)

STEIAS P <€D af < as,
k=1 k=1

where we used (ZI). Applying the proposition finishes the lemma. m}

The last term remaining in Wy, is —ax (1 — vi B )(VF(x¥), £%). We show that
k
My = D ai(1 = vii)(VF(x'), &)
=0

is a convergent martingale. First, note that E;[a;(1 — v; 8;)(VF(x%), £)] = 0, so Ex[My] = My_, and
M, is a martingale. Now we show that sup, E[M ,f] is bounded, which will imply a.s. convergence by
Doob’s forward convergence theorem [38, Section 11.5]. Indeed, E[M,f] = E[MOZ] + Z{.‘:l E[(M; -
M;_1)*] [38, Section 12.1].

E[M;] = E[VF(x°), ao(1-v0B0)E")?] < E[IIVF ()| *-a5(1-v0B0)*11€°11°] < GElag(1-v0B0)*11€°]17].

Because £° depends only on xo, we can upper bound this expectation with some constant C by using
Assumption |Al3. Then we have that E[Moz] <C,so E[le] <C+ Zle E[(M; — M;_,)?]. Therefore,

[e9)

k
supE[M}] < C +sup D E[(a;(1 - viBi)(VF(x'), &) < C + G* > E[}[I€']1%),
k k =1 i=1

where the last inquality used Assumption[A]2 and the fact that 0 < v;8; < 1 almost surely. Moreover,
DLEQIIENP] = D EEQ]1E111] = DS ElfEllIE|1P] < C 3 Elef],
i=1 i=1 i=1 =l

where the first equality is by the law of total expectation and the inequality comes from Assumption[A]3.

Because Z;."’:I @; < oo, we finally have

sup E[M,f] < oo,
k

80 My, is a convergent martingale. In particular,

0o

> —an(l = v )(VF(x5), €5) > o0 as.

k=0
Combining this with Lemma 3] we get
Z Wi <o0a.s..
k=0

We have shown (26) and (27), which concludes the proof. i

Now we prove Theorem[2] where under a stronger noise assumption we show that 8 — 1 is admissible
as long as it goes to 1 slow enough.
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Proof of Theorem[2] Assume the sequences {ax }, {Bk}, and {vi } satisfy the following:

(o)
Sz
k=0

[ee]

DA =) < o0
=0

co a?

Y SN
kol_vkﬁk
=1

then sequence {x*} generated by the algorithm (6] satisfies

lim inf IVFGM) =0 a.s.

By the smoothness assumption, we have

IA

F(Xk+1)

F(xX) + (VF(xF), x4+

L
_ )Ck> + E||xk-+—1 _ Xk||2

L
= F(x*) + (VF(x%), —arb*) + 5a,§||bk||2

- FOM)+ <VF(xk), —o (VF(xk) + k- VF(xk))> +Z a/kllbk||2

= F(M) - ][ VFOR)|P - ar (VF(), B = VF(xR)) + Eak 2115417

Using the update formula in (6)), we have

b* — VF(x¥)

(1 = vi)gk + vid* — VF(x¥)

(1 = viBr)g" + viepred ™" = VF(x¥)

(1= vB)(g" = V() +vieBi (d*! = VF(xY))
(1 = Br)é* + vieBi (d* = VF(xY)).
Substitution of (39) into (38) yields

FG*Y < F(%) - ak||VF(xk)||2 - avi i (VF(xY), a1 = VF(xY))

—an(1 = B (VEGH), £) + 2o I P

IA

F(xk) - a'k”VF(xk)”2 + @ vi S %”F(xk)n2 + ||dk_1 - VF()ck)”2

~on(1 = B(TFH), ) + Sl

IA

F(x*) -

|VF(xk)|| +akkakHdk ! VF()C")”2

—a(1 - vkﬁk><VF(xk), &) + oI

(33)

(34)

(35)

(36)

(37

(38)

(39)

(40)

where in the second inequality we used (a, b) < 4—11||a||2 + ||b||? for any two vectors a and b, and in
the last inequality we used 0 < v B¢ < 1. Taking conditional expectation on both sides of the above

inequality and using E[¢X] =

E; [F(xk+1)] < F(x) -

Next we analyze the sequence {d*~!

”VF(xk)H + avifie||d* 1-VF(x’<)|| += akEk[kuH]

— VF(x*)}. From the update formula in (6), we have

d* —VFGRY = wiBd ' + (1 = v Br)gh — VEOE) + VE(K) — VE(xF)

— VE(M) + (1 = v i) (gF = VF(xb)) +
— VE(M)) + (1 = v B)éX + (VF(xX) — VE(xF).

viBi (d*!
vipi(d*!
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Therefore,
@ = VECE DI = ouB?|d " = VEG)|P +|(1 = veBo)ét + (VE(xF) = VE)|
F2vefi (= VEGR), (1= wBg® + (VF(F) = VE(A)))

< B |d = VRGP + 201 = v 2|4 + 2| VF () - VRGP
+2vi Bk <dk—1 _ VF(xk)’ (1- vkﬂk)§k>
+2vi B <dk_l - VF(xk), (VF(xk) - VF(xk+1))>

< B)|la" - VF(xk)“2 +2(1 - ykﬁk)2||§_-k”2 +2[VF(H) - VF(xk+l)||2

+2vi B (d* 7 = VF(xX), (1 = vier)ér)
e (UHdk‘l CVFGP + %vak) SR,

where in the first inequality we used ||a + b||> < 2||a||> + 2||b||?, and in the second inequality we used
2(a, by < nllal® + %||b||2 for any 7 > 0. By the smoothness assumption, we have

[VFG - TR < L2t 1P = a2 .
which, combining with the previous inequality, leads to

la = VEGE DI < (i) + viin) [~ = TEGHP + 201 = vl | + 202 L2
+27 Be (d1 = VE(xR), (1 = weB)é) + anﬂa,%LQku”z
< BB +m||d = VEC|F + 21 = i€ + 202126
+2n Be (d1 = VE(xR), (1= weB)é®) + }]a,%LZku”z.

Choosing = 1 — v¢ Bk, we obtain

@ = VECEDIP < wiel|dt = VEGO)|P + 201 = P[] + 202220
2
F2v B (d*1 = (), (1 = veBoe®) + 1—a+kﬁ,f2”bk”2' 42)

Taking expectation conditioned on {xo, go, xRl gk=lyk }, we have
Ex [ - VFGROITT < vieel|d " = VRGO + 201 = v B [[[€°]°] + 20 L2 [[[6*]]

[ ) )
T-wBe * '

To show that ||d¥~! — VF(x¥)||? is a convergent martingale, we prove the following lemma, similar to
Ermoliev [5]).

Lemma 4. Assume we are given a sequence such that Ei[Xp1] < Xk + Yk, where 0 < X;. < C and
0 < Y < C almost surely for some constant C, the random variables Y are F-measurable, and they
satisfy 2.7 o Yi < co almost surely. Then the sequence Xy converges almost surely.

Proof. We show that Zy = Xi + 2;7_, ¥i is a convergent supermartingale. By Doob decomposition,
Zy is a supermartingale if and only if the sequence

k
Ar = D Eia[Zi - Zi]
i=i

satisfies P(Ax+1 < Ag) = 1 for all & [38] section 12.11]. Here
Ei1[Zi = Zi1] = Ei1[ Xk ] = Xp—1 = Vi1,

and we assumed this is non-positive. So Ax+; < Ag almost surely. The upper bound on X and the
convergence of 3 ) Y; implies that the supermartingale Z is in L', so the sequence {Z; } converges
almost surely by Doob’s forward convergence theorem [38} chapter 11]. By the convergence of 3, Yz,
this in turn implies that the sequence X; converges almost surely. m}
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We can apply the above lemma to show that ||a’k’1 - VF (xk)”2 is a convergent semimartingale.
Because the noise ||£¥||? is uniformly bounded almost surely and || VF(x¥)|| < G, [|d*~! = VF(x%)|)?
is uniformly bounded in k. The uniform bound on the noise ||¢¥||? also implies that ||5¥||? is uniformly
bounded in k. In the notation of the lemma, we have

@
1 = vieBk

Note that ¥; > 0. To show convergence of 3] ¥, note that the uniform bounds imply

i = 201 = viB B [[€4°] + 20 LB |64 + LB [[[o4]].

Yo <C

2
(1- Vkﬁk)z + CZ]% + L
1 — v B

for suitably large C. Then convergence follows from the conditions on the sequences (1 — v 8¢ )?, a?
and ;' /(1 — vBk). This proves that ||d*~! — VF(x*)||? converges almost surely.

Summing up the two inequalities @I)) and [@3) gives
E; [F(xk“) +||d* - VF(xk+1)||2]

< FO + 0+ amnelat™ - VRN - 25 Eeh)

5 a
20 = B[] + SRR (7] + = LR [
If(l + a/k)vkﬂk 1, then
Ex [FGE) + d - VRGP
S N R e [ e
2
+20 - B Ee 6] + 5 a,szE (147 + WLQE [I4]°)-

Rearranging terms, we get

3% ZEHVFGHIP < FOf + [ - VRGO - E [P 4 [l = VRGP

+2(1 = viBi e [[[64°] + akLzEk[”bk” I+ g PRl
Since ax /(1 — vgBx) — 0, there exists m such that (1 + ag)viBx < 1 for all k > m. Taking full
expectation on both sides of the above inequality and summing up for all £ > m, we obtain

% SVE|alVFCOIF| < EB|FGm) + [l - vEemP| -
k=m
S 5 5 2 s a;
+chfE B + Z 5L C4E [a] + D L*C4E B
k=m k=m
2
< M+C(Z(l — B + Zak + Z e _Vk,Bk)

The right-hand side is bounded by assumption (the index m is finite), so we have
3 2
2 kg E|ax[VFGH)F] < o0
This in turn implies that the series
33 k112
7 Z a/k”VF(x )” < o0 a.s.
k=m

So because Y @ = oo, there must be a subsequence k; with ||VF(x*)||*> — 0. This proves @. o
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C Local Convergence Rate Proofs

In this section we give a proof to Theorem [3and it’s generalized version, which we present below.
We will denote with A;(A), p(A) the i-th eigenvalue and spectral radius of the matrix A respectively.

Let’s recall the equations of deterministic QHM algorithm (6) with constant parameters a, S, v:

d* = (1 - B)VF(x*) + pa*!

k+1 k k k (44)
X =x —a[(l—v)VF(x )+ vd ]

In this section we will assume that d° is initialized with zero vector.

Taking the gradient of the quadratic function F(x) = x” Ax + b” x + ¢ and substituting it into @)
yields

d* = (1 - B)(Ax* + b) + pd*™!
K = Xk — (1 = vB)(AXF + b) — avBd*!
Plugging in Ax, = —b we get
d* = (1 - B)A(x* — x,) + pd-!

A x, = XK = x — a1 = vBAGK - x,) — avpd*!

We can write the above two equations as

dak | pr (1-p)A a1, =t | d’
[xk+1 _ x*} - [—a'v,BI I - a/(l _ Vﬂ)A] [xk _ x*] - T(H) [xk _ x*] - Tk(g’ A) [xo _ x*} s

where I denotes the n X n identity matrix and 6 = {a, S, v}. It is known that the sequence of TX(6, A)
converges to zero if and only if the spectral radius p(T') < 1. Moreover, Gelfand’s Formula states that

o(T) = limy_,0 ||Tk||%, which means that 3 {€ };, limg_c € = O such that
< (o(T) + &) ||)c0 - x*H

dk
ka+1 - X*“ < xk+1 — %

0
< [ H[xod_ .

Thus, the behavior of the algorithm is determined by the eigenvalues of 7'(9). To find them, we will
use a standard technique of changing basis. Let A = QAQT be an eigendecomposition of the matrix
A. Then, multiplying A with Q and appropriate permutation matrix P we get

7, 0 --- 0
T 0O T --- 0

0 0 0 0 _ 2
P 1o Q]T(g)[o ol 2= . - :
0 0 --- T,

where T; € R¥2 is defined as

_ _| B (1-p)(A)
T: = Ti(6, 4:(4)) = [—av,B 1—a(1 = vB)A(A)

Thus, to compute eigenvalues of 7', it is enough to compute the eigenvalues of all matrices 7;.
We use the following Lemma to establish the region when p(7;) < 1:
Lemma 5. Leta > 0,8 €[0,1),v € [0,1],2;(A) > 0. Then
2(1+p)
Ai(A)(1 + B(1 -2v))

p(T(0) < 1ifa <

6See, e.g. [30] for the exact form of matrix P.

20



Proof. Let’s denote with A eigenvalues of 7;. Let’s also define / = A;(A). Then, A satisfies the
following equation:

B-D(A-a(d-vBI-D+avp(1-pBl=0&
B—A—Pa(l —vB)l +da(l —vB)l —AB+ A2 +avBl —avp*l =0 &
B—A-Bal +aBvl+ dal — davBl — 1B+ 2> + afvl — af?vi =0 &
A-(Q-al+avBl+BA+B(1—al+avl)=0
D =(1—-al+avBl+B)? —4B(1 - al + avi)
Let’s denote by S(A) = {a, B, v : Ais true}. The final convergence set
S <) =8 <1nD=0)uUsS(2 <1nD<0)
Let’s look at the case when D > 0. Then S(|A] < 1ND > 0)=S(D > 0)NnS(J41| < 1)NS(|A2] < 1)

l1—al+avpl+B+\VD
2

A2 =
Let’s look at S(J2;] < 1) = S(1; < 1) N S(A; > -1)
1—al+av[3’l+ﬁ+\/5)

2
2<l-al+avpl+B+VD <2 o

—3+wl—a/v,81—,6’<‘/5<1+al—avﬁl—,8

|| =

<1<:>|1—al+avﬁl+ﬁ+\/5 2o

Let’s solve the second inequality: S(1; < 1). Since we are only interested in the case when D > 0 we
get

VD<l+al—avBl-B e (1—al+avBl+ B —4B(1 —al + avl) < (1 + al — avpl — B)* &
0<4B(1 —al +avl) +4(al —avBl - B) © 0 < 4al(l - B)

which is always satisfied.

Let’s solve the first inequality:

S >-1)=8(-3+al-avBl-B<0O)US(-3+al-avBl-B>0N-3+al-avBl-B < VD)

We can rewrite the first term as

S(—3+al—avﬂl—ﬁ£0)=$(a SR )

< =
“I(1-vB)

Let’s compute the second term

(al —avpBl - B—-3)* < (al —avBl - B—1)* —4B(1 — al + avl) &
0<4(al—avBl-B)—-8—-4B(1 —al +avl) &
0<-838-8avBl+4al(l1+pB)-8 <

2(1
21+ 8)<al(l+B-28v) & a > M—J{f)zy))
The last inequality is true since 1 + 8(1 — 2v) > 0. Thus
S(-3+al-avBl-B>0N-3+al—avBl-B < VD)=

S(a 3+ﬁ)ﬁS(a/> 21+p)

210 =vB) I+ 80 =2v)
3+
S(“ I —Vﬁ))
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Since 3+ 8> 2(1 + B)and (1 — vB) < I(1 + B(1 —2v)).
Therefore we have that 1; > —1 always holds and thus |1;| < 1 always holds.
Now we compute S(|2;| < 1) = S(12 < 1) N S(A, > —1). The first term is

_l-al+avpl+p-VD

5 <1(:»1—al+av,81+/3—\/5<2<:>—1—al+avﬂl+/3<\/5

A2
Which is always satisfied since

—l-al+avBl+B=B—-1+1la(vB-1)<0

Let’s compute the second term:

B l—al+avpl+pB-D
B 2
1—a/l+a/v,Bl+,8—\/5>—2@\/5<3—al+avﬁl+ﬂ(:>
(1-al+avBl+ B —4B(1 —al +avl) < 3 —al +avBl + B)* &
2(1+p)
I(1+ B(1-2v))

>-1

A

—S8+4(al-—avBl-B)-4B(1l—al+avl) <0 a <

Thus we get

S(bl < 1) = s(a __21+p )

11+ B(1 - 2v))

and therefore

S(|/1|<10D>0)=S(D>0)ms(a< 2(1 + B) )

I(1+ B(1 - 2v))

Now let’s move to the second case and compute S(|1] < 1 N D < 0). If D < 0 we have that
1 —al + avl > 0 and then

’1 —al +avpl +,84_riV—D’
2

=051 —al +avpl+ p? - D =

Vvl —al+av) <1 a> sl

IB(1-v)

12| =

which is always true, so

S(JAl<1nNnD<0)=S8(D <0)

Finally, let’s find a simplified form of S(D > 0) and S(D < 0).

D=(-al+avBl+B)? —4B(1 -al+avl) = (1+ B —al(l - vB))* — 4B + 4alB — 4alBy
=1+28+ B2 -2al(1 + B)(1 —vB) + &*1*(1 — vB)* — 4B + 4alB — 4alBy
= @*1*(1 — vB)* = 2al - 2alB + 2alvB + 2alvB® + 4alB — 4alBy + 1 — 28 + B>
= @*1*(1 — vB)* = 2al + 2alB - 2alvB + 2alvB + (1 — B)?
= *1*(1 —vB)* = 2al(1 - B+ vB—vB>) + (1 — B)?
=a?I’(1 = vB)* = 2al(1 - B)(1 +vB) + (1 - B)?
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Let’s denote the discriminant of that equation (divided by 4) with respect to a/ as Dy :

Di=(1-B)*(1+vp)? —(1-vp (1 -p =4vB(1 - B)* >0
(1= +vBx2(1-BVWE (1 =B +vB£2yvp) (1 -p)1 £2yvp)
N (1-vp) - (1-vp)> - (1-vp)2

a/ll,z

Therefore

_ (1-B)(1 +VvB)* (1-B)(1 - VvB)?
S(DzO)_S(az 10 =vBy Ua < e )
(1-B)(1—vvB)* (1-p)1+ W)z])

A-vp)? ~  I1-vB)?

(45)

S(D<O)=S(ae[

Now, notice that

(1-B)A+vB)* _(1++vB)* L 2+p)
(1-vp? % I(1+ B(1 = 2v))

since (1 +vvpB)? < 2(1 + B) (left side is less than 2 and right side is greater than 2) and also

I(1 —vB)?
1-5

>I1+B(1-2v) @ 1-2vB+ VB2 > 1-B+B-B-2vB+2vB* o B(1-v)> >0

Thus overall we get that

S(|/l|<lﬂD20):S(D20)ms(a,< 2(1+p) )

11+ B -27)
a 2(1+B)
=5 (0‘ S0+ B -2v)

S(A < 1) =S| <1nD>0)US(A <1nD <0)
2(1+B)

S(a S0+ B -2v)

)\S(D<0)=>

)\S(D<0)US(D<O)=

2(1+p)
=S|la< ———
(a 1+ p(1 - 2v>>)
O
Now, let’s establish a precise equation for the spectral radius p(7;).
Lemma 6. Leta > 0,8 € [0,1),v € [0,1], 4;(A) > 0. Let’s define | = A;(A) and
Ci=1l-al+alvB+p
G = B(1 —al +aly)
Then
0.5({C?-4C+ G| ifC120,C2-4C, 20
0.0 =p@O)=105( Jcr—ac, -] <0240 20
VG ifC—4C, <0
In addition, r(6,1) is non-increasing as a function of l for 0 <1 < Q(]i;\/ﬁ?)z and is non-decreasing
1-B
forl> i vpr
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Proof. Following derivations from the proof of Lemmas 5] we get

max {0.5 C1 ++[C? = 4G5[,0.5|C) — |[C? - 4G,
VG if C? -4C, <0

Considering 4 cases for different signs of C; and C,, the first statement of the Lemma immediately
follows. To prove the second statement, let’s define the following 3 points:

1-8 _1-B Ry
oL+ By et = g T all=vp)
From equation (@3) and definition of C; we get that

Ciz0e1<p;

if C2 —4C, >
rO,1) = }‘Cl 220

p1=

CP-4C 20 <piorl>p
and it is easy to check thatif 8 > v = p; < p» < pzandif B < v = p; < p3 < pa. Moreover, both
C1(1) and C,(I) are non-increasing function of /, and Cf(l) — 4C,(1) is non-increasing when [ < p,
and non-decreasing when [ > py.

Let’s first prove the second statement of the Lemma for the case when S < v. In that case, when
[ < p) the function is non-increasing, since both C;(/) and C]Z(l) — 4C,(1) are non-increasing. When
p1 <1 < p,, the function is non-increasing, because C,(!) is non-increasing. Finally, when [ > p»,
the function is non-decreasing, because both Clz(l ) — 4C(I) and —C/ (/) are non-decreasing.

When 8 > v, the same reasoning applies, but we additionally need to prove that the function is
non-decreasing when p, < [ < p3. In that case r(6, 1) = 0.5(4 /Clz(l) —4Cy(I) + Cy(1)). Taking the
derivative of r with respect to / we get

o 2aB(1 —v) —a(l —vB) ( Clz(l) -4 () + G, (l))

ol

2,/C3(1) - 4Cx(1)

Let’s show that this derivative is always non-negative when / > p;

2aB8(1 —v)—a(l —vp) (,/Clz(l) —4C (1) + Cl(l))

2,/C2(1) - 4Cx(1)

>0

2801 = v) (1 - vB) ( C20) - 400 + c1<1>) >0

4B(1 = v)* = 4B(1 = v)(1 = vp)C1(1) + (1 = vB)CH(I) > (C7(1) — 4C(D)(1 - vp)* &
B =v)* =B =v)1 = vp)Ci(1) + ()1 = vB)* 20 &
A=)+ (-1 -vp1+B) - 1 -vp? _,
a(l = v)(1-vB2(1-p) B
~ (1-p)>%vB <
a(l-v)(1-vB2(1-p) ~

which is always true since left side is less than zero.

=4

The last thing that we need in order to prove Theorem [3is given by the following Lemma:
Lemma 7. Let yu < min; A;(A) and L > max; A;(A). Then
p(T(0)) < R(6, p, L) = max (r(6, ), r(6, L))

In addition, the minimal spectral radius with respect to 6 depends on u and L only through k, i.e.
ming R(6, i1, L) = R*(x)
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Proof. To prove this first statement of the Lemma, let’s notice that by definition
p(I'(8)) = max p(T;(6))

But Lemma [6]states that p(7;(6)) is first non-increasing and then non-decreasing with respect to the
eigenvalues of A. Thus, the maximum can only be achieved on the boundaries, which are precisely
equal to or smaller than (6, i) and r(6, L).

Let’s prove the second statement of the Lemma by contradiction. Let’s assume that the optimal
rate does in fact depend on u and L not only through k. That means that Juy, Ly, us, Ly, such
that Li/u; = Lp/up, but ming R(0, py, L) # ming R(6, uy, Ly). Let’s consider the optimal rates
if the function f is divided by u; for the first case and by u, for the second. In that case,
ming R(6, 1, L1 /u;) = ming R(6, 1, L/ uz). But on the other hand, they can’t be equal, since we have
that ming R(0, 1, Ly /1) = ming R(6, uy, L) and ming R(0, 1, Ly /) = ming R(6, uy, L), because
multiplying learning rate by y; for the first case and by p» for the second yields exactly the same
sequence of iterates and thus the optimal rate can’t change. O

Now we are ready to prove Theorem[3] We restate it below for convenience

Theorem 3. Let’s denote 0 = {a, B8, v}. For any function F(x) = xT Ax + b’ x + ¢ that satisfies
u< (A< Lforalli=1,...,nandany x°, the deterministic QHM algorithm **! = TZ* satisfies

||xk - x*H < (RO, u, L)+ Ek)k ||)c0 - x*” ,
where x, = argmin_ F(x), limg_,. € = 0 and R(6, u, L) = p(T'), which can be characterized as
R0, u, L) = max {r(6, u), r(6, L)}, where
0.5 ( CI? —4G,0) + Cl(/l)) ifC1 (D) = 0,C1 (A7 - 4C>(1) = 0,
r(6.0)=140.5 (\/m - Cl(/l)) iFC1 (D) < 0, C1 (A2 = 4Ca() > 0,
VGa(2) if C1(2)° = 4C2(D) < 0,

Ci(1,0)=1—-al+alvp+p,
G (4,60) = Bl —ad + aly).

To ensure R(0, u, L) < 1, the parameters «, 8, v must satisfy the following constraints:

2(1 + B)

O<a<Taspa-ay

0<B<l, 0<v<l.
In addition, the optimal rate depends only on k: ming R(0, , L) is a function of only «.

Proof. Lemma[6and Lemma[7]immediately give the first statement of the Theorem. One can also
get the bound on the function values by using definition of the Lipschitz continuous gradient:

F(x*) = F(x,) < VF(x)T (x* = x,) + % ka - x*”2 = % ka - x*H2

Finally, to get the stability region, we apply Lemma [5]and notice that 2;(A) < L Vi. )

To generalize this result, let’s define the following class of functions

Definition 1. 7—;1 1 IS the class of all functions F : R" — R that are continuously differentiable,

strongly convex with parameter u and have Lipschitz continuous gradient with parameter L. We will
denote the condition number of F as k = L/ .

Then, Theoremcan be generalized to any function F € ?;1 ;, in the following way:

Theorem 6. Let’s denote 0 = {a, B,v}. For any function F € ?;1 1. that is additionally twice
differentiable at the point x,, = arg min, F(x), deterministic QHM algorithm locally converges to x.
with linear rate, from any initialization x° sufficiently close to x..
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Precisely, for any € € [0,1 — R(0, u, L)) 36 > 0 and ¢ > 0, such that Yk > 0 the following holds

<c(R(O,u L)+ )k

c2

F(x*-F(x,) < TL (RO, 11, L) + €)**

R0, u, L) = max {r(0, u), r(6, L)}
0.5 (VEIWT = 4G + Ci(D) i L) 2 0,C1(AP ~4Co(d) 2 0
r(6,0) =10.5 (\/m e u)) if C1(1) < 0,C1 (A2 = 4C2() > 0
VG(2) if C1(1)? = 4C(2) < 0
Ci(L,6) = 1—al+alvB+
C(4,0) = B(1 —ad + aly)

- x.

il - x.

< 0 and a, B, v satisfy the following constraints:

2(1 +B)

<< L+ pi-20)

0<pB<1,0<v<i
In addition, the optimal rate depends on u and L only through «, i.e. ming R(6, u, L) = R*(x).

Proof. To prove this result we apply Lyapunov’s method (see e.g. Chapter 2, Theorem 1 of [28]]) to
the QHM equations. The proof is then identical to the proof of Theorem [3] with matrix A replaced by
V2F(x.). o

D Numerical Evaluation of the Convergence Rate

In this section we provide details on the numerical evaluation of the local convergence rate of QHM.
We need to numerically estimate the following function

R'(v,x) = m%n max{r(a, B, v, p), r(a, B,v, L)}

From Lemma [6] (Appendix [C) we know that r(e, B, v, ) is a non-increasing function of / until some
point and non-decreasing after. Also note that in fact dependence of r on « is the same as on /, since
they only appear in formulas as a product @!/. Thus, it is easy to see that for optimal & we will have

r(a, B, v, u) = r(a, B, v, L), (46)
because otherwise a could be changed to decrease the value of the maximum.

Thus, to find optimal « for fixed S, v, we can solve equation (@6)) for @ using binary search (with
precision set to 1078). To find optimal 3 or v we just use grid search (with grid size equal to 10°) on
[0,1 = 107°] for B8 and [0, 1] for v.

To numerically verify that the dependence of the optimal rate on v is monotonic, we run this procedure
for 103 values of k which are sampled (on a uniform grids) in the following way: 100 values on [1, 10],
100 values on [10, 100], 100 values on [100, 1000], 150 values on [103, 10*], 150 values on [10*, 10°],
200 values on [105, 106], 200 values on [106, 107]. All experiments were run in parallel using GNU
Parallel Command-Line Tool [35].

Since rate estimation is non-exact, it happens sometimes that very close points v show non-monotonic
rate dependence, but it is always the case that the rate is approximately non-increasing in v. Precisely,
we verify that the following condition holds for all estimated values of «:

R*(Vis10, k) — R*(vi, k) < 103Vi=1,...,990

where R* is estimated rate and v; is i-th sample of v. Figure shows the dependence of R*(v, k) on v
for different values of «.
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1.0 — k=10
\ k=50
08 — k=100
— k=500
—— Kk =100.0
06 —— Kk =1000.0
X & = 1000000.0
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0.0 0.2 0.4 0.6 0.8 1.0
v

Figure 5: This Figure shows the dependence of optimal (across a, ) local convergence rate on v
for QHM algorithm across different values of condition number «. Note that R*(v, ) always shows
monotonic non-decreasing dependence on v.

E Stationary Distribution Proofs

In this section we present proofs of Theorems ] [5] We will restate the combined statement of both
theorems below for convenience.
Theorems 4, 5. Suppose F(x) = %xTAx, where A is symmetric positive definite matrix. The stochastic

gradients satisfy g¥ = VF(x) + & where ¢ is a random vector independent of x* with zero mean
E [£¢] = 0 and covariance matrix E [ T = X¢. Also suppose the parameteres a, B3, v satisfy (13),
then QHM algorithm (6), equivalently in this case, converges to stationary distribution satisfying

AT, + A = aAZs + 0(a?)

2
tr(AS,) = %tr(2§)+ “Z (1 + lzrﬂﬁ [12:[35 _

1]) tr(AZ;) + 0(a®)

Consequently, when v = 0 (SGD), X satisfies

2
tr(AZ,) = %tr(Zg) + %tr(AZ.f) +0(®)

When v = 1 (SHB), 2 satisfies

a1-p

3
21+ ﬁtl‘(AZf) + O(G’ )

tr(AS,) = %tr(z,f) +
When v = B (NAG), 2 satisfies

2 2
tr(AZy) = %tr(zf) + 2 (1 _ 27 (1 +2p)

— tr(AZg) + O(a®

7 s ) H(AZ) + O(a”)

Proof. We consider the behavior of QHM with constant @, 3, and v, described in (IZ-_7])
d“ = (1= p)g* + pd*!

k+1 k k k 47)

=K —a [(1=v)g" +vd"].

Under assumptions of Theorems we have that stochastic gradient g¥ is generated as

g = VF(xb) + &5 = Ax* + &, (48)

where the noise £X is independent of x¥, has zero mean and constant covariance matrix. More
explicitly, for all k£ > 0,

E[¢é] =0,  E[¢"E)] =2
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where X is a constant covariance matrix. Substituting the expression of g* in {@8) into yields
d* = (1= B)g" + pd"™ = (1 - PAX + (1 - p)g* + pd"~",
= 5k —avdk — a(1 = v)gk = x* — a1 = vB)AX* — avBd* ! — a(1 - vB)EX.
We can write the above two equations as

a1 | pI (1-p)A dk! (1-p)1
k41| = —avpl 1-a(l - v,B)A] [ & ] *-et1 - vﬁ)I] & (“49)

where I denotes the n X n identity matrix.

Let L > 0 be the largest eigenvalue of A. From Theorem [3| we know that under the conditions (13)
the dynamical system (#9) is stable, i.e., the spectral radius of the matrix

BI (1-pA ]
—avBl I-a(l -vB)A

is smaller than one.

To simplify notation, we rewrite Equation (49) as
Zk+l — Zk _ sz + ka, (50)

where
Ko [d’“] g |-P1 —(l—ﬁ)A} c-| a-p1 ]
xk | avpl  a(l —vB)A|’ —a(l -vB)I|"

As k — oo, the effect of the initial point z° dies out and the covariance matrix of the state z* becomes
constant. Let

E[dk—l(dk—l)T] E[dk_l(xk)T]

12 Zax| . KT = i
3, = [ ] 2 kh_IEOE[Z (Z5) ] = lim E[xk(dk—l)T] E[xk(xk)T]

2"xd z:x k—oo

Then using the linear dynamics (50) and the assumption that {£€X} is i.i.d. and has zero mean, we
obtain
BY, +X.B" - BX,B" = Cx.C".

Following the partition of X, we partition the above matrix equation into 2 by 2 blocks and obtain

(L1): (1=p%g - B(1 = B)(AZxq + ZaxA) — (1 — B)* AT A = (1 - ), (51)
(1,2): avBZq+ (1= P)Zax — (1 = B)AZ, + avB(1 = B)AZyq + (1 — vB)EarA

+a(1 —vp)(1 - B)AZLA = —a(l = vB)(1 - B)Z¢, (52)
21D avBZg+(1-P)2xa — (1 - f)Z A+ aB(1 — VB)AZyy + avB(l — B)ZarA

+a(1 = vB)(1 - B)AZ A = —a(1l —vB)(1 - B)Z¢, (53)
(2,2) 1 —(avB)*Ty + avB(Exa + Zax) + a(l — vB)(AZ, + I, A)

—-a*vB(1 = vB)(AZrg + ZaxA) — *(1 — vB* AT A = a*(1 — vB)*Ze. (54)

Or, letting V be the column block matrix with entries [Zg4, £, g, Zgx, AZy, Zx A, ALy g, Zax A, AL A],
and defining symbolically U to be the block matrix with coefficients:

1-pH 0 0 0 0 -B(1 - p) -B(1 - B) ~(1-py
avp’ 0 (1-p -(1-p 0 avp(1-p)  ap(l-vp)  a(l-vp)1-p)
avp®  (1-p) 0 0 -(1=-p)  ep(l-vp)  avp(1-p) a(l-vp)(1-p)
—(avB)?* avp avB  a(l-vB) a(l-vB) —-a*vB(1-vB) —a’vB(1-vB) —a?*(1-vp)>
(55)
(each block is an n X n identity matrix), we have
o Shl-p
a1 =V -
U= lmai - vp(1 - p)| ¢ 0
a*(1-vpB)y>
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Next we use combinations of the above equations to obtain simplified relations: First, we can do

2 2
1-—
CU=vBY gy CB) i )4 1) +2,2)
(1-p) 1-p
to get
1 -2
Mzd"’-zxd"’-zdx :O.
-5
We take the following asymptotic expansion of X,:
S Zax| _ [EV ez +0250/2 ox!) + 0?20 )2 7
Tod x| 2(1) + a2z(2)/2 Z,(vl) i 02253)/2

Here, we explicitly write the zero’th order of (X4, L4, Xx) to be zero. This can be easily proved from

The zero’th order term of (31)) gives

(1-pEy = (1~ BYZe. (58)
The first order term of (32) (and (33)) gives
vB2E( + (1= B - ATY) = —(1 = vB)(1 - B)Ze, (59)
VBEY + (1= B(E ~ 27 4) = ~(1 = vB)(1 - B)Ze. (60)
The second order term of (54) gives
vBEW + =)+ (1 - vp)Aazl + 204) = 28220 + (1 - vp) 2, 61)
From (58)) we solve
s _1-8 1-Bs,,
% =13 B
and from (38), (39) and (60), we solve
s 450 2 4 504 - 20 +8-vB) )
* 1+ =
After plugging them into (61]), we obtain
Az + 3504 = 5, (63)

thus
AT, + A = aXg + 0(a?),

which concludes the proof of Theorem ]

Let’s now extend this result to the second-order in @. The first order term of (31)) gives

(1 +p)z) = pazh + £004) + (1 - p)aza. (64)
The second order term of (52) (and (33)) gives
v + %ﬁ(zﬁfjﬁ ~ ALY = (1 - vp)Z A - vp(1 - pAZ) — (1 - vB)(1 - B)AZ A, (65)
B2z + %’8(23 ~2P4) = -1 - vp)AZY) —vp(1 - BV A~ (1 -vB)(1 - BAZVA. (66)
The third order term of (34) gives
v2pre) + Vzﬁ =?+ 2(2)) LB 45?450 4) = vp(1 - vp)(E A+ ASD) 4 (1 - vp2asa,
(67)

Plugging (64) into (63) and (66), we obtain
2B +v+B-vp)
1-p2

4 +B-vp)
1+p

=2+ (axP +502) = =) A+ Az - A=A, (68)
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Plugging (64) into (67), we obtain

2vB(1 + B -
vBED+ED)+(1-vB)AZP+2P 4) = M(2<‘>A+Az“))+2(1 2y ,8+
1+
Combining (68) and (69), we obtain
2
As? 3@y = 2P P WA+ azh) + 24504,
1= B xd
Let’s get an expression for tr(AX,). From (70) we get (by taking trace and dividing by 2)
tr(Ax?) = ﬁﬁ tr(z,)A) + tr(Ax{" )
From (62)) we get (by multiplying by A, taking trace and dividing by 2)
(1) o\ _ 1) (1+8-vp)
tr(deA) = tr(AZx A) - Ttr(AEf)
Plugging (72)) into (71)) we get
2 1 -
tr(ax?) = 2P (tr(AZS)A) - Mtrmzf) +tr(a= A)
1-p L+p )
2 2 1
— (2L 1) raza) - Vﬁ d+p- )tr(AZé:)
1- ﬂ -B 1+
From (63)) we get (by multiplying by A and taking trace)
(M) 4y _ 1
tr(AX)'A) = Etr(AZ‘_g)
and also by taking trace
my_ 1
tr(AX)) = Etr(Ef)
Finally we get
My, C s 5
tr(AX,) = atr(AX}’) + Ttr(AZx )+ O(a”)
@ a? [ 2vp 1) 2V,3 (1+B-vp)
= —tr(Ze) + — || —— + 1] tr(AX,’A tr(AX
S tr(Ze) 2»(1_15, )l'( ) - ~5 145 r(AZ¢)
202 2vB (1+
- Yo+ |2 t (AZg) - - Vﬁ (+p- )tr(A2§)
2 2 |\1- B -B 1+
a o [ 2vB 4vp (1 +ﬁ vﬁ)
= —tr(Zg) + — || = + 1 tr(AXs) + O(a’
Zr(§}+4 (1—ﬁ+ ) -5 ]r( £)+0(a”)
2 a2 21+ 8-
- %tr(Zg) + %tr(AZg) + Vﬁﬂ 1- ( 1'13 5 vP )} tr(AZe) + 0(a?)
a o? o? 2v,8 2vp
= Ftr(Ze) + (AT —— — 1| tr(AZs) + O(a’
S () + tr(Aze) + | S ]r( £)+0(@)

+0(a%)

+0(a%)

)Az“)A

(69)

(70)

(71)

(72)

(73)

(74)

(75)

The special cases of SGD, SHB and NAG can be straightforwardly obtained by substituting corre-

sponding value of v into the general formula.
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Figure 6: Approximation error of equation (T3). Relative error is shown with color and we threshold
itat 0.2.

F Evaluation of Stationary Distribution Size

In this section we describe experimental details for evaluation of stationary distribution size on different
machine learning problems (Section [5). The first problem we consider is a simple 2-dimensional
quadratic function, where we add additive zero-mean Gaussian noise independent of the point x, so
that all assumptions of Theorem [5]are fully satisfied. For this function we have

0.3 0]

p=01,L=100,% = [ o 04

We run the QHM algorithm for 1000 iterations starting at the optimal value and plot final loss as
average across all 1000 iterations. We evaluate QHM for the following sweeps of hyperparameters:
30 values of @ on a uniform grid on [0.01, 1.5], 30 values of 8 on a uniform grid on [0, 0.999], 30
values of v on a uniform grid on [0, 1]. For each combination of hyperparameters we verify that
a — 1,8 — 1 indeed decreases the average loss. However, for smaller values of v the effect of § is
smaller, as expected. The dependence on v can be described by a quadratic function with minimum at
some v < 1. Note that from formula (T3] the dependence on v is indeed quadratic with optimal v
given by

s
@ ={w 3sh<] (76)
1 ,0£ﬂ<§

From this equation the optimal v.(8) > 0.5 and v.(8) — 0.5 as 8 — 1. In the experiments we
see the same qualitative behavior, but the optimal value of v is much closer to 1 than predicted by
equation (76).

The second problem we consider is logistic regression on MNIST dataset. We run QHM for 50
epochs with batch size of 128 and weight decay (applied both to weights and biases) of 107 (thus,
i ~ 107*). The final loss is averaged across last 1000 batches. We evaluate algorithm for 50 values of
a € [0.01, 30] (log-uniform grid), 20 values of 8 € [0, 0.999] (uniform grid), 20 values of v € [0, 1]
(uniform grid).

The final problem we consider is ResNet-18 on CIFAR-10 dataset. We run QHM with batch
size of 256 and weight decay of 10~* (applied only to weights). We run algorithm for 80
epochs with constant parameters and average final loss across last 100 batches. We evaluate
a € {0.01,0.05,0.1,0.5,1.0,2.0,3.0,5.0,7.0, 8.5}, B8 € {0.0,0.01,0.2,0.5,0.7,0.9,0.99,0.999}. In
this experiment we always set v = 1.

G Approximation error of Theorem 3]

In this section we run a set of experiments to check for which values of parameters the equation (T3)
is not accurate. In fact, we can immediately see that the approximation error grows unboundedly
as B — 1if v ¢ {0, B, 1}, because the right-hand-side of equation (I3) converges to —co, while the
left-hand-side is bounded from below.

Since we are interested in the approximation error from the higher-order terms, we run experiments
on a 2-dimensional quadratic problem where all assumptions are satisfied. We follow the same
experimental settings as in the appendix We test a uniform grid of 20 8 and 20 v values on [0, 1] for
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a € {0.05,0.1,0.2}. Note, that we can compute the right-hand-side of equation @ exactly, but need
to estimate the left-hand-side. For that we run QHM for 10000 iterations and compute an empirical
covariance of the iterates. Figure[6]shows the results of this experiment. We plot a relative error with
color and threshold it at 0.2 (i.e. we consider the formula to be inaccurate if the relative difference
between right-hand-side and left-hand-side is bigger than 20%). We can see that indeed when « is
moderately big, the formula becomes imprecise for many different values of v and 8. However, when
a is small, the formula is only imprecise for a very large values of 8 and it becomes more inaccurate
when v is far from O or 1.
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