
Communication trade-offs for synchronized
distributed SGD (Local-SGD) with large step size

(with Appendix)

Aymeric DIEULEVEUT
MLO, EPFL, Lausanne, Switzerland

CMAP, Ecole Polytechnique, Palaiseau, France
aymeric.dieuleveut@polytechnique.edu

Kumar Kshitij PATEL
MLO, EPFL, Lausanne, Switzerland

TTIC-Toyota Technological Institute Chicago
kkpatel@ttic.edu

Abstract

Synchronous mini-batch SGD is state-of-the-art for large-scale distributed machine
learning. However, in practice, its convergence is bottlenecked by slow communi-
cation rounds between worker nodes. A natural solution to reduce communication
is to use the “local-SGD” model in which the workers train their model inde-
pendently and synchronize every once in a while. This algorithm improves the
computation-communication trade-off but its convergence is not understood very
well. We propose a non-asymptotic error analysis, which enables comparison to
one-shot averaging i.e., a single communication round among independent work-
ers, and mini-batch averaging i.e., communicating at every step. We also provide
adaptive lower bounds on the communication frequency for large step-sizes (t−α,
α ∈ (1/2, 1)) and show that Local-SGD reduces communication by a factor of
O
(√

T
P 3/2

)
, with T the total number of gradients and P machines.

1 Introduction
We consider the minimization of an objective function which is accessible through unbiased estimates
of its gradients. This problem has received attention from various communities over the last fifty
years in optimization, stochastic approximation, and machine learning [1–7]. The most widely used
algorithms are stochastic gradient descent (SGD), a.k.a. Robbins-Monro algorithm [8], and some
of its modifications based on averaging of the iterates [1, 2, 9]. For a convex differentiable function
F : Rd → R, SGD iteratively updates an estimator (vt)t≥0 for any t ≥ 1

vt = vt−1 − ηtgt(vt−1), (1)

where (ηt)t≥0 is a deterministic sequence of positive scalars, referred to as the learning rate and
gt(vt−1) is an oracle on the gradient of the function F at vt−1. We focus on objective functions that
are both smooth and strongly convex [10]. While these assumptions might be restrictive in practice,
they enable to provide a tight analysis of the error of SGD. In such a setting, two types of proofs
have been used traditionally. On one hand, Lyapunov-type proofs rely on controlling the expected
squared distance to the optimal point [11]. Such analysis suggests using small decaying steps,
inversely proportional to the number of iterations (t−1). On the other hand, studying the recursion
as a stochastic process [1] enables to better capture the reduction of the noise through averaging. It
results in optimal convergence rates for larger steps, typically scaling as t−α, α ∈ (1/2, 1) [10].

Over the past decade, the amount of available data has steadily increased: to adapt SGD to such
situations, it has become necessary to distribute the workload between several machines, also referred
to as workers [12–14]. For SGD, two extreme approaches have received attention: 1) workers run
SGD independently and at the end aggregate their results, called one-shot averaging (OSA) [13, 15]

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

Figure 1: Schematic representation of one-shot averaging (left), mini-batch averaging (middle) and
local-SGD (right). Vertical threads correspond to machines and orange boxes to communication
rounds.

or parameter mixing, and 2) mini-batch averaging (MBA) [16–20], where workers communicate
after every iteration: all gradients are thus computed at the same support point (iterate) and the
algorithm is equivalent to using mini-batches of size P , with P the number of workers. While OSA
requires only a single communication step, it typically does not perform very well in practice [21].
At the other extreme, MBA performs better in practice, but the number of communications equals
the number of steps, which is a major burden, as communication is highly time consuming [22].
To optimize this computation-communication-convergence trade-off, we consider the Local-SGD
framework: P workers run SGD iterations in parallel and communicate periodically. This framework
encompasses one-shot averaging and mini-batch averaging as special cases (see Figure 1).

We make the following contributions:
1) We provide the first non-asymptotic analysis for local-SGD with large step sizes (typically scaling
as t−α, for α ∈ (1/2; 1)), in both on-line and finite horizon settings. Our assumptions encompass the
ubiquitous least-squares regression and logistic regression.
2) Our comparison of the two extreme cases, OSA and MBA, underlines the communication trade-
offs. While both of these algorithms are asymptotically equivalent for a fixed number of machines,
mini-batch theoretically outperforms one-shot averaging when we consider the precise bias-variance
split. In the regime where both the number of machines and gradients grow simultaneously we show
that mini-batch SGD outperforms one-shot averaging.
3) Under three different sets of assumptions, we quantify the frequency of communication necessary
for Local-SGD to be optimal (i.e., as good as mini-batch). Precisely, we show that the communication
frequency can be reduced by as much as O

(√
T

P 3/2

)
, with T gradients and P workers. Moreover, our

bounds suggest an adaptive communication frequency for logistic regression, which depending on
the expected distance to the optimal point (a phenomenon observed by Zhang et al. [21]).
4) We support our analysis by experiments illustrating the behavior of the algorithms.

The paper is organized as follows: in Section 2.1, we introduce the general setting, notations and
algorithms, then in Section 2.2, we describe the related literature. Next, in Section 2.3, we describe
assumptions made on the objective function. In Section 3, we provide our main results, their
interpretation, consequence and comparison with other results. Results in the on-line setting and
experiments are presented in the Appendix A.2 and Appendix B.

2 Algorithms and setting
We first introduce a couple of notations. We consider the finite dimensional Euclidean space Rd
embedded with its canonical inner product 〈·, ·〉. For any integer ` ∈ N∗, we denote by [`] the
set {1, . . . , `}. We consider a strongly-convex differentiable function F : Rd → R. We denote
w? := argminw F (w). With only one machine, Serial-SGD performs a sequence of updates
according to Equation (1). In the next section, we describe Local-SGD, the object of this study.

2.1 Local-SGD algorithm
We consider P machines, each of them running SGD. Periodically, workers aggregate (i.e., average)
their models and restart from the resulting model. We denote by C the number of communication
steps. We define a phase as the time between two communication rounds. At phase t ∈ [C], for
any worker p ∈ [P], we perform N t local steps of SGD. Iterations are thus naturally indexed by

2

(t, k) ∈ [C]× [N t]. We consider the lexicographic order 4 on such pairs, which matches the order in
which iterations are processed. Note that we assume the number of local steps to be the same over
all machines p. While this assumption can be relaxed in practice, is facilitates our proof technique
and notation. At any k ∈ [N t], we denote by wt

p,k the model proposed by worker p, at phase t,
after k local iterations. All machines initially start from the same point w0, that is for any p ∈ [P],
w1
p,0 = w0. The update rule is thus the following, for any p ∈ [P], t ∈ [C], k ∈ [N t]:

wt
p,k = wt

p,k−1 − ηtkgtp,k(wt
p,k−1). (2)

Aggregation steps consist in averaging the final local iterates of a phase: for any t ∈ [C], ŵt =
1
P

∑P
p=1 w

t
p,Nt . At phase t+1, every worker p ∈ [P] restarts from the averaged model: wt+1

p,0 := ŵt.
Eventually, we want to control the excess risk of the Polyak-Ruppert (PR) averaged iterate:

wC =
1∑C

t=1N
t

C∑
t=1

N twt =
1

P
∑C
t=1N

t

C∑
t=1

P∑
p=1

Nt∑
k=1

wt
p,k,

with wt = 1
PNt

∑Nt

k=1

∑P
p=1 w

t
p,k. We use the notation w to underline the fact that iterates are

averaged over one phase and w when averaging is made over all iterations. All averaged iterates can
be computed on-line.

The algorithm, called local-SGD, is thus parameterized by the number of machines P , communication
steps C, local iterations (N t)t∈[C], the starting point w0, the learning rate (ηtk)(t,k)∈[C]×[Nt], and the
first order oracle on the gradient. Pseudo-code of the algorithm is given in the Appendix, in Fig. S5.

Link with classical algorithms. Special cases of Local-SGD correspond to one-shot averaging
or mini-batch averaging. More precisely, for a total number of gradients T , with P workers,
C = T/P communication rounds, and (N t)t∈[C] = (1, , 1), we realize an instance of P-
mini-batch averaging (P-MBA). On the other hand, with P workers, C = 1 communication, and
(N1) = T/P , we realize an instance of one shot-averaging. Our goal is to get general convergence
bounds for Local-SGD that recover classical bounds for both these settings when we choose the
correct parameters. While comparing to Serial-SGD (which is also a particular case of the algorithm),
would also be interesting, we focus here on the comparison between Local-SGD, one-shot averaging
and mini-batch averaging. Indeed, the step size is generally increased for mini-batch with respect to
Serial SGD, and the running efficiency of algorithms is harder to compare: we only focus on different
algorithms that use the same number of machines.

2.2 Related Work
On Stochastic Gradient Descent. Bounds on the excess risk of SGD for convex functions have
been widely studied: most proofs rely on controlling the decay of the mean squared distance
E[‖vt −w?‖2], which results in an upper bound on the mean excess of risk E[F (v̄t)− F (w?)] [23,
24]. This upper bound is composed of a “bias” term that depends on the initial condition, and a
“variance” term that involves either an upper bound on the norm of the noisy gradient (in the non-
smooth case), or an upper bound on the variance of the noisy gradient in the smooth case [5, 11]. In
the strongly convex case such an approach advocates for the use of small step sizes, scaling as (µt)−1.
However, in practice, this is not a very satisfying result, as the constant µ is typically unknown, and
convergence is very sensitive to ill-conditioning. On the other hand, in the smooth and strongly-
convex case, the classical analysis by Polyak and Juditsky [1], relies on an explicit decomposition
of the stochastic process (v̄t − w?)t≥1: the effect of averaging on the noise term is better taken
into account, and this analysis thus suggests to use larger steps, and results in the optimal rate for
ηt ∝ t−α, with α ∈ (0; 1). This type of analysis has been successfully used recently [10, 15, 25, 26].

For quadratic functions, larger steps can be used, as pointed by Bach and Moulines [27]. Indeed,
even with non-decaying step size, the averaged process converges to the optimal point. Several
studies focus on understanding properties of SGD for quadratic functions: a detailed non-asymptotic
analysis is provided by Défossez and Bach [28], acceleration under the additive noise oracle (see
Assumption A4 below) is studied by Dieuleveut et al. [29] (without this assumption by Jain et al.
[30]), and Jain et al. [20] analyze the effects of mini-batch and tail averaging.

One shot averaging. In this approach, the P -independent workers compute several steps of stochastic
gradient descent, and a unique communication step is used to average the different models [13, 31, 32].

3

Zinkevich et al. [13] show a reduction of the variance when multiple workers are used, but neither
consider the Polyak-Ruppert averaged iterate as the final output, nor provide non-asymptotic rates.
Zhang et al. [33] provide the first non-asymptotic results for OSA but their dependence on constants
(like strong convexity constant µ, moment bounds, etc.) is worse; as well as their single machine
convergence bound [34] is not truly non-asymptotic (like for e.g., Bach and Moulines [10]). More
importantly, their results hold only for small learning rates like c

µt . Rosenblatt and Nadler [35]
have also discussed the asymptotic equivalence of OSA with vanilla-SGD by providing an analysis
up to the second order terms. Further, Jain et al. [20] have provided non-asymptotic results for
least-square regression using similar Polyak-Juditsky analysis of the stochastic process, while our
results apply to more general problems. Their approach encompasses one shot averaging and the
effect of tail averaging, that we do not consider here. Recently, Godichon and Saadane [15] proposed
an approach similar to ours (but only for one shot averaging). However, their result relies on an
asymptotic bound, namely E[‖wt −w?‖2] ≤ C1ηt (as in Rakhlin et al. [34]), while our analysis is
purely non-asymptotic and we also improve the upper bound on the noise term which results from
the analysis.

Mini-batch averaging. Mini-batch averaging has been studied by Dekel et al. [16], Takáč et al. [17].
These papers show an improvement in the variance of the process, and make comparisons to SGD.
It has been found that increasing the mini-batch size often leads to increasing generalization errors,
which limits their distributivity [36]. Jain et al. [20] have provided upper bounds on learning-rate
and mini-batch size for optimal performance. Recently, large mini-batches have been leveraged
successfully in deep learning as in [37–39] by properly tuning learning rates, etc.

Local-SGD. Zhang et al. [21] empirically show that Local-SGD performs well. They also provide
a theoretical guarantee on the variance of the process, however, they assume the variance of the
estimated gradients to be uniformly upper bounded (Assumption A4 below). Such an assumption is
restrictive in practice, for example it is not satisfied for least squares regression. In a simultaneous
work, Stich [40] has provided an analysis for local-SGD. The limitation with their analysis is that
they also assume bounded gradients and use a small step size scaling as c

µt . More importantly, their
analysis doesn’t extend to the extreme case of one-shot averaging like ours. Lin et al. [41] have
experimentally shown that Local-SGD is better than the synchronous mini-batch techniques, in terms
of overcoming the large communication bottleneck. Recently, Yu et al. [42] have given convergence
rates for the non-convex synchronous and a stale synchronous settings.

We have summarized the major limitations of some of these analyses in Table S3, given in Appendix I.
Our motivation is to get away with some of these restrictive assumptions, and provide tight upper
bounds for the above three averaging schemes. In the following section, we present the set of
assumptions under which our analysis is conducted.

2.3 Assumptions
We first make the following classical assumptions on the objective function F : Rd → R. In the
following, we use different subsets of these assumptions:
A1 (Strong convexity) The function F is strongly-convex with convexity constant µ > 0.
A2 (Smoothness and regularity) The function F is three times continuously differentiable
with second and third uniformly bounded derivatives: supw∈Rd

∣∣∣∣∣∣F (2)(w)
∣∣∣∣∣∣ < L, and

supw∈Rd
∣∣∣∣∣∣F (3)(w)

∣∣∣∣∣∣ < M . Especially F is L-smooth.

Q1 (Quadratic function) There exists a positive definite matrix Σ ∈ Rd×d, such that the function
F is the quadratic function w 7→ ‖Σ1/2(w −w?)‖2/2.
If Q1 is satisfied, then Assumptions A1, A2 are satisfied, and L and µ are respectively the largest and
smallest eigenvalues of Σ. At any iteration (t, k) ∈ [C]× [N t], any machine can query an unbiased
estimator of the gradient gtp,k(w) at a point w. Formally, we make the following assumption:
A3 (Oracle on the gradient) We observe unbiased estimators of the gradient gtp,k+1(w): for any
(t, k) ∈ [C]× [N t] and w ∈ Rd, E[gtp,k+1(wt

p,k)|wt
p,k] = F ′(wt

p,k). Moreover, for any fixed w the
functions (gtp,k)(t,k)(w) are i.i.d. . (See Appendix A.1 for a more formal statement.)
In Proposition 3, we make the additional, stronger assumption that the variance of gradient estimates
is uniformly upper bounded, a standard assumption in the SGD literature, see e.g. Zhang et al. [21]:
A4 (Uniformly bounded variance) The variance of the error, E[‖gtp,k(wt

p,k) − F ′(wt
p,k)‖2] is

uniformly upper bounded by σ2
∞, a constant which does not depend on the iteration.

4

Assumption A4 is for example true if the sequence of random vectors (gtp,k+1(wt
p,k) −

F ′(wt
p,k))t∈[C],k∈[Nt],p∈[P] is i.i.d.. This setting is referred to as the semi-stochastic setting [29].

We also consider the following conditions on the regularity of the gradients, for p ≥ 2:
A5 (Cocoercivity of the random gradients) For any p∈ [P], t∈ [C], k ∈ [N t], gtp,k is almost
surely L-co-coercive (with the same constant as in A2): that is, for any w1,w2 ∈ Rd,
L〈gtp,k(w1)− gtp,k(w2)w1 −w2〉 ≥ ‖gtp,k(w1)− gtp,k(w2)‖2.

Almost sure L-co-coercivity [43] is for example satisfied if for any (p, k, t), there exist a random
function f tp,k which is a.s. convex and L-smooth and such that gtp,k = (f tp,k)′. Finally, we assume
the fourth order moment of the random gradients at w? to be well defined:

A6 (Finite variance at w?) ∃σ ≥ 0, s.t. for any t, k, p ∈ [C]×[N t]×[P], E[‖gtp,k(w?)‖4] ≤ σ4.

It must be noted that A6 is a much weaker assumption than A4, for e.g., least-square regression
satisfies former but not latter. Most of these assumptions are classical in machine learning. SGD
for least squares regression satisfies Q1, A3, A5 and A6. On the other hand, SGD for logistic
regression satisfies A1, A2, A3 and A4. Our main result Theorem 6 (lower bounding the frequency
of communications) applies to both these sets of assumptions. In Appendix C.3 we further detail how
these assumptions apply in machine learning.

Learning rate. We always assume that for any t ∈ [C], k ∈ [N t], the learning rate satisfies 2ηtkL ≤ 1.
We consider two different types of learning rates:
1) in the finite horizon (FH) case, the step size (ηtk)(t,k)∈[C]×[Nt] is a constant η, that can depend on
the number of iterations eventually performed by the algorithm; 2) in the on-line case, the sequence
of step size is a subsequence of a universal sequence (η̃`)`≥0. Moreover, in our analysis, when using
decaying learning rate, the step size only depends on the number of iterations processed in the past:
ηtk = η̃{

∑t−1

t′=1
Nt′+k}. Especially, the step size at iteration (t, k) does not depend on the machine.

Though both of these approaches are often considered to be nearly equivalent [44, 45], fundamental
differences exist in their convergence properties. The on-line case is harder to analyze, but ultimately
provides a better convergence rate. However as the behavior is easier to interpret in the finite horizon
case, we postpone results for on-line setting to Appendix A.2. In the following section, we present
our main results.

3 Main Results
Sketch of the proof. We follow the approach by Polyak and Juditsky, which relies on the follow-
ing decomposition: for any p ∈ [P], t ∈ [C], k ∈ [N t], Equation (2) is trivially equivalent to:
ηtkF

′′(w?)(wt
p,k−1−w?) = wt

p,k−1−wt
p,k−ηtk[gtp,k(wt

p,k−1)−F ′(wt
p,k−1)]−ηtk[F ′(wt

p,k−1)−
F ′′(w?)(wt

p,k−1 −w?)]. We have added and subtracted a first order Taylor expansion around the
optimal value w? of the gradient. Thus, using the definition of wC :

F ′′(w?)
(
wC −w?

)
=

1

P
∑C
t=1N

t

C∑
t=1

P∑
p=1

Nt∑
k=1

(
wt
p,k−1 −wt

p,k

ηtk
−
[
gtp,k(wt

p,k−1)− F ′(wt
p,k−1)

]
−
[
F ′(wt

p,k−1)− F ′′(w?)(wt
p,k−1 −w?)

])
. (3)

In other words, the error can be decomposed into three terms: the first one mainly depends on the
initial condition, the second one is a noise term: it is the mean of centered random variables (as
E[gtp,k(wt

p,k−1)− F ′(wt
p,k−1)] = 0), and the third is a residual term that accounts for the fact that

the function is not quadratic (if F is quadratic, then F ′(wt
p,k−1)− F ′′(w?)(wt

p,k−1 −w?) = 0).

Controlling different terms in Equation (3). The variance of the noise gtp,k(wt
p,k−1)−F ′(wt

p,k−1)

and the residual term both directly depend on the distance ‖wt
p,k−1 − w?‖2. The proof is thus

composed of two aspects: (1) we first provide a tight control for this quantity, with or without
communication: in the following propositions, this corresponds to an upper bound on E[‖wt

p,k −
w?‖2] 1, (2) we provide the subsequent upper bound on E[‖F ′′(w?)(wC −w?)‖2].

1more precisely, on E[‖ŵt −w?‖2] and E[‖w1
p,k −w?‖2] for MBA and OSA respectively.

5

We first compare the convergence in the two extreme situations, i.e., for Mini-batch averaging (MBA)
and One-shot averaging (OSA) for finite horizon setting, and then provide these results for local-SGD.

3.1 Results for MBA and OSA, Finite Horizon setting
First we assume the step size ηtk to be a constant η at every iteration for any t ∈ [C], k ∈ [N t].
Our first contribution is to provide non-asymptotic convergence rates for MBA and OSA, that allow
a simple comparison. For the benefit of presentation, we define following quantities: Qbias =

1 + M2η
µ ‖w

0 −w?‖2 + L2η
µP , Q1,var(X) = L2η

µ + P
Xηµ , Q2,var(X) = M2XPη2σ2

µ2 .

In the following, we use the - notation to denote inequality up to an absolute constant. Recall that
for MBA, the total number of gradients processed is T = PC, while it is T = PN for OSA. We
have the following results respectively for MBA and OSA:

Proposition 1 (Mini-batch Averaging) Under Assumptions A1, A2, A3, A5, A6, we have the fol-
lowing bound for mini-batch SGD: for any t ∈ [C],

E
[∥∥ŵt −w?

∥∥2
]
≤ (1− ηµ)t ‖w0 −w?‖2 +

2σ2η

P

1− (1− ηµ)t

µ
, (4)

E
[∥∥F ′′(w?)(wC −w?)

∥∥2
]
-

∥∥w0 −w?
∥∥2

η2C2
Qbias +

σ2

T

(
1 +

Q1,var(C)

P
+
Q2,var(C)

P 2

)
. (5)

Proposition 2 (One-shot Averaging) Under Assumptions A1, A2, A3, A5, A6, we have the follow-
ing bound for one shot averaging: p ∈ [P], t = 1, k ∈ [N],

E
[∥∥w1

p,k −w?
∥∥2
]
≤ (1− ηµ)k ‖w0 −w?‖2 + 2σ2η

1− (1− ηµ)k

µ
, (6)

E
[∥∥F ′′(w?)(wC −w?)

∥∥2
]
-

∥∥w0 −w?
∥∥2

η2N2
Qbias +

σ2

T

(
1 +Q1,var(N) +Q2,var(N)

)
. (7)

Interpretation, fixed P . Using mini-batch naturally reduces the variance of the process
(wt

p,k)p∈[P],t∈[C],k∈[Nt]. Equations (4) and (6) show that the speed at which the initial condition is
forgotten remains the same, but that the variance of the local process is reduced by a factor P .

Equations (5) and (7) show that the convergence depends on an initial condition term and a variance
term. For a fixed number of machines P , and a step size scaling as η = X−α, 0.5 < α < 1,
X ∈ {N,C}, the speed at which the initial condition is forgotten is asymptotically dictated by
Qbias/(ηX)2 where X ∈ {N,C}, for both algorithms (if we use the same number of gradients for
both algorithms, naturally, N = C.) As for the variance term, it scales as σ2T−1 as T → ∞ , as
the remaining terms Qvar(X) asymptotically vanish for η = X−α. It reduces with the total number
T of gradients used in the process. Interestingly, this term is the same for the two extreme cases
(MBA and OSA): it does not depend on the number of communication rounds. This phenomenon
is often described as “the noise is the noise and SGD doesn’t care” (for asynchronous SGD, [46]).
Though we recover this asymptotic equivalence here, our belief is that this asymptotic point of view
is typically misleading as the asymptotic regime is not always reached, and the residual terms do then
matter.

Indeed, the lower order terms do have a dependence on the number of communication rounds:
when the number of communications increases, the overall effect of the noise is reduced. More
precisely, since Qvar(N) = Qvar(C) the remaining terms are respectively P or P 2 times smaller
for mini-batch. This provides a theoretical explanation of why mini-batch SGD outperforms one
shot averaging in practice. It also highlights the weakness of an asymptotic analysis: the dominant
term might be equivalent, without reflecting the actual behavior of the algorithm. Disregarding
communication aspects, mini-batch SGD is in that sense optimal.

Note that for quadratic functions, Q2,var = 0 as M = 0. The conditions on the step size can thus be
relaxed, and the asymptotic rates described above would be valid for any step size satisfying η ≤ µ
[20]. Extension to the on-line setting, eventually leading to a better convergence rate, is given in
Proposition S7 in AppendixA.2.

6

Interpretation, P, T → ∞. When both the total number of gradients used T and the number
of machines P are allowed to grow simultaneously, the asymptotic regime is not necessarily the
same for MBA and OSA, as remaining terms are not always negligible. For example, if fixing
η = X−2/3, X ∈ {N,C} (we chose α = 2/3 to balance Q1,var and Q2,var), the variance term
would be controlled by σ2T−1(1 + P

µC1/3). Thus, unless P ≤ µC1/3, MBA could outperform OSA
by a factor as large as P .

Novelty and proofs. Both Propositions 1 and 2 are proved in the Appendix G. Importantly, Equa-
tions (4) and (6) respectively imply Equations (5) and (7) under the stated conditions: this is the
reason why we only focus on proving equations similar to Equations (4) and (6) for Local-SGD.

Proposition 1 is similar to the analysis of Serial-SGD for large step size, but with a reduction in
the variance proportional to the number of machines. Such a result is derived from the analysis
by Dieuleveut et al. [25], combining the approach of Bach and Moulines [27] with the correct upper
bound for smooth strongly convex SGD [47], and controlling similarly higher order moments. While
this result is expected, we have not found it under such a simple form in the literature. Proposition 2
follows a similar approach, we combine the proof for mini-batch with a control of the iterates of
each of the machines. This is closely related to Godichon and Saadane [15], but we preserve a
non-asymptotic approach.

Remark: link with convergence in function values. As we use Equation (3) as a starting point,
we provide convergence results on the Mahalanobis distance ‖F ′′(w?)(w C − w?)‖2: it is the
natural quantity in such a setting [10, 15, 27]. These results could be translated into function value
convergence F (wC) − F (w?), using the inequality F (wC) − F (w?) ≤ Lµ−2‖F ′′(w?)(wC −
w?)‖2 but the dependence on µ would be pessimistic and sub-optimal. However, a similar approach
has been used by Bach [44], under a slightly different set of assumptions (including self-concordance,
e.g., for logistic regression), recovering optimal rates. Extension to such a set of assumptions, which
relies on tracking other quantities, is an important direction.

While the “classical proof”, which provides rates for function values directly (with smoothness, or
with uniformly bounded gradients) has a better dependence on µ, one cannot easily obtain a noise
reduction when averaging between machines. Similarly, there is no proof showing that one-shot
averaging is asymptotically optimal that relies only on function values. In other words, these proofs
do not adequately capture the noise reduction due to averaging. Moreover, such proof techniques
relying on function values typically involve a small step size 1/(µt) (because the noise reduction
is captured inefficiently). Such step size performs poorly in practice (initial condition is forgotten
slowly), and µ is unknown.

In conclusion, though they do not directly result in optimal dependence on µ for function values,
we believe our approach allows to correctly capture the effect of the noise, and is thus suitable for
capturing the effect of Local-SGD.

Comparing upper bounds: Our analysis relies on upper bounds: one should handle comparison
with cautions. Nevertheless, we think our analysis is tight enough to provide good insights, especially
because the bound for OSA averaging nearly matches the bound for MBA (contrary to Stich [40]).
Moreover, the bounds given above are tight in the following senses, see Appendix A.3 for details:
(i) the bias term in equations (5) and (7) is clearly exact in the simple case of a quadratic one
dimensional function, in the absence of noise: it is normal that in such a situation, MBA and OSA
converge similarly: each of the P independent machines computes the same recursion!
(ii) the bound for the variance, scaling as (PN)−1 for any η ∝ N−α, 0.5 < α < 1, matches the
statistical minimax rate [48] for least squares regression: from the statistical point of view, if we are
only given NP independent observations, then no estimator can have an error uniformly lower than
σ2(PN)−1.

Optimizing over the step size in Eqs (5) and (7) results in a somehow disappointing observation: the
rate for η ∝ N−α, 0.5 < α < 12 is dictated by the bias and scales as O((ηN)−2), which is slow (but
tight, see point (i) above). This is unfortunately unavoidable with constant step sizes: the convergence
rate with decaying steps is much faster in the on-line setting3, but bounds are much harder to read see

2A good step size is unlikely to be larger than 1/
√
N : such “very large” LR (which is rarely used in practice)

does not perform well for non-quadratic functions (note that for quadratic, the NPη2 vanishes, and a constant η
would get a rate 1/N2 + 1/PN).

3the bias decreases as 1/N2 instead of 1/(ηN)2 (see Prop.S7).

7

Sec. A.2. In other words, bounds in Propositions 1 and 2 are tight, but slower than in on-line setting.
As all the trade-offs regarding communications are preserved (our main focus), we chose to highlight
the results in finite horizon in the main text.

Conclusion: for a fixed or limited number of machines, asymptotically, the convergence rate is
similar for OSA and MBA. However, non-asymptotically, or when the number of machines also
increases, the dominant terms can be as much as P 2 times smaller for MBA. In the following
we provide conditions for Local-SGD to perform as well as MBA (while requiring much fewer
communication rounds).

3.2 Convergence of Local-SGD, Finite Horizon setting
For local-SGD we first consider the case of a quadratic function, under the assumption that the noise
has a uniformly upper bounded variance. While this set of assumptions is not realistic, it allows an
intuitive presentation of the results. Similar results for settings encompassing LSR and LR follow.
We provide a bound on the moment of an iterate after the communication step ŵt (i.e., the restart
point of the next phase), and on the second order moment of any iterate. For t ∈ [C], we denote
N t

1 :=
∑t
t′=1N

t′ .

Proposition 3 (Local-SGD: Quadratic Functions with Bounded Noise) Under Assumptions Q
1, A3, A4, we have the following bound for Local-SGD: for any p ∈ [P], t ∈ [C], k ∈ [N t],

E
[∥∥ŵt−1 −w?

∥∥2
]
≤ (1− ηµ)N

t−1
1 ‖w0 −w?‖2 +

σ2
∞η

P

1− (1− ηµ)N
t−1
1

µ

E
[∥∥wt

p,k −w?
∥∥2
]
≤ (1− ηµ)N

t−1
1 +k ‖w0 −w?‖2 + σ2

∞η

(
1− (1− ηµ)N

t−1
1

Pµ︸ ︷︷ ︸
long term reduced variance

+
1− (1− ηµ)k

µ︸ ︷︷ ︸
local iteration variance

)
.

To prove such a result, we use the classical technique, and introduce a ghost sequence w̆t
k :=

1
P

∑P
p=1 w

t
p,k, and recursively control

∥∥w̆t
k −w?

∥∥2
. We conclude by remarking that w̆t

Nt = ŵt.
This proof is given in Appendix D.2.

Interpretation. The variance bound for the iterates “just after” communication, ŵt exactly behaves
as in mini-batch case: the initialization term decays linearly with the number of local steps, and the
variance is reduced proportionally to the number of workers P . On the other hand, the bound on the
iterates wt

p,k shows that the variance of this process is composed of a “long term” reduced variance,

that accumulates through phases, and is increasingly converging to σ2
∞η
Pµ and of an extra variance

ησ2
∞

1−(1−ηµ)k

µ , that increases within the phase, and is upper bounded by σ2
∞η

2k.

In the case of constant step size, the iterates of serial SGD converge to a limit distribution πη that
depends on the step size [25]. Here, the iterates after communication (or the mini-batch iterates)
converge to a distribution with reduced variance πη/P , thus local iterates periodically restart from a
distribution with reduced variance, then slowly “diverge” to the distribution with large variance. If
the number of local iterations is small enough, the iterates keep a reduced variance. More precisely,
we have the following result.

Corollary 4 If for all t ∈ [C], N t ≤ (µηP)−1, then the second order moment of wt
p,k admits the

same upper bound as the mini-batch iterate ŵ
Nt−1

1 +k
MB (Equation (4)) up to a constant factor of 2. As

a consequence, Equation (5) is still valid, and Local-SGD performs “optimally”.

Interpretation. This result shows that if the algorithm communicates often enough, the convergence
of the Polyak Ruppert iterate wC is as good as in the mini-batch case, thus it is “optimal”. Moreover,
the minimal number of communication rounds is easy to define: the maximal number of local steps
N t decays as the number of workers and the step size increases. This bound implies that more
communication steps are necessary when more machines are used. Note that (ηP)−1 is a large
number, as a typical value for η is inversely proportional to (a power of) the number of local steps for
e.g., (

∑t
t′=1N

t′)−α, α ∈ (1/2; 1).

8

Example 5 With constant number of local steps N t = N , and learning rate η = c(NC)−1/2

in order to obtain an optimal O(σ2T−1) parallel variance4 rate, local-SGD communicates
O(
√
NC/(Pµ)) times less as compared to mini-batch averaging.

We believe that this is the first result (with Stich [40]) that shows a communication reduction
proportional to a power of the number of local steps of a local solver (i.e., O(

√
NC)), compared

to mini-batch averaging. In the following, we alternatively relax the bounded variance assumption
A4 and the quadratic assumption Q1, and show similar results for Local-SGD. This allows us to
successively cover the cases of least squares regression (LSR) and logistic regression (LR).

Theorem 6 Under either of the following sets of assumptions, the convergence of the Polyak Ruppert
iterate wC is as good as in the mini-batch case, up to a constant:
(i) Assume Q1, A3, A5, A6, and for any t ∈ [C], N t ≤ (µηP)−1 and µη2N t

1 = O(1).
(ii) Assume A1, A2, A3, A4, and for any t ∈ [C], N t ≤ inf

(
(ηPME[

∥∥ŵt −w?
∥∥])−1, (µηP)−1

)
.

These results are derived from Proposition S16 and Proposition S20 which generalize Proposition 3.
Those results are proved in Appendix D and E and constitute the main technical challenge of the
paper.

Interpretation. We note that in both of these situations, the optimal rates can be achieved if the
communications happen often enough, and beyond such a number of communication rounds, there
is no substantial improvement in the convergence. This result corresponds to the effect observed
in practice [21]. The first set of assumption is valid for LSR, the second for LR. In the first case,
the maximal number of local steps before communication is upper bounded by the same ratio as in
Corollary 4, but the “constant” that appears is exp(µη2N t

1), so we need this quantity to be small
(which is typically always satisfied in practice) in order to be optimal w.r.t. mini-batch averaging. A
similar result as Theorem 5 can be provided reducing the communication by a factor of O(

√
NC
Pµ).

In the second case, the maximal number of local steps is smaller than before, by a factor µ−1, but
the allowed maximal number of local steps can increase along with the epochs, as E[

∥∥ŵt −w?
∥∥]

is typically decaying. This adaptive communication frequency has been observed to work well in
practice [21] and also explored in [49], in a setting without PR averaging. Assuming optimization
on a compact space with radius R for instance, one can obtain a O(

√
NC
P 2) times improvement in

communication, similar to Theorem 5.

Though they may reflect the actual behavior of the algorithm, such results might be difficult to use
directly in practice, as µ is unknown. However, as it is not the limiting factor in Theorem 6.2, an
estimation of E[

∥∥ŵt −w?
∥∥] could allow us to use adaptive phases lengths to minimize communica-

tions.

4 Conclusion
Stochastic approximation and distributed optimization are both very densely studied research areas.
However, in practice most distributed applications stick to bulk synchronous mini-batch SGD. While
the algorithm has desirable convergence properties, it suffers from a huge communication bottleneck.
In this paper we have analyzed a natural generalization of mini-batch averaging, Local-SGD. Our
analysis is non-asymptotic, which helps us to better understand the exact communication trade-offs.
We give feasible lower bounds on communication frequency which significantly reduce the need
for communication, while providing similar non-asymptotic convergence as mini-batch averaging.
Our results apply to common loss functions, and use large step sizes. Further, our analysis unifies
and extends all the scattered results for one-shot averaging, mini-batch averaging and Local-SGD,
providing an intuitive understanding of their behavior.

While they provide some intuition and are believed to be tight, our comparisons are based on upper
bounds. Proving corresponding lower bounds is an interesting and important open direction. Also,
it would also be interesting to study observable quantities to predict an adaptive communication
frequency and to relax some of the technical assumptions required by the analysis. The on-line
case, experiments, proofs, additional materials and a review of distributed optimization follow in the
appendix.

4in online setting, the same example would hold, resulting in a O(σ
2

T
) convergence rate (not only variance).

9

Acknowledgements

We would like to acknowledge Sai Praneeth Reddy, Sebastian Stich, Martin Jaggi and Nathan Srebro
for helpful comments and discussions at various stages of this project.

References

[1] B. T. Polyak and A. B. Juditsky. Acceleration of stochastic approximation by averaging. SIAM
J. Control Optim., 30(4):838–855, 1992.

[2] D. Ruppert. Efficient estimations from a slowly convergent Robbins-Monro process. Technical
report, Cornell University Operations Research and Industrial Engineering, 1988.

[3] V. Fabian. On asymptotic normality in stochastic approximation. The Annals of Mathematical
Statistics, pages 1327–1332, 1968.

[4] Y. Nesterov and J. P. Vial. Confidence Level Solutions for Stochastic Programming. Automat-
ica, 44(6):1559–1568, 2008. ISSN 0005-1098. doi: 10.1016/j.automatica.2008.01.017. URL
http://dx.doi.org/10.1016/j.automatica.2008.01.017.

[5] A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust Stochastic Approximation
Approach to Stochastic Programming. SIAM J. on Optimization, 19(4):1574–1609, 2009.
ISSN 1052-6234. doi: 10.1137/070704277. URL http://dx.doi.org/10.1137/
070704277.

[6] S. Shalev-Shwartz, O. Shamir, N. Srebro, and K. Sridharan. Stochastic convex optimization.
In Proceedings of the International Conference on Learning Theory (COLT), 2009.

[7] T. Zhang. Solving large scale linear prediction problems using stochastic gradient descent
algorithms. Proceedings of the conference on machine learning (ICML), 2004.

[8] H. Robbins and S. Monro. A stochastic approxiation method. The Annals of mathematical
Statistics, 22(3):400–407, 1951.

[9] O. Shamir and T. Zhang. Stochastic Gradient Descent for Non-smooth Optimization: Con-
vergence Results and Optimal Averaging Schemes. Proceedings of the 30th International
Conference on Machine Learning, 2013.

[10] F. Bach and E. Moulines. Non-asymptotic Analysis of Stochastic Approximation Algorithms
for Machine Learning. In Proceedings of the 24th International Conference on Neural In-
formation Processing Systems, NIPS’11, pages 451–459, USA, 2011. Curran Associates
Inc. ISBN 978-1-61839-599-3. URL http://dl.acm.org/citation.cfm?id=
2986459.2986510.

[11] P. Zhao and T. Zhang. Stochastic optimization with importance sampling for regularized loss
minimization. In International Conference on Machine Learning (ICML), pages 1–9, 2015.

[12] O. Delalleau and Y. Bengio. Parallel stochastic gradient descent. 2007.

[13] M. Zinkevich, M. Weimer, L. Li, and A. J. Smola. Parallelized stochastic gradient descent. In
Advances in neural information processing systems, pages 2595–2603, 2010.

[14] B. Recht, C. Re, S. Wright, and F. Niu. Hogwild: A lock-free approach to parallelizing
stochastic gradient descent. In Advances in neural information processing systems, pages
693–701, 2011.

[15] A. B. Godichon and S. Saadane. On the rates of convergence of Parallelized Averaged
Stochastic Gradient Algorithms. ArXiv e-prints, 2017.

[16] O. Dekel, R. Gilad-Bachrach, O. Shamir, and L. Xiao. Optimal distributed online prediction
using mini-batches. Journal of Machine Learning Research, 13(Jan):165–202, 2012.

[17] M. Takáč, A. Bijral, P. Richtárik, and N. Srebro. Mini-batch primal and dual methods for svms.
In Proceedings of the 30th International Conference on International Conference on Machine
Learning-Volume 28, pages III–1022. JMLR. org, 2013.

[18] M. Li, T. Zhang, Y. Chen, and A. J. Smola. Efficient mini-batch training for stochastic opti-
mization. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 661–670. ACM, 2014.

10

http://dx.doi.org/10.1016/j.automatica.2008.01.017
http://dx.doi.org/10.1137/070704277
http://dx.doi.org/10.1137/070704277
http://dl.acm.org/citation.cfm?id=2986459.2986510
http://dl.acm.org/citation.cfm?id=2986459.2986510

[19] P. Goyal, P. Dollár, R. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola, A. Tulloch, Y. Jia,
and K. He. Accurate, large minibatch sgd: training imagenet in 1 hour. arXiv preprint
arXiv:1706.02677, 2017.

[20] P. Jain, S. M. Kakade, R. Kidambi, P. Netrapalli, and A. Sidford. Parallelizing Stochastic
Approximation Through Mini-Batching and Tail-Averaging. ArXiv e-prints, 2016.

[21] J. Zhang, C. De Sa, I. Mitliagkas, and C. Ré. Parallel SGD: When does averaging help? ArXiv
e-prints, 2016.

[22] H. Zhang, J. Li, K. Kara, D. Alistarh, J. Liu, and C. Zhang. The zipml framework for training
models with end-to-end low precision: The cans, the cannots, and a little bit of deep learning.
arXiv preprint arXiv:1611.05402, 2016.

[23] S. Lacoste-Julien, M. Schmidt, and F. Bach. A simpler approach to obtaining an O(1/t) rate for
the stochastic projected subgradient method. ArXiv e-prints 1212.2002, 2012.

[24] A. Rakhlin, O. Shamir, and K. Sridharan. Making Gradient Descent Optimal for Strongly
Convex Stochastic Optimization. ArXiv e-prints, 2011.

[25] A. Dieuleveut, A. Durmus, and F. Bach. Bridging the gap between constant step size stochastic
gradient descent and markov chains. Annals of Statistics, 2018.

[26] S. Gadat and F. Panloup. Optimal non-asymptotic bound of the Ruppert-Polyak averaging
without strong convexity. ArXiv e-prints, 2017.

[27] F. Bach and E. Moulines. Non-strongly-convex smooth stochastic approximation with conver-
gence rate O(1/n). Advances in Neural Information Processing Systems (NIPS), 2013.

[28] A. Défossez and F. Bach. Averaged least-mean-squares: bias-variance trade-offs and optimal
sampling distributions. In Proceedings of the International Conference on Artificial Intelligence
and Statistics, (AISTATS), 2015.

[29] A. Dieuleveut, N. Flammarion, and F. Bach. Harder, Better, Faster, Stronger Convergence
Rates for Least-Squares Regression. Journal of Machine Learning research, 2016.

[30] P. Jain, S. M. Kakade, R. Kidambi, P. Netrapalli, and A. Sidford. Accelerating Stochastic
Gradient Descent. arXiv preprint arXiv:1704.08227, 2017.

[31] R. Mcdonald, M. Mohri, N. Silberman, D. Walker, and G. S. Mann. Efficient large-scale dis-
tributed training of conditional maximum entropy models. In Advances in Neural Information
Processing Systems, pages 1231–1239, 2009.

[32] R. McDonald, K. Hall, and G. Mann. Distributed training strategies for the structured percep-
tron. In Human Language Technologies: The 2010 Annual Conference of the North American
Chapter of the Association for Computational Linguistics, pages 456–464. Association for
Computational Linguistics, 2010.

[33] Y. Zhang, M. J. Wainwright, and J. C. Duchi. Communication-efficient algorithms for statistical
optimization. In Advances in Neural Information Processing Systems, pages 1502–1510, 2012.

[34] A. Rakhlin, O. Shamir, K. Sridharan, et al. Making gradient descent optimal for strongly
convex stochastic optimization. In ICML. Citeseer, 2012.

[35] J. D. Rosenblatt and B. Nadler. On the optimality of averaging in distributed statistical
learning. Information and Inference: A Journal of the IMA, 5(4):379–404, 2016. doi:
10.1093/imaiai/iaw013. URL http://dx.doi.org/10.1093/imaiai/iaw013.

[36] M. Li, T. Zhang, Y. Chen, and A. J. Smola. Efficient mini-batch training for stochastic opti-
mization. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 661–670. ACM, 2014.

[37] N. Shirish Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and P. T. P. Tang. On Large-
Batch Training for Deep Learning: Generalization Gap and Sharp Minima. ArXiv e-prints,
2016.

[38] Y. You, I. Gitman, and B. Ginsburg. Large Batch Training of Convolutional Networks. ArXiv
e-prints, 2017.

[39] P. Goyal, P. Dollár, R. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola, A. Tulloch, Y. Jia,
and K. He. Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour. ArXiv e-prints,
2017.

[40] S. U. Stich. Local SGD Converges Fast and Communicates Little. ICLR 2019, 2019.

11

http://dx.doi.org/10.1093/imaiai/iaw013

[41] T. Lin, S. U. Stich, and M. Jaggi. Don’t Use Large Mini-Batches, Use Local SGD. ArXiv
e-prints, 2018.

[42] H. Yu, S. Yang, and S. Zhu. Parallel Restarted SGD for Non-Convex Optimization with Faster
Convergence and Less Communication. ArXiv e-prints, 2018.

[43] D. L. Zhu and P. Marcotte. Co-coercivity and its role in the convergence of iterative schemes
for solving variational inequalities. SIAM Journal on Optimization, 6(3):714–726, 1996.

[44] F. Bach. Adaptivity of averaged stochastic gradient descent to local strong convexity for
logistic regression. J. Mach. Learn. Res., 15(1):595–627, 2014.

[45] A. Dieuleveut and F. Bach. Nonparametric stochastic approximation with large step-sizes.
Ann. Statist., 44(4):1363–1399, 2016. doi: 10.1214/15-AOS1391. URL http://dx.doi.
org/10.1214/15-AOS1391.

[46] J. C. Duchi, S. Chaturapruek, and C. Ré. Asynchronous stochastic convex optimization. ArXiv
e-prints, 2015.

[47] D. Needell, R. Ward, and N. Srebro. Stochastic Gradient Descent, Weighted Sampling, and the
Randomized Kaczmarz algorithm. In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence,
and K. Q. Weinberger, editors, Advances in Neural Information Processing Systems 27, pages
1017–1025. Curran Associates, Inc., 2014.

[48] A. B. Tsybakov. Optimal rates of aggregation. In Proceedings of the Annual Conference on
Computational Learning Theory, 2003.

[49] M. Kamp, M. Boley, D. Keren, A. Schuster, and I. Sharfman. Communication-efficient
distributed online prediction by dynamic model synchronization. In Joint European Conference
on Machine Learning and Knowledge Discovery in Databases, pages 623–639. Springer, 2014.

[50] Y. Nesterov. Introductory Lectures on Convex Optimization: A Basic Course. Applied
Optimization. Springer, 2004. ISBN 9781402075537. URL http://books.google.
fr/books?id=VyYLem-l3CgC.

[51] O. Dekel, R. Gilad-Bachrach, O. Shamir, and L. Xiao. Optimal distributed online prediction
using mini-batches. Journal of Machine Learning Research, 13(Jan):165–202, 2012.

[52] H. Mania, X. Pan, D. Papailiopoulos, B. Recht, K. Ramchandran, and M. I. Jordan. Perturbed
Iterate Analysis for Asynchronous Stochastic Optimization. ArXiv e-prints, 2015.

[53] E. Moulines and F. R. Bach. Non-asymptotic analysis of stochastic approximation algorithms
for machine learning. In Advances in Neural Information Processing Systems, pages 451–459,
2011.

[54] J. Langford, A. Smola, and M. Zinkevich. Slow Learners are Fast. ArXiv e-prints, 2009.
[55] F. Niu, B. Recht, C. Re, and S. J. Wright. HOGWILD!: A Lock-Free Approach to Parallelizing

Stochastic Gradient Descent. ArXiv e-prints, 2011.
[56] A. Agarwal and J. C. Duchi. Distributed Delayed Stochastic Optimization. ArXiv e-prints,

2011.
[57] T. Paine, H. Jin, J. Yang, Z. Lin, and T. Huang. GPU Asynchronous Stochastic Gradient

Descent to Speed Up Neural Network Training. ArXiv e-prints, 2013.
[58] M. Li, D. G. Andersen, A. Smola, and K. Yu. Communication efficient distributed machine

learning with the parameter server. In Proceedings of the 27th International Conference on
Neural Information Processing Systems - Volume 1, NIPS’14, pages 19–27, Cambridge, MA,
USA, 2014. MIT Press. URL http://dl.acm.org/citation.cfm?id=2968826.
2968829.

[59] S. Zhang, A. Choromanska, and Y. LeCun. Deep learning with Elastic Averaging SGD. ArXiv
e-prints, 2014.

[60] J. Keuper and F.-J. Pfreundt. Asynchronous Parallel Stochastic Gradient Descent - A Numeric
Core for Scalable Distributed Machine Learning Algorithms. ArXiv e-prints, 2015.

[61] S. De and T. Goldstein. Efficient Distributed SGD with Variance Reduction. ArXiv e-prints,
2015.

[62] H. R. Feyzmahdavian, A. Aytekin, and M. Johansson. An Asynchronous Mini-Batch Algorithm
for Regularized Stochastic Optimization. ArXiv e-prints, 2015.

12

http://dx.doi.org/10.1214/15-AOS1391
http://dx.doi.org/10.1214/15-AOS1391
http://books.google.fr/books?id=VyYLem-l3CgC
http://books.google.fr/books?id=VyYLem-l3CgC
http://dl.acm.org/citation.cfm?id=2968826.2968829
http://dl.acm.org/citation.cfm?id=2968826.2968829

[63] X. Lian, Y. Huang, Y. Li, and J. Liu. Asynchronous Parallel Stochastic Gradient for Nonconvex
Optimization. ArXiv e-prints, 2015.

[64] S.-Y. Zhao and W.-J. Li. Fast Asynchronous Parallel Stochastic Gradient Decent. ArXiv
e-prints, 2015.

[65] J. Chen, X. Pan, R. Monga, S. Bengio, and R. Jozefowicz. Revisiting Distributed Synchronous
SGD. ArXiv e-prints, 2016.

[66] X. Lian, C. Zhang, H. Zhang, C.-J. Hsieh, W. Zhang, and J. Liu. Can Decentralized Algorithms
Outperform Centralized Algorithms? A Case Study for Decentralized Parallel Stochastic
Gradient Descent. ArXiv e-prints, 2017.

[67] F. Pedregosa, R. Leblond, and S. Lacoste-Julien. Breaking the Nonsmooth Barrier: A Scalable
Parallel Method for Composite Optimization. ArXiv e-prints, 2017.

[68] X. Lian, W. Zhang, C. Zhang, and J. Liu. Asynchronous Decentralized Parallel Stochastic
Gradient Descent. ArXiv e-prints, 2017.

[69] R. Leblond, F. Pedregosa, and S. Lacoste-Julien. Improved asynchronous parallel optimization
analysis for stochastic incremental methods. ArXiv e-prints, 2018.

[70] D. Alistarh, C. De Sa, and N. Konstantinov. The Convergence of Stochastic Gradient Descent
in Asynchronous Shared Memory. ArXiv e-prints, 2018.

[71] J. Konecný, B. McMahan, and D. Ramage. Federated optimization: Distributed optimization
beyond the datacenter. CoRR, abs/1511.03575, 2015. URL http://arxiv.org/abs/
1511.03575.

[72] J. Konecný, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and D. Bacon. Federated
learning: Strategies for improving communication efficiency. CoRR, abs/1610.05492, 2016.
URL http://arxiv.org/abs/1610.05492.

[73] H. B. McMahan, E. Moore, D. Ramage, and B. A. y Arcas. Federated learning of deep
networks using model averaging. CoRR, abs/1602.05629, 2016. URL http://arxiv.
org/abs/1602.05629.

[74] H. Zhang, J. Li, K. Kara, D. Alistarh, J. Liu, and C. Zhang. ZipML: Training lin-
ear models with end-to-end low precision, and a little bit of deep learning, 2017. URL
http://proceedings.mlr.press/v70/zhang17e.html.

[75] W. Wen, C. Xu, F. Yan, C. Wu, Y. Wang, Y. Chen, and H. Li. Terngrad: Ternary gradients
to reduce communication in distributed deep learning. CoRR, abs/1705.07878, 2017. URL
http://arxiv.org/abs/1705.07878.

[76] J. Wangni, J. Wang, J. Liu, and T. Zhang. Gradient sparsification for communication-efficient
distributed optimization. CoRR, abs/1710.09854, 2017. URL http://arxiv.org/abs/
1710.09854.

[77] C. D. Sa, C. Zhang, K. Olukotun, and C. Ré. Taming the wild: A unified analysis of hogwild!-
style algorithms. CoRR, abs/1506.06438, 2015. URL http://arxiv.org/abs/1506.
06438.

[78] T. Na, J. H. Ko, J. Kung, and S. Mukhopadhyay. On-chip training of recurrent neural networks
with limited numerical precision. 2017 International Joint Conference on Neural Networks
(IJCNN), pages 3716–3723, 2017.

[79] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan. Deep learning with limited
numerical precision. CoRR, abs/1502.02551, 2015. URL http://arxiv.org/abs/
1502.02551.

[80] D. Alistarh, J. Li, R. Tomioka, and M. Vojnovic. QSGD: randomized quantization for
communication-optimal stochastic gradient descent. CoRR, abs/1610.02132, 2016. URL
http://arxiv.org/abs/1610.02132.

[81] S. Khirirat, H. R. Feyzmahdavian, and M. Johansson. Distributed learning with compressed
gradients. ArXiv e-prints, 2018.

[82] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and statistical
learning via the alternating direction method of multipliers. Found. Trends Mach. Learn., 3(1):
1–122, 2011. ISSN 1935-8237. doi: 10.1561/2200000016. URL http://dx.doi.org/
10.1561/2200000016.

13

http://arxiv.org/abs/1511.03575
http://arxiv.org/abs/1511.03575
http://arxiv.org/abs/1610.05492
http://arxiv.org/abs/1602.05629
http://arxiv.org/abs/1602.05629
http://proceedings.mlr.press/v70/zhang17e.html
http://arxiv.org/abs/1705.07878
http://arxiv.org/abs/1710.09854
http://arxiv.org/abs/1710.09854
http://arxiv.org/abs/1506.06438
http://arxiv.org/abs/1506.06438
http://arxiv.org/abs/1502.02551
http://arxiv.org/abs/1502.02551
http://arxiv.org/abs/1610.02132
http://dx.doi.org/10.1561/2200000016
http://dx.doi.org/10.1561/2200000016

[83] O. Shamir, N. Srebro, and T. Zhang. Communication-efficient distributed optimization using
an approximate newton-type method. In International conference on machine learning, pages
1000–1008, 2014.

[84] Y. Zhang and L. Xiao. Communication-Efficient Distributed Optimization of Self-Concordant
Empirical Loss. ArXiv e-prints, 2015.

[85] S. J. Reddi, J. Konečný, P. Richtárik, B. Póczós, and A. Smola. AIDE: Fast and Communication
Efficient Distributed Optimization. ArXiv e-prints, 2016.

[86] C. Ma, J. Konečnỳ, M. Jaggi, V. Smith, M. I. Jordan, P. Richtárik, and M. Takáč. Distributed
optimization with arbitrary local solvers. Optimization Methods and Software, 32(4):813–848,
2017.

[87] V. Smith, S. Forte, C. Ma, M. Takac, M. I. Jordan, and M. Jaggi. CoCoA: A General Framework
for Communication-Efficient Distributed Optimization. ArXiv e-prints, 2016.

[88] C. Ma, V. Smith, M. Jaggi, M. I. Jordan, P. Richtárik, and M. Takáč. Adding vs. Averaging in
Distributed Primal-Dual Optimization. ArXiv e-prints, 2015.

[89] K. Scaman, F. Bach, S. Bubeck, Y. Tat Lee, and L. Massoulié. Optimal algorithms for smooth
and strongly convex distributed optimization in networks. ArXiv e-prints, 2017.

[90] S. J. Reddi, A. Hefny, S. Sra, B. Póczos, and A. Smola. On Variance Reduction in Stochastic
Gradient Descent and its Asynchronous Variants. ArXiv e-prints, 2015.

[91] S.-Y. Zhao and W.-J. Li. Fast asynchronous parallel stochastic gradient descent: A lock-free
approach with convergence guarantee. In Proceedings of the Thirtieth AAAI Conference
on Artificial Intelligence, AAAI’16, pages 2379–2385. AAAI Press, 2016. URL http:
//dl.acm.org/citation.cfm?id=3016100.3016231.

[92] J. D. Lee, Q. Lin, T. Ma, and T. Yang. Distributed Stochastic Variance Reduced Gradient
Methods and A Lower Bound for Communication Complexity. ArXiv e-prints, 2015.

[93] M. M. Najafabadi, T. M. Khoshgoftaar, F. Villanustre, and J. Holt. Large-scale distributed
l-bfgs. Journal of Big Data, 4(1):22, 2017.

[94] U. Şimşekli, Ç. Yıldız, T. H. Nguyen, G. Richard, and A. Taylan Cemgil. Asynchronous
Stochastic Quasi-Newton MCMC for Non-Convex Optimization. ArXiv e-prints, 2018.

[95] Y. Arjevani and O. Shamir. Communication complexity of distributed convex learning and
optimization. CoRR, abs/1506.01900, 2015. URL http://arxiv.org/abs/1506.
01900.

[96] J. C. Duchi, M. I. Jordan, M. J. Wainwright, and Y. Zhang. Optimality guarantees for distributed
statistical estimation. ArXiv e-prints, 2014.

[97] M. Braverman, A. Garg, T. Ma, H. L. Nguyen, and D. P. Woodruff. Communication lower
bounds for statistical estimation problems via a distributed data processing inequality. CoRR,
abs/1506.07216, 2015. URL http://arxiv.org/abs/1506.07216.

[98] Y. Zhang, J. Duchi, M. I. Jordan, and M. J. Wainwright. Information-theoretic lower bounds for
distributed statistical estimation with communication constraints. In C. J. C. Burges, L. Bottou,
M. Welling, Z. Ghahramani, and K. Q. Weinberger, editors, Advances in Neural Information
Processing Systems 26, pages 2328–2336. Curran Associates, Inc., 2013.

[99] S. Lee, J. K. Kim, X. Zheng, Q. Ho, G. A. Gibson, and E. P. Xing. On model parallelization
and scheduling strategies for distributed machine learning. In Z. Ghahramani, M. Welling,
C. Cortes, N. D. Lawrence, and K. Q. Weinberger, editors, Advances in Neural Information
Processing Systems 27, pages 2834–2842. Curran Associates, Inc., 2014.

[100] C. Ma and M. Takáč. Partitioning Data on Features or Samples in Communication-Efficient
Distributed Optimization? ArXiv e-prints, 2015.

[101] Z. Chen, L. Luo, and Z. Zhang. Communication Lower Bounds for Distributed Convex
Optimization: Partition Data on Features. ArXiv e-prints, 2016.

[102] B. Fang and D. Klabjan. A Stochastic Large-scale Machine Learning Algorithm for Distributed
Features and Observations. ArXiv e-prints, 2018.

[103] Z. Meng, A. Wiesel, and A. O. Hero. Distributed principal component analysis on networks
via directed graphical models, 2012. ISSN 2379-190X.

14

http://dl.acm.org/citation.cfm?id=3016100.3016231
http://dl.acm.org/citation.cfm?id=3016100.3016231
http://arxiv.org/abs/1506.01900
http://arxiv.org/abs/1506.01900
http://arxiv.org/abs/1506.07216

[104] Y. Zhuang, W.-S. Chin, Y.-C. Juan, and C.-J. Lin. A fast parallel sgd for matrix factorization in
shared memory systems. In Proceedings of the 7th ACM Conference on Recommender Systems,
RecSys ’13, pages 249–256, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-2409-0.
doi: 10.1145/2507157.2507164. URL http://doi.acm.org/10.1145/2507157.
2507164.

[105] F. Li, B. Wu, L. Xu, C. Shi, and J. Shi. A fast distributed stochastic gradient descent algorithm
for matrix factorization, 2014. URL http://proceedings.mlr.press/v36/li14.
html.

[106] W.-S. Chin, Y. Zhuang, Y.-C. Juan, and C.-J. Lin. A fast parallel stochastic gradient method
for matrix factorization in shared memory systems. ACM Trans. Intell. Syst. Technol., 6(1):
2:1–2:24, 2015. ISSN 2157-6904. doi: 10.1145/2668133. URL http://doi.acm.org/
10.1145/2668133.

[107] J. Oh, W.-S. Han, H. Yu, and X. Jiang. Fast and robust parallel sgd matrix factorization. In
Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD ’15, pages 865–874, New York, NY, USA, 2015. ACM. ISBN
978-1-4503-3664-2. doi: 10.1145/2783258.2783322. URL http://doi.acm.org/10.
1145/2783258.2783322.

[108] B. A. Godichon and S. Saadane. On the rates of convergence of parallelized averaged stochastic
gradient algorithms. arXiv preprint arXiv:1710.07926, 2017.

15

http://doi.acm.org/10.1145/2507157.2507164
http://doi.acm.org/10.1145/2507157.2507164
http://proceedings.mlr.press/v36/li14.html
http://proceedings.mlr.press/v36/li14.html
http://doi.acm.org/10.1145/2668133
http://doi.acm.org/10.1145/2668133
http://doi.acm.org/10.1145/2783258.2783322
http://doi.acm.org/10.1145/2783258.2783322

Communication trade-offs for synchronized distributed SGD
with large step size

SUPPLEMENTARY MATERIAL

In this Appendix, we give the proofs of our main results, and auxiliary elements. In Section A.2, we
provide results in the on-line setting where we consider the particular case of a decaying sequence
ηtk = (

∑t−1
t′=1N

t′ + k)−α, for some α ∈ (1
2 , 1). In Appendix B, we describe the experimental

evaluations that illustrate the behavior of the different processes. In Appendix C we provide some
additional material (Tables, interpretations, etc.) which may help the reader navigate through our
results. In Appendix D, we prove contraction Lemmas for E[‖wt

p,k −w?‖2]. In Appendix E, we
prove similar guarantees for moment of order 4. In Appendix G, we give the proof of the main results
on ‖F ′′(w?)(wC −ws)‖2 for mini-batch, one-shot averaging, and Local-SGD in the Finite Horizon
setting. In Appendix H we give similar results in the online setting (for decaying step size). Finally,
we provide a brief survey of distributed optimization techniques in Appendix I.

Contents
A Main results in the on-line Setting and tightness of Proposition 1 2

A.1 Most general assumption . 2
A.2 Main results: On-line Setting . 2
A.3 Tight bias term for finite horizon setting . 3

B Experimental results 3
C Some Additional Material 5

C.1 Pseudo codes . 5
C.2 Summary of Results . 5
C.3 Example: Learning from i.i.d. observations . 5

D Convergence guaranties for the second order moment. 7
D.1 Inner iteration Lemma . 7
D.2 Proof of Proposition 3 . 8
D.3 Proof of Proposition S16 . 9
D.4 Proof of Proposition S20 . 14

E Convergence guaranties for the fourth order moment. 18
E.1 Inner Iteration Lemmas . 18
E.2 Proof of Lemma S29 . 20

F Main error decomposition 22
F.1 General decomposition . 22
F.2 Bounding the noise term . 24

G Proofs for OSA, MBA and Local-SGD in the finite horizon setting 24
G.1 Technical Lemmas . 24
G.2 Proof of Proposition 1 (Mini-batch case) . 25
G.3 Proof Proposition 2 (One-shot averaging case) . 27

H Proofs for OSA, MBA and Local-SGD in the online setting 30
H.1 Technical Lemmas . 30
H.2 Proof of Proposition S7 (Mini-batch Averaging Case) 31
H.3 Proof of Proposition S7 (One-shot Averaging case) 35

I Brief overview of distributed optimization 39

1

A Main results in the on-line Setting and tightness of Proposition 1

A.1 Most general assumption

Assumption 3 should be formally written as follows:

A3 (Oracle on the gradient) There exists a filtration (Htk)(t,k)∈[C]×[Nt] on some probability space
(Ω,F ,P) such that for any (t, k) ∈ [C] × [N t] and w ∈ Rd, gtp,k+1(w) is a Htk+1-measurable

random variable and E
[
gtp,k+1(w)|Htk

]
= F ′(w). In addition, we assume the functions

(gtp,k)(t,k)∈[C]×[Nt] to be independent and identically distributed (i.i.d.) random fields.

A filtration is an increasing (i.e., for all (t, k) 4 (t′, k′), Htk ⊂ Ht
′

k′), sequence of σ-algebras. A3
expresses that we have access to an i.i.d. sequence (gtp,k)(t,k)∈[C]×[Nt] of unbiased estimators of F ′.
Remark that with such notations, for any t ∈ [C], k ∈ [N t], p ∈ [P], wt

p,k isHtk-measurable.

A.2 Main results: On-line Setting

In the on-line setting we consider the particular case of a decaying sequence ηtk = (
∑t−1
t′=1N

t′+k)−α,
for some α ∈ (1

2 , 1). The analysis is slightly more involved as Equation (3) results in more terms
than in the finite horizon setting (sums do not directly telescope). While the decaying step-size case
enables to improve some terms with respect to the finite horizon case (e.g. the speed at which one
forgets the initial condition), the trade-offs concerning communication remain unchanged. We define
the following constants to make the presentation clear, for α ∈ (1/2; 1):

Rbias(X) = 1 +X2α exp
(
−µcηX1−α)+

1

(µcη)
1

1−α
+
M2c2η

∥∥w0 −w?
∥∥2

(µcη)
2

1−α
+

2L2c2η

P (µcη)
1

1−α
,

R1,var(X) =
X2α−1P

2α− 1
exp

(
− µX1−α

2(1− α)

)
+

P

X1−α
1

cηµ
+

P

Xµ
2α

1−α c
2

1−α
η

+
L2Pc2η
Xαµ2

R2,var(X) =
M2σ2Pc2η
µ2X2α−1

.

Now we present a result similar to Proposition 1 for mini-batch averaging and one shot averaging:

Proposition S7 (On-line Mini-batch Averaging and One-shot averaging) Under the Assump-
tions A1, A2, A3, A5, A6 using ηtk = (

∑t−1
t′=1N

t′ + k)−α we have for respectively mini-batch
averaging and one-shot averaging:

E
[∥∥∇2F (w?)(w −w?)

∥∥2
]
-

∥∥w0 −w?
∥∥2

X2c2η
Rbias(X) +

2σ2

T

(
1 +

R1,var(X)

κ
+
R2,var(X)

κ2

)
,

with respectively κ = 1 and X = N for one-shot averaging, and κ = P and X = C for mini-batch
averaging.

Interpretation and comparison. This proposition is directly derived from Lemma S59 in Ap-
pendix H. This proposition is similar to Propositions 1 and 2, but the overall convergence rate is
better as using decaying step size eventually performs better. For example, the bias term mainly
decays as 1/X2 instead of 1/(ηX)2. This underlines why in practice decaying step size is often
preferable. Asymptotically, the variance term is now dominant, and as before, MBA and OSA have
similar performance as σ2T−1.

Optimal step size and asymptotic regimes for P, T For a fixed number of machine P , the bias is
asymptotically vanishing, and if we ignore the linearly decaying terms and the dependence on µ, the
resulting dominating term in R1,2,var is controlled by X−min{(1−α),α,2α−1}, which would result in
an optimal choice of α = 2/3.

2

In the non asymptotic regime, where the total number of iterations and P grow simultaneously, the
variance of OSA scales as T−1 as long as PX−min{(1−α),α,2α−1} = O(1). In other words, for
α = 2/3, we need P ≤ X1/3: the number of machines as to be smaller than the number of iterations
to the power 1/3, in other words, for 1000 iterations, one could only use 10 machines to reach the
asymptotic regime where OSA performs similarly to MBA.

A.3 Tight bias term for finite horizon setting

For a simple 1-dimensional quadratic function F (w) = h(w − w?)2, with h > 0, without any
noise (we observe yi = w0xi + εi, with εi ≡ 0, and xi ≡

√
h), we have for a step size η, for any

p ∈ {1, . . . , P}, k ≤ N :

w1
p,k −w? = (1− ηh)k(w0 −w?) (S1)

h2

(
N−1

N−1∑
k=0

w1
p,k −w?

)2

=
1− (1− ηh)N

(ηN)2
(w0 −w?)2, (S2)

=⇒ h2
(
wC −w?

)2
=

1− (1− ηh)N

(ηN)2
(w0 −w?)2, (S3)

which exactly matches the Bias term in (5) (for a quadratic, M = 0) and L2η/hP ≤ 1/P is a small
constant (ηL ≤ 1 and L = µ = h).

B Experimental results

Table S1: Data-sets for experimentation.

Name of the Data-set Task Algorithm Number of Samples Number of Features

Epsilon Classification Logistic 400000 2000

Year Prediction MSD Regression Least-Squares 463715 90

CPU Stall Regression Least-Squares 8192 12

6 7 8 9 10 11 12 13
Gradients Accessed

0.6

0.5

0.4

0.3

0.2

Tr
ai

ni
ng

 L
os

s

N=1
N=2
N=4
N=8
N=16
N=7600

LOG: Epsilon Dataset, Averaged Estimator

4 6 8 10 12
Gradients Accessed

1

0

1

2

3

4

5

6

7

Ex
ce

ss
 E

rro
r

N=1
N=10
N=100
N=1000
N=10000

LSR: CPU Stall Dataset, Average Estimator

Figure S1: Performance of Local SGD

We perform experiments for three different data-sets5, two for least-squares regression and one for
logistic regression Table S1. For all the curves we use log(y) v/s log(x) plots unless explicitly
mentioned. Moreover, to elucidate the theory we use the same learning rates for all the algorithms
in an experiment. The number of workers is set to P = 32 every where, and plots are labeled w.r.t.

5Data available at https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/.

3

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

the number of local steps N which we don’t change along the different phases. We do the following
experiments:

6 7 8 9 10 11 12 13
Gradients Accessed

1.8

1.6

1.4

1.2

1.0

Tr
ai

ni
ng

 L
os

s

N=1
N=2
N=4
N=8
N=16

LOG: Epsilon Dataset, Averaged Estimator at Optimal

4 6 8 10 12
Gradients Accessed

6

5

4

3

2

1

0

1

2

Ex
ce

ss
 E

rro
r

N=1
N=10
N=100
N=1000
N=10000

LSR: CPU Stall Dataset, Average Estimator at Optimum

Figure S2: Performance of Local SGD at the optimal

8 9 10 11 12
Gradients Accessed

1

0

1

2

3

4

5

St
. D

ev
. o

f E
rro

r a
ga

in
st

 M
BA

N=1
N=1000
N=10000
Single

LSR: CPU Stall Dataset, Rolling St. Dev., Window=100

8 9 10 11 12
Gradients Accessed

1

0

1

2

3

4

5
St

. D
ev

. o
f E

rro
r a

ga
in

st
 M

BA

N=1
N=1000
N=10000
Single

LSR: CPU Stall Dataset, Rolling St. Dev., Window=100 at Optimum

Figure S3: Variance of the loss function compared to MBA

0 50000 100000 150000 200000 250000 300000
Iterations

2

3

4

5

6

7

8

9

M
SE

 fr
om

 O
pt

im
al

SGD
N=10000 Worker
N=10000 Ghost

LSR: Year Prediction MSD, Current Estimator at Optimal

Figure S4: Iterate Convergence of a single process against SGD and the ghost process.

1. Performance of local SGD with different number of local steps spanning OSA to MBA
(Figure S1). We globally find MBA to perform the best. Besides, as we increase the number
of local steps N the performance gets closer to OSA. This observation aligns with our
theoretical guarantees. We use the averaged iterate (i.e., w, the average over all the iterates

4

till that point) for reporting the performance. The current iterate (i.e., w̆t
k, the ghost iterate

for the current iteration) is omitted as the graphs are too noisy to be interpreted, and a
variance of the loss is used instead.

2. Performance of local SGD with different number of local steps when started at the optimal
point (Figure S2). We expect that if we start at w? then the bias term goes to zero and the
difference between the algorithms becomes sharper. This is because our results predict that
for constant learning rate, the initial conditions are forgotten at the same rate. We see that
mini-batch outperforms OSA no the first iterations, but not asymptotically.

3. Variance of the estimators, for loss (Figure S3) and iterate values (Figure S4). We expect
that a larger mini-batch size predicts a lower variance for these cases, and we observe the
same through our experiments. In fact, the mean squared error of the parameters at the
optimal is observed to be following a periodic curve. The value on an individual worker
rises until it communicates, but always remains lower than a single SGD process run for
the same number of iterations. This, verifies our theory and results for iterate convergence.
Moreover, the variance at the loss function follows a similar pattern which elucidates the
fact the intuitions developed in the paper also hold for functional convergence.

C Some Additional Material

C.1 Pseudo codes

Pseudo codes of both algorithms are given in Figure S5.

1: procedure SGD
2: Input: F : Rd → R
3: v0 ← Initialize
4: for t = 0,1,2,...T do
5: gt(vt−1)← SFO(F,vt−1)
6: vt ← vt−1 − ηtgt(vt−1)

7: Output:
S(v0,v1, ..,vT−1,vT) ∈ Rd

Algorithm 1: Vanilla-SGD

1: procedure LOCAL-SGD
2: Input: F : Rd → R
3: ŵ0 = w0 ← Initialize
4: for t = 1, 2, ...C do
5: parfor i=1,2,...P do
6: wt

i,0 ← ŵt−1

7: for k=0,1,2,...N t do
8: gti,k(wt

i,k−1)← SFO(F,wt
i,k−1)

9: wt
i,k ← wt

i,k−1 − ηtkgti,k(wt
i,k−1)

10: wt
i ← 1

Nt

∑Nt
k=1 w

t
i,k

11: end parfor
12: wt ← 1

P

∑P
i=1 w

t
i

13: ŵt ← 1
p

∑P
i=1 w

t
i,Nt

14: Output: wT
= 1

C

∑C
t=1 w

t ∈ Rd

Algorithm 2: Local-SGD

Figure S5: Serial and parallel SGD algorithms. SFO stands for the stochastic first order oracle. Note
that every node has access to the full function i.e., the data is not distributed across nodes.

C.2 Summary of Results

In the table below, we specify for which algorithm our results apply (mini batch, one shot, or local
SGD), under which assumptions they are proved and if they apply to the on-line setting(OL) or just
the finite horizon(FH) case.

C.3 Example: Learning from i.i.d. observations

Our main motivation comes from machine learning; consider two setsX ,Y and a convex loss function
` : X × Y × Rd → R. The generalization error is defined as F`(w) = EX,Y [`(X,Y,w)], where

5

Assumptions Setting

Proposition Algorithm A1 A2 Q1 A3 A4 A5 A6 FH OL

Proposition 1 Mini-Batch X X X X X X

Proposition 2 One-shot averaging X X X X X X

Proposition S7 Mini-Batch &OS X X X X X X

Proposition 3 Local SGD X X X X

Corollary S17 Local SGD X X X X X X

Corollary S21 Local SGD X X X X X X

Theorem 6 1. Local SGD X X X X X

Theorem 6 2. Local SGD X X X X X

Table S2: Summary of results

(X,Y) are some random variables. Given i.i.d. observations (Xk, Yk)k∈N∗ with the same distribution
as (X,Y), for any k ∈ N∗, we define fk(·) = `(Xk, Yk, ·) the loss with respect to observation k.
SGD can be used in two contexts:

1. Stochastic Approximation: We use independent observations at each iteration. The total
number of iterations is thus at most the number of observations we access. SGD then
corresponds to following the gradient of the loss fk on a single independent observation
(Xk, Yk). As the gradients we use are then unbiased gradients of the generalization error,
this means that SGD directly minimizes this (unknown) function.

2. Empirical Risk Minimization: We define the empirical risk as F̂`(w) =

N−1
∑N
k=1[`(Xk, Yk,w)]. At each step t, we sample an index it uniformly on [N], and use

the gradient of the loss fit . Here the number of iterations is not limited, but the algorithm
will converge to the minimum of the empirical risk.

In practice, this means that in the first situation, we want to optimize the precision of the algorithm for
a limited number of oracle calls, while in the second situation one would rather optimize the number
of outer iterations of the algorithm (i.e. its running time). In both these assumptions, Assumption A3
is satisfied for the filtration generated by all the observations before time (t, k) (respectively all the
indices sampled before time (t, k)).

Two typical situations regarding loss functions are worth mentioning. On the first hand, in least-
squares regression, X = Rd, Y = R, and the loss function is `(X,Y,w) = (〈X,w〉 − Y)2. Then
FΣ is the quadratic function w 7→

∥∥Σ1/2(w −w?)
∥∥2
/2, with Σ = E[XX>], which satisfies

Assumption Q1. For any w ∈ Rd,

f ′k(w)− F ′Σ(w) = (XkX
>
k − Σ)(w −w?)− (X>k w

? − Yk)Xk (S4)

Then, Assumption A5 and A6 are satisfied, if X is bounded and Y has finite variance.

On the other hand, in logistic regression, where `(X,Y,w) = log(1 + exp(−Y 〈X,w〉)). Assump-
tions A2 and A4 are then satisfied [44], as is Assumption A1 under an additional restriction to a
compact set or if an extra regularization is added.

SGD for least squares regression typically satisfies Q1, A3, A5 and A6. On the other hand, SGD for
logistic regression satisfies A1, A2, A3 and A4.

6

D Convergence guaranties for the second order moment.

In this section, we prove several Lemmas that allow to control the second order moment for the iterate.
We first recall a few useful inequalities that will be used in the following. See for example [50].

If F is convex and smooth (e.g. satisfies A2), the gradient of F is cocoercive, thus for any w ∈ Rd:
L 〈F ′(w),w −w?〉 ≥ ‖F ′(w)‖ . (S5)

If the function is strongly-convex (Assumption A1), then for any w ∈ Rd:

〈F ′(w),w −w?〉 ≥ µ ‖w −w?‖2 . (S6)

D.1 Inner iteration Lemma

We first recall the proof of the convergence for inner iterates. This proof corresponds to what happens
on one machine, and can be found in the literature [10, 25] for example.

For any p ∈ [P], t ∈ [C], k ∈ [N t], under Assumptions A1, A2, A3, A5, A6, we have

E
[∥∥wt

p,k −w?
∥∥2
]
≤ E

[∥∥wt
p,k−1 −w?

∥∥2
]
− ηtk

〈
F ′(wt

p,k−1),wt
p,k−1 −w?

〉
+ 2(ηtk)2σ2

(S7)

E
[∥∥wt

p,k −w?
∥∥2
]
≤ (1− ηtkµ)E

[∥∥wt
p,k−1 −w?

∥∥2
]

+ 2ηtkσ
2.

Using the second equation recursively results in:

E
[∥∥wt

p,k −w?
∥∥2
]
≤

k∏
m=1

(1− ηtmµ)E
[∥∥wt

p,0 −w?
∥∥2
]

+ 2σ2
k∑

m=1

(ηtm)2
k∏

l=m+1

(1− ηtlµ).

(S8)

More precisely, for precise reference in the following proofs, we referenced this inequality with the
following specific cases:

Lemma S8 Under Assumptions A1, A2, A3, A5, A6, for mini-batch SGD with batch-size P and
step-size η we have,

E
[∥∥wt

MB −w?
∥∥2
]
≤

t∏
m=1

(1− µη)E
[∥∥w0 −w?

∥∥2
]

+
2σ2η2

P

t∑
m=1

t∏
l=m+1

(1− µη).

Such a result on reduced variance for mini-batch SGD (σ
2

P) can be found in many previous works
like [51]. Since mini-batch SGD is trivial to parallelize, this result also holds for the averaged iterate
for outer iteration t while using mini-batch averaging. Similarly, for decaying step sizes,

Lemma S9 Under Assumptions A1, A2, A3, A5, A6, and η̃t =
cη
tα for mini-batch SGD, for any

t ∈ [C] we have,

E
[∥∥wt

MB −w?
∥∥2
]
≤

t∏
m=1

(1− µη̃m)
∥∥w0 −w?

∥∥2
+ 2σ2 1

P

t∑
m=1

(η̃m)2
t∏

l=m+1

(1− µη̃l).

Similarly, in the case of one-shot averaging,

Lemma S10 Under Assumptions A1, A2, A3, A5, A6 and a constant step-size η using one-shot
averaging, for any K ∈ [N1] and i ∈ [P] we have,

E
[∥∥w1

i,K −w?
∥∥2
]
≤

K∏
m=1

(1− µη)
∥∥w0 −w?

∥∥2
+ 2σ2η2

K∑
m=1

K∏
l=m+1

(1− µη1
l).

Lemma S11 Under Assumptions A1, A2, A3, A5, A6, and η1
k = η̃k =

cη
kα using one-shot averaging

for any K ∈ [N1] and i ∈ [P] we have,

E
[∥∥w1

i,K −w?
∥∥2
]
≤

K∏
m=1

(1− µη1
m)
∥∥w0 −w?

∥∥2
+ 2σ2

K∑
m=1

(η1
m)2

K∏
l=m+1

(1− µη1
l).

7

D.2 Proof of Proposition 3

In this Section we prove Proposition 3. In order to provide a bound on the mean squared distance
to the optimum of the outer iterates, we introduce a ghost sequence [52], i.e., a sequence of iterates
which is not actually computed. For any t ∈ [C], k ∈ [N t], we define

w̆t
k :=

1

P

P∑
i=1

wt
i,k. (S9)

We prove the following Lemma:

Lemma S12 Under Assumptions Q1, A3 and A4, for any t ∈ [C],K ∈ [N t], we have:

E
[∥∥w̆t

K −w?
∥∥2
]
≤

K∏
m=1

(1− µηtm)
∥∥w̆t

0 −w?
∥∥2

+
σ2
∞
P

K∑
m=1

(ηtm)2
K∏

l=m+1

(1− µηtl) . (S10)

Remarking that for any t ∈ [C], w̆t
Nt = ŵt this implies the first inequality of Proposition 3. Note

that this Lemma is valid for both decaying steps and and a constant learning rate. Especially, for a
constant step size η, and K = N t:

E
[∥∥ŵt −w?

∥∥2
]
≤ (1− µη)N

t ∥∥ŵt−1 −w?
∥∥2

+
σ2
∞
P
η

1− (1− µη)N
t

µ
.

More generally, we also have the following corollary, if we denote (η̃k)k≥0 the sequence such that
ηtk = η̃{

∑t−1

t′=1
Nt′+k} (this just corresponds to re-indexing the sequence):

Corollary S13 Under Assumptions Q1, A3 and A4, for any T ∈ [C], we have:

E
[∥∥∥ŵT −w?

∥∥∥2
]
≤

∑T
t=1N

t∏
k=1

(1−µη̃k) ‖w0 −w?‖2 +
σ2
∞
P

∑T
t=1N

t∑
t=1

η̃2
k

∑T
t=1N

t∏
j=k+1

(1−µη̃j) . (S11)

Proof 14 (Proof of Corollary S13) By induction, Lemma S12 implies that for any T ∈ [C]

E
[∥∥∥ŵT −w?

∥∥∥2
]
≤

T∏
t=1

Nt∏
k=1

(1−µηtk) ‖w0 −w?‖2+
σ2
∞
P

T∑
t=1

T∏
t′=t+1

Nt
′∏

k=1

(1−µηtk)

Nt∑
k=1

(ηtk)2
Nt∏

j=k+1

(1−µηtj) .

(S12)
Then using ηtk = η̃{

∑t−1

t′=1
Nt′+k}, the corollary is just re-writing of Equation (S12).

To prove the second inequality of Proposition 3, we combine Lemma S12 and Equation (S8), using
the fact that wt

p,0 = ŵt−1.

This results means that for a quadratic function with gradients having uniformly bounded variance,
the outer iteration decay is the same as for mini-batch iterations (but for mini-batch, it is true under
the weaker set of Assumptions A1, A2, A3, A5, A6).

D.2.1 Proof

Proof 15 (Proof of Lemma S12) By definition of w̆t
k, we have for any t ∈ [C], k ∈ [N t], using the

linearity of F ′ (Assumption Q1):

1

P

P∑
i=1

wt
i,k+1 =

1

P

P∑
i=1

wt
i,k −

1

P

P∑
i=1

ηtk+1g
t
i,k+1(wt

i,k)

w̆t
k+1 −w? = w̆t

k −w? − 1

P

P∑
i=1

ηtk+1g
t
i,k+1(wt

i,k)

E
[∥∥w̆t

k+1 −w?
∥∥2 |Hk,t

]
≤
∥∥w̆t

k −w?
∥∥2 − 2ηtk+1

〈
w̆t
k −w?, F ′(w̆t

k)
〉

8

+ (ηtk+1)2E

∥∥∥∥∥ 1

P

P∑
i=1

gti,k+1(wt
i,k)

∥∥∥∥∥
2

|Hk,t

 . (S13)

Now analyzing just the last term,

(ηtk+1)2E

∥∥∥∥∥ 1

P

P∑
i=1

gti,k+1(wt
i,k)

∥∥∥∥∥
2

|Hk,t


= (ηtk+1)2E

∥∥∥∥∥ 1

P

P∑
i=1

(
gti,k+1(wt

i,k)− F ′(wt
i,k)
)∥∥∥∥∥

2

|Hk,t

+ (ηtk+1)2
∥∥F ′(w̆t

k)
∥∥2

. (S14)

Under the independence of the noises (Assumption A3), then the uniform upper bound on the variance
(Assumption A4), we have the following upper bound :

E

∥∥∥∥∥ 1

P

P∑
i=1

(
gti,k+1(wt

i,k)− F ′(wt
i,k)
)∥∥∥∥∥

2

|Hk,t

 =
1

P 2

P∑
i=1

E
[∥∥(gti,k+1(wt

i,k)− F ′(wt
i,k)
)∥∥2 |Hk,t

]
≤ 1

P
σ2
∞ .

Under Assumption Q1, F ′ is co-coercive, thus using Equation (S5), we have the following upper
bound:

E
[∥∥w̆t

k+1 −w?
∥∥2 |Hk,t

]
≤
∥∥w̆t

k −w?
∥∥2 − 2ηtk+1(1− ηtk+1L)

〈
w̆t
k −w?, F ′(w̆t

k)
〉

+
(ηtk+1)2σ2

∞

P
.

And using strong convexity (esp. Equation (S6)), and the fact that ηtk+1L ≤ 1
2 :

E
[∥∥w̆t

k+1 −w?
∥∥2 |Hk,t

]
≤ (1− 2µηtk+1(1− ηtk+1L))

∥∥w̆t
k −w?

∥∥2
+

(ηtk+1)2σ2
∞

P

≤ (1− µηtk+1)
∥∥w̆t

k −w?
∥∥2

+
(ηtk+1)2σ2

∞
P

. (S15)

By recursion, we then have, for any K ∈ [N t]:

E
[∥∥w̆t

K −w?
∥∥2
]
≤

K∏
k=1

(1− µηtk)
∥∥w̆t

0 −w?
∥∥2

+
σ2
∞
P

K∑
k=1

(ηtk)2
K∏
j=k

(1− µηtj) .

This concludes the proof.

D.3 Proof of Proposition S16

In this Section we prove Proposition S16.

D.3.1 Statement of Proposition S16

Proposition S16 (Local-SGD: Quadratic Functions) Under Assumptions Q1,A3,A5,A6, we have
the following bound for one shot averaging: p ∈ [P], t ∈ [C], k ∈ [N t],

E
[∥∥ŵt −w?

∥∥2
]
≤ κt2

∑t
t′=1

Nt
′∏

k=1

(1− µη̃k) ‖w0 −w?‖2 + 2κt1κ
t
2

σ2

P

∑t
k=1N

t∑
t=1

η̃2
k

∑t
t′=1

Nt
′∏

j=k+1

(1− µη̃j)

(S16)

E
[∥∥wt

p,k −w?
∥∥2
]
≤ κt2

∑t
t′=1

Nt
′
+k∏

k=1

(1− µη̃k) ‖w0 −w?‖2 + 2κt1κ
t
2

σ2

P

∑t
t′=1

Nt
′∑

u=1

η̃2
u

∑t
t′=1

Nt
′
+k∏

j=k+1

(1− µη̃j)

9

+ 2
σ2

P

∑t
t′=1

Nt
′
+k∑

u=
∑t
t′=1

Nt′

η̃2
u

∑t
t′=1

Nt
′
+k∏

j=u+1

(1− µη̃j), (S17)

with, for t ∈ [C], κt1 =
(

4 + µ
∑Nt

k=1(ηtk)2
)

, and κt2 := exp
(
µ
∑t
t′=0

∑Nt

k=1(ηtk)2
)

.

When considering a constant step size η, we have the following corollary.

Corollary S17 (Local-SGD: Quadratic Functions) Under Assumptions Q1,A3,A5,A6, we have
the following bound for one shot averaging: p ∈ [P], t ∈ [C], k ∈ [N t], constant learning rate η,

E
[∥∥ŵt−1 −w?

∥∥2
]
≤ τ t2(1− ηµ)N

t−1
1 ‖w0 −w?‖2 + 2τ t1τ

t
2

σ2η

P

1− (1− ηµ)N
t−1
1

µ
(S18)

E
[∥∥wt

p,k −w?
∥∥2
]
≤ τ t2(1− ηµ)N

t−1
1 +k ‖w0 −w?‖2

+ 2σ2η

(
sup

t′=1...t
(τ t1)τ t2

1− (1− ηµ)N
t−1
1

Pµ
+

1− (1− ηµ)k

µ

)
. (S19)

Where we have τ t1 = 4 + µN tη2 and τ t2 = exp
(
µN t

1η
2
)
. Under the latter requirement (for

optimality) that for any t, N tµPη ≤ 1, we have µN t
1η

2 ≤ CηP−1, thus this is generally a small
constant. This result is a consequence of Lemma S18.

Interpretation. As before, the first bound shows that the variance of the iterates after communica-
tion is reduced by a factor of P w.r.t. the serial case, thus almost as good as mini-batch averaging.
However, the constants involved are worse than in the additive noise setting (Proposition 3). Conse-
quently, and similarly to Proposition 3, the bound for the current iterates is composed of two terms for
the variance: a “reduced variance” coming from the communication step, and a “inner loop” variance,
that does not benefit from the number of machines.

Finally, we provide a convergence result in the most general case, removing the quadratic assumption.
For the sake of concision, we skip the bound for the averaged iterate after a communication round,
and directly give the result for the inner process.

D.3.2 Proof

This result is a consequence of Lemma S18, which implies Equation (S18). Indeed, using it recursively,
and using (1 + x) ≤ exp(x), we get:

E
[∥∥∥ŵT −w?

∥∥∥2
]
≤ exp

µ T∑
t′=0

Nt∑
k=1

(ηtk)2

 T∏
t′=1

Nt
′∏

k=1

(1− µηtk)E
[
‖w0 −w?‖2

]

+ 2κ1 exp

µ t∑
t′=0

Nt∑
k=1

(ηtk)2

 σ2

P

T∑
t=1

T∏
t′=t+1

Nt
′∏

k=1

(1− µηtk)

Nt∑
k=1

(ηtk)2
Nt∏

j=k+1

(1− µηtj)

With, for t ∈ [C], κt1 =
(

4 + µ
∑Nt

k=1(ηtk)2
)

, and κt2 := exp
(
µ
∑t
t′=0

∑Nt

k=1(ηtk)2
)

, and re-
writing everything in terms of the sequence η̃k, it gives Equation (S16). The second inequality
naturally follows.

Lemma S18 Under Assumptions Q1, A3, A5, A6, for any t ∈ [C],K ∈ [N t], we have:

E
[∥∥ŵt −w?

∥∥2
]
≤

1 + µ

Nt∑
k=1

(ηtk)2

 Nt∏
k=1

(1− µηk)E
[∥∥ŵt−1 −w?

∥∥2
]

(S20)

+ 2

4 + µ

Nt∑
k=1

(ηtk)2

 σ2

P

Nt∑
k=0

(ηtk)2
Nt∏

j=k+1

(1− µηtj). (S21)

10

The proof is a bit technical, so we summarize here the 2 main steps:

1. We prove an inequality (namely Equation (S23)) that is comparable to Equation (S15), but
with an extra term.

2. We use the control on the inner process (Appendix D.1) to control the extra term.

Proof 19 We consider again the ghost process defined at Equation (S9). Equations (S13) and (S14)
are still valid. We now use the following decomposition6:

� := (ηtk+1)2E

∥∥∥∥∥ 1

P

P∑
i=1

gti,k+1(wt
i,k)

∥∥∥∥∥
2

|Hk,t


= (ηtk+1)2E

∥∥∥∥∥ 1

P

P∑
i=1

(
gti,k+1(wt

i,k)− F ′(wt
i,k)
)∥∥∥∥∥

2

|Hk,t

+ (ηtk+1)2
∥∥F ′(w̆t

k)
∥∥2

≤ 2(ηtk+1)2E

∥∥∥∥∥ 1

P

P∑
i=1

(
gti,k+1(wt

i,k)− F ′(wt
i,k)− gti,k+1(w?)

)∥∥∥∥∥
2

|Hk,t


+ 2(ηtk+1)2E

∥∥∥∥∥ 1

P

P∑
i=1

gti,k+1(w?)

∥∥∥∥∥
2

|Hk,t

+ (ηtk+1)2
∥∥F ′(w̆t

k)
∥∥2

.

Using the independence of the noises (Assumption A3) we have,

� ≤
2(ηtk+1)2

P 2

P∑
i=1

E
[∥∥(gti,k+1(wt

i,k)− F ′(wt
i,k)− gti,k+1(w?)

)∥∥2 |Hk,t
]

+
2(ηtk+1)2

P
E
[∥∥gti,k+1(w?)

∥∥2 |Hk,t
]

+ (ηtk+1)2
∥∥F ′(w̆t

k)
∥∥2

≤
4(ηtk+1)2

P 2

P∑
i=1

(
E
[∥∥(gti,k+1(wt

i,k)− gti,k+1(w?)
)∥∥2 |Hk,t

]
+ E

[∥∥(F ′(wt
i,k)− F ′(w?)

)∥∥2 |Hk,t
])

+
2(ηtk+1)2

P
E
[∥∥gti,k+1(w?)

∥∥2 |Hk,t
]

+ (ηtk+1)2
∥∥F ′(w̆t

k)
∥∥2

.

Using Assumption A5 (co-coercivity for (gti,k)-s and F) we obtain,

� ≤
8L(ηtk+1)2

P 2

P∑
i=1

〈
F ′(wt

i,k)− F ′(w?),wt
i,k −w?

〉
+

2(ηtk+1)2

P
E
[∥∥gti,k+1(w?)

∥∥2 |Hk,t
]

+ (ηtk+1)2L
〈
F ′(w̆t

k), w̆t
k −w?

〉
. (S22)

This leads to, combining Equations (S13) and (S22), and the upper bound on the variance of the
noise at the optimum (Assumption A6)

� := E
[∥∥w̆t

k+1 −w?
∥∥2 |Hk,t

]
≤
∥∥w̆t

k −w?
∥∥2 − 2ηtk+1

〈
w̆t
k −w?, F ′(w̆t

k)
〉

+
2(ηtk+1)2

P
E
[∥∥gti,k+1(w?)

∥∥2 |Hk,t
]

+
8L(ηtk+1)2

P 2

P∑
i=1

〈
F ′(wt

i,k)− F ′(w?),wt
i,k −w?

〉
+ (ηtk+1)2L

〈
F ′(w̆t

k), w̆t
k −w?

〉
≤
∥∥w̆t

k −w?
∥∥2 − 2ηtk+1(1− ηtk+1L)

〈
w̆t
k −w?, F ′(w̆t

k)
〉

+ 2
(ηtk+1)2

P
σ2

+
8L(ηtk+1)2

P 2

P∑
i=1

〈
F ′(wt

i,k)− F ′(w?),wt
i,k −w?

〉
.

6In the following, �, �,♣, etc. are used as symbolic notations to ease presentation.

11

Using Lηtk+1 ≤ 1
2 , and strong-convexity (Assumption A1)

E
[∥∥w̆t

k+1 −w?
∥∥2 |Hk,t

]
≤ (1− µηtk+1)

∥∥w̆t
k −w?

∥∥2
+

2(ηtk+1)2σ2

P

+
8L(ηtk+1)2

P 2

P∑
i=1

〈
F ′(wt

i,k)− F ′(w?),wt
i,k −w?

〉
. (S23)

This inequality should be compared to Equation (S15). It is interesting to remark that the last term is
not an artifact of the proof: this is easy to check for least-squares regression.

Using recursively the above inequality and using the definition of w̆t, and taking expectation on the
historical randomness we have, for any N ∈ [N t − 1]

E
[∥∥w̆t

N+1 −w?
∥∥2
]
≤

N∏
k=0

(1− µηtk+1)E
[∥∥w̆t

0 −w?
∥∥2
]

+ 2
σ2

P

N∑
k=0

(ηtk+1)2
N∏

j=k+1

(1− µηtj+1)

+
8L

P 2
E

 N∑
k=0

(ηtk+1)2
P∑
i=1

〈
F ′(wt

i,k)− F ′(w?),wt
i,k −w?

〉 N∏
j=k+1

(1− µηtj+1)

 .
Especially, for N = N t − 1, w̆t

Nt = ŵt, and moreover w̆t
0 = ŵt−1:

E
[∥∥ŵt −w?

∥∥2
]
≤
Nt−1∏
k=0

(1− µηtk+1)E
[∥∥ŵt−1 −w?

∥∥2
]

+ 2
σ2

P

Nt−1∑
k=0

(ηtk+1)2
Nt−1∏
j=k+1

(1− µηtj+1)

+
8L

P 2
E

Nt−1∑
k=0

(ηtk+1)2
P∑
i=1

〈
F ′(wt

i,k)− F ′(w?),wt
i,k −w?

〉 Nt−1∏
j=k+1

(1− µηtj+1)

 .

(S24)

To upper bound the last term in the above equation, we use Equation (S7),

♣ :=
8L

P 2

Nt−1∑
k=0

(ηtk+1)2
P∑
i=1

〈
F ′(wt

i,k)− F ′(w?),wt
i,k −w?

〉 Nt−1∏
j=k+1

(1− µηtj+1)

≤ 8L

P 2

Nt−1∑
k=0

ηtk+1

P∑
i=1

(
E
[∥∥wt

i,k −w?
∥∥2
]
− E

[∥∥wt
i,k+1 −w?

∥∥2
]

+ 2(ηtk+1)2σ2

) Nt−1∏
j=k+1

(1− µηtj+1)

≤ 8L

P 2

Nt−1∑
k=0

ηtk+1

P∑
i=1

(
E
[∥∥wt

i,k −w?
∥∥2
]
− E

[∥∥wt
i,k+1 −w?

∥∥2
]) Nt−1∏

j=k+1

(1− µηtj+1)

+
16Lσ2

P

Nt−1∑
k=0

(ηtk+1)3
Nt−1∏
j=k+1

(1− µηtj+1) .

Note that since the mean squared distance doesn’t depend on the machine, we can assume to be
working on machine 1. This leads to, using an Abel transform:

♣ ≤ 8L

P

Nt−1∑
k=0

(
E
[∥∥wt

1,k −w?
∥∥2
]
− E

[∥∥wt
1,k+1 −w?

∥∥2
]) Nt−1∏

j=k+1

(1− µηtj+1)ηtk+1

+
16Lσ2

P

Nt−1∑
k=0

(ηtk+1)3
Nt−1∏
j=k+1

(1− µηtj+1)

12

≤ 8L

P

(
Nt−1∑
k=0

E
[∥∥wt

1,k −w?
∥∥2
](

ηtk+1

Nt−1∏
j=k+1

(1− µηtj+1)− ηtk
Nt−1∏
j=k

(1− µηtj+1)

)

+ E
[∥∥wt

1,0 −w?
∥∥2
]Nt−1∏
j=0

(1− µηtj+1)ηt0 − E
[∥∥wt

1,Nt −w?
∥∥2
]
ηtNt

)

+
16Lσ2

P

Nt−1∑
k=0

(ηtk+1)3
Nt−1∏
j=k+1

(1− µηtj+1) .

Finally, using convexity, we have that

E
[∥∥w̆t

Nt −w?
∥∥2
]
≤ 1

P

P∑
p=1

E
[∥∥wt

p,Nt −w?
∥∥2
]

= E
[∥∥wt

1,Nt −w?
∥∥2
]
.

Thus:

♣ ≤ 8L

P

Nt−1∑
k=0

E
[∥∥wt

1,k −w?
∥∥2
] Nt−1∏
j=k+1

(1− µηj+1)
(
ηtk+1 − ηtk(1− µηtk+1)

)
+

8L

P
E
[∥∥ŵt−1 −w?

∥∥2
]Nt−1∏
j=0

(1− µηtj+1)ηt0 −
8L

P
E
[∥∥ŵt −w?

∥∥] ηtNt
+

16Lσ2

P

Nt−1∑
k=0

(ηtk+1)3
Nt−1∏
j=k+1

(1− µηtj+1) . (S25)

We now use Equation (S8). It leads to the following,

8L

P

Nt−1∑
k=0

E
[∥∥wt

1,k −w?
∥∥2
] Nt−1∏
j=k+1

(1− µηj+1)
(
ηtk+1 − ηtk(1− µηtk+1)

)
≤ 8L

P

Nt−1∏
j=0

(1− µηj+1)E
[∥∥ŵt−1 −w?

∥∥2
]Nt−1∑
k=0

(
ηtk+1 − ηtk(1− µηtk+1)

)
+

8L

P

Nt−1∑
k=0

(
2σ2

k∑
l=1

(ηtl)
2

k∏
m=l+1

(1− µηtm)
) Nt−1∏
j=k+1

(1− µηj+1)
(
ηtk+1 − ηtk(1− µηtk+1)

)
≤ 8L

P

Nt−1∏
j=0

(1− µηj+1)E
[∥∥ŵt−1 −w?

∥∥2
]Nt−1∑
k=0

(
ηtk+1 − ηtk(1− µηtk+1)

)
+

16σ2L

P

Nt−1∑
k=0

k∑
l=1

(ηtl)
2
Nt−1∏
j=l+1

(1− µηj+1)
(
ηtk+1 − ηtk(1− µηtk+1)

)
≤ 8L

P

Nt−1∏
j=0

(1− µηj+1)E
[∥∥ŵt−1 −w?

∥∥2
] (
ηtNt−1 − ηt0 +

Nt−1∑
k=0

µ(ηtk)2
)

+
16σ2L

P

Nt−1∑
l=1

Nt−1∑
k=l

(ηtl)
2
Nt−1∏
j=l+1

(1− µηj+1)
(
ηtk+1 − ηtk(1− µηtk+1)

)
≤ 8L

P

Nt−1∏
j=0

(1− µηj+1)E
[∥∥ŵt−1 −w?

∥∥2
] (
ηtNt−1 − ηt0 +

Nt−1∑
k=0

µ(ηtk)2
)

+
16σ2L

P

Nt−1∑
l=1

(ηtl)
2
Nt−1∏
j=l+1

(1− µηj+1)

Nt−1∑
k=0

(
ηtk+1 − ηtk(1− µηtk+1)

)

13

≤ 8L

P

Nt−1∏
j=0

(1− µηj+1)E
[∥∥ŵt−1 −w?

∥∥2
] (
ηtNt − ηt0 +

Nt−1∑
k=0

µ(ηtk+1)2
)

+
16σ2L

P

Nt−1∑
k=0

(ηtk+1)2
Nt−1∏
j=k+1

(1− µηj+1)
(
ηtNt − ηt0 +

Nt−1∑
k=0

µ(ηtk+1)2
)
. (S26)

Combining Equations (S24) to (S26), we get, denoting CNt = ηtNt +
∑Nt−1
k=0 µ(ηtk+1)2:

E
[∥∥ŵt −w?

∥∥2
]
≤
Nt−1∏
k=0

(1− µηk+1)E
[∥∥ŵt−1 −w?

∥∥2
]

+ 2
σ2

P

Nt−1∑
k=0

(ηtk+1)2
Nt−1∏
j=k+1

(1− µηtj+1)

+
8L

P

Nt−1∏
j=0

(1− µηj+1)E
[∥∥ŵt−1 −w?

∥∥2
]

(CNt − ηt0)− 8L

P
E
[∥∥ŵt −w?

∥∥] ηtNt
+

16σ2L

P

Nt−1∑
k=0

(ηtk+1)2
Nt−1∏
j=k+1

(1− µηj+1)(CNt − ηt0)

+
8L

P
E
[∥∥ŵt−1 −w?

∥∥2
]Nt−1∏
j=0

(1− µηtj+1)ηt0 +
16Lσ2

P

Nt−1∑
k=0

(ηtk+1)3
Nt−1∏
j=k+1

(1− µηtj+1) .

Thus, simplifying:(
1 +

8L

P
ηtNt

)
E
[∥∥ŵt −w?

∥∥2
]

≤

1 +
8L

P
ηtNt +

Nt−1∑
k=0

µ(ηtk+1)2

Nt−1∏
k=0

(1− µηk+1)E
[∥∥ŵt−1 −w?

∥∥2
]

+ 2
σ2

P

Nt−1∑
k=0

(ηtk+1)2

1 +
8L

P
ηtNt +

Nt−1∑
k=0

µ(ηtk+1)2 + Lηtk+1

 Nt−1∏
j=k+1

(1− µηtj+1).

This concludes the proof of the Lemma, using Lηtk ≤ 1/2:

E
[∥∥ŵt −w?

∥∥2
]
≤

1 + µ

Nt∑
k=1

(ηtk)2

 Nt∏
k=1

(1− µηk)E
[∥∥ŵt−1 −w?

∥∥2
]

+ 2

4 + µ

Nt∑
k=1

(ηtk)2

 σ2

P

Nt∑
k=0

(ηtk)2
Nt∏

j=k+1

(1− µηtj).

This result can be used recursively. It implies that if µ
∑C
t=1

∑Nt

k=1(ηtk)2 ≤ K, then the upper bound
on the outer iterates is as good as the one for mini-batch, up to a constant.

D.4 Proof of Proposition S20

In this Section we prove the first upper bound of Corollary S21.

D.4.1 Statement of Proposition S20

Finally, we provide a convergence result in the most general case, removing the quadratic assumption.

Proposition S20 (Local-SGD: General Functions) Under Assumptions A1, A2, A3, A4 we have:

E
[∥∥wt

p,k −w?
∥∥2
]
≤ κ2

∑t
t′=1

Nt
′
+k∏

k=1

(1− µη̃k) ‖w0 −w?‖2 + 2
σ2

P

∑t
t′=1

Nt
′
+k∑

u=
∑t
t′=1

Nt′

η̃2
u

∑t
t′=1

Nt
′
+k∏

j=u+1

(1− µη̃j)

14

+ (sup
t′=1...t

CP,M,K,t′)
σ2

P

∑t
t′=1

Nt
′∑

u=1

η̃2
u

∑t
t′=1

Nt
′
+k∏

j=k+1

(1− µη̃j),

with CP,M,K,t = 1 +MP
∑K
k=1 η

t
k

∥∥w̆t
k−1 −w?

∥∥.

Interpretation: if (supt′=1...t CP,M,K,t) is uniformly bounded, we perform as well as minibatch
SGD for the outer iterations (up to a constant).

For a constant step size η, the proposition has the following corollary:

Corollary S21 (Local-SGD: General Functions) Under Assumptions A1, A2, A3, A4 we have:

E
[∥∥wt

p,k −w?
∥∥2
]
≤ τ t2(1− ηµ)N

t−1
1 +k ‖w0 −w?‖2

+ σ2
∞

((
sup

t′=1...t
CP,M,t′

)
1− (1− ηµ)N

t−1
1

Pµ
+ 2

1− (1− ηµ)k

µ

)
.

Where CP,M,t = 1 +MPη
∑Nt

k=1 E
[∥∥w̆t

k−1 −w?
∥∥]. We prove the on-line case of the result using

Lemma S22 in supplementary material.

Interpretation. When communication occurs, averaging the different models over the machines re-
sults in a variance reduction, but at each phase, the variance accumulated within the phase is degraded
with respect to the simplest setting by at most CP,M,t. This constant increases with the number
of machines and the step size, and also depends on the mean distance

∑Nt

k=1 E
[∥∥w̆t

k−1 −w?
∥∥]

during phase t. As a consequence if CP,M,t is uniformly bounded, we perform as well as mini-
batch SGD. If E

[∥∥w̆t
k−1 −w?

∥∥] is assumed to be decaying, this is true if for any t ∈ [T],
N tηMPE

[∥∥ŵt −w?
∥∥] ≤ O(1).

In the following, we alternatively relax the bounded variance assumption A4 and the quadratic
assumption Q1, and show similar results for local SGD. This allows us to successively cover the
cases of least squares regression (LSR) and logistic regression (LR).

D.4.2 Proof

Proposition S20 follows from Lemma S22. We have for any t ∈ [C],K ∈ [N t],

E
∥∥w̆t

K −w?
∥∥2 ≤

K∏
k=1

(1− µηtk)E
∥∥w̆t

0 −w?
∥∥2

+ CP,M,K,t
σ2
∞
P

K∑
k=1

(ηtk)2
K∏

j=k+1

(1− µηtj),

with CP,M,K,t = 1 +MP
∑K
k=1 η

t
k

∥∥w̆t
k−1 −w?

∥∥.

As in the two previous sections, we first focus on upper bounding E
[∥∥w̆t

k −w?
∥∥2
]
. We prove the

following Lemma:

Lemma S22 For any t ∈ [C],K ∈ [N t], under Assumptions A1, A2, A3, A4 we have:

E
∥∥w̆t

K −w?
∥∥2 ≤

K∏
k=1

(1− µηtk)E
∥∥w̆t

0 −w?
∥∥2

+ CP,M,K,t
σ2
∞
P

K∑
k=1

(ηtk)2
K∏

j=k+1

(1− µηtj),

with CP,M,K,t = 1 +MP
∑K
k=1 η

t
kE
[∥∥w̆t

k−1 −w?
∥∥].

This means, if we have consider an weak upper bound on E
[∥∥w̆t

k −w?
∥∥] ≤ R that the inner loops

keeps the same variance as the mini-batch case if MP
∑K
k=1 η

t
k = O(1). For example, for a constant

step size η, it results in PN tη ≤ 1, i.e. N t ≤ 1
Pη . Note that the number of inner steps one can make

increases with the phases, as E [‖ŵt −w?‖] decreases.

15

D.4.3 Proof of Lemma S22

We rely on the following decomposition. Almost surely, we have:

E
[∥∥w̆t

k+1 −w?
∥∥2 |Hkt

]
≤
∥∥w̆t

k −w?
∥∥2 − 2ηtk+1

〈
w̆t
k −w?, F ′(w̆t

k)
〉

+ (ηtk+1)2E

∥∥∥∥∥ 1

P

P∑
i=1

gti,k+1(wt
i,k)

∥∥∥∥∥
2

|Hk,t


+ 2ηtk+1

〈
w̆t
k −w?, F ′(w̆t

k)− 1

P

P∑
p=1

F ′(wt
p,k)
〉
. (S27)

The first two lines correspond to the quadratic case (Equation (S13)), that has been analyzed in
Lemma S18. The third term accounts for the difference between the mean gradient and the gradient
at the mean point. We use Assumption A2 to control this term.

We then use the following Lemma, which control how the inner iterates wt
p,k deviate from their

average w̆t
k:

Lemma S23 For any t ∈ [C], k ∈ [N t], under Assumptions A1, A2, A3, A4 we have a.s.:

1

P

P∑
p=1

E
[∥∥wt

p,k − w̆t
k

∥∥2
]
≤ σ2

∞

k∑
j=1

(ηtj)
2

k∏
s=j+1

(1− ηtsµ).

The proof of this Lemma is postponed to Appendix D.4.4.

Using Cauchy-Schwarz inequality and the bound on the third order derivative of F , we have:

2ηtk+1

〈
w̆t
k −w?, F ′(w̆t

k)− 1

P

P∑
p=1

F ′(wt
p,k)
〉
≤ 2ηtk+1

∥∥w̆t
k −w?

∥∥∥∥∥∥∥F ′(w̆t
k)− 1

P

P∑
p=1

F ′(wt
p,k)

∥∥∥∥∥ ,
(S28)

and, using a second order expansion of the gradient at w̆t
k together with Assumption A2 we have:∥∥∥∥∥F ′(w̆t

k)− 1

P

P∑
p=1

F ′(wt
p,k)

∥∥∥∥∥ ≤ M

P

P∑
p=1

∥∥wt
p,k − w̆t

k

∥∥2
. (S29)

Using the proof of Equation (S15), and combining Equations (S27) to (S29) and Lemma S23, we
have, for any t ∈ [C], k ∈ [N t]:

M := E
[∥∥w̆t

k+1 −w?
∥∥2 |Hkt

]
M ≤

∥∥w̆t
k −w?

∥∥2 − 2ηtk+1

〈
w̆t
k −w?, F ′(w̆t

k)
〉

+ (ηtk+1)2E

∥∥∥∥∥ 1

P

P∑
i=1

gti,k+1(wt
i,k)

∥∥∥∥∥
2

|Hk,t


+ 2ηtk+1

〈
w̆t
k −w?, F ′(w̆t

k)− 1

P

P∑
p=1

F ′(wt
p,k)
〉

E[M] ≤ (1− µηtk+1)E
[∥∥w̆t

k −w?
∥∥2
]

+ (ηtk+1)2 1

P
σ2
∞

+ 2ηtk+1E
[∥∥w̆t

k −w?
∥∥]M k∑

j=1

(ηtj)
2σ2
∞

k∏
s=j+1

(1− ηtsµ). (S30)

Thus by induction, for any t ∈ [C],K ∈ [N t]:

E
[∥∥w̆t

K −w?
∥∥2
]
≤

K∏
k=1

(1− µηtk)E
[∥∥w̆t

0 −w?
∥∥2
]

+
1

P
σ2
∞

K∑
k=1

(ηtk)2
K∏

j=k+1

(1− µηtj)

16

+ 2σ2
∞M

K∑
k=1

ηtkE
[∥∥w̆t

k−1 −w?
∥∥] k∑

j=1

(ηtj)
2

k∏
s=j+1

(1− ηtsµ)

K∏
j=k+1

(1− µηtj)

=

K∏
k=1

(1− µηtk)E
[∥∥w̆t

0 −w?
∥∥2
]

+
1

P
σ2
∞

K∑
k=1

(ηtk)2
K∏

j=k+1

(1− µηtj)

+ 2Mσ2
∞

K∑
j=1

(ηtj)
2

K∏
s=j+1

(1− µηtj)
K∑
k=j

ηtkE
[∥∥w̆t

k−1 −w?
∥∥]

=

K∏
k=1

(1− µηtk)E
[∥∥w̆t

0 −w?
∥∥2
]

+ CP,M,K,t
σ2
∞
P

K∑
k=1

(ηtk)2
K∏

j=k+1

(1− µηtj),

with CP,M,K,t = 1 +MP
∑K
k=1 η

t
kE
[∥∥w̆t

k−1 −w?
∥∥]. This concludes the proof.

In the following section, we proved the auxiliary Lemma that was used in the proof.

D.4.4 Proof of Lemma S23

We now study 1
P

∑P
p=1

∥∥∥wt
p,k − w̆t

k

∥∥∥2

as k increases. Note that initially (k = 0), this quantity is 0.

For any k ∈ [N t], p ∈ [P]:

∥∥wt
p,k − w̆t

k

∥∥2
=

∥∥∥∥∥wt
p,k−1 − ηtkgtp,k(wt

p,k−1)− w̆t
k−1 + ηtk

1

P

P∑
i=1

gti,k(wt
i,k−1)

∥∥∥∥∥
2

=
∥∥wt

p,k−1 − w̆t
k−1

∥∥2 − 2ηtk

〈
wt
p,k−1 − w̆t

k−1, g
t
p,k(wt

p,k−1)− 1

P

P∑
i=1

gti,k(wt
i,k−1)

〉

+ (ηtk)2

∥∥∥∥∥gtp,k(wt
p,k−1)− 1

P

P∑
i=1

gti,k(wt
i,k−1)

∥∥∥∥∥
2

.

Thus, expanding and using cocoercivity Assumption:

E
[∥∥wt

p,k − w̆t
k

∥∥2 |Htk−1

]
=
∥∥wt

p,k−1 − w̆t
k−1

∥∥2

− 2ηtk

〈
wt
p,k−1 − w̆t

k−1, F
′(wt

p,k−1)− 1

P

P∑
i=1

F ′(wt
i,k−1)

〉

+ E

(ηtk)2

∥∥∥∥∥gtp,k(wt
p,k−1)− 1

P

P∑
i=1

gti,k(wt
i,k−1)

∥∥∥∥∥
2

|Htk−1


=
∥∥wt

p,k−1 − w̆t
k−1

∥∥2 − 2ηtk
〈
wt
p,k−1 − w̆t

k−1, F
′(wt

p,k−1)− F ′(w̆t
k−1)

〉
+ 2ηtk

〈
wt
p,k−1 − w̆t

k−1, F
′(w̆t

k−1)− 1

P

P∑
i=1

F ′(wt
i,k−1)

〉

+ E

(ηtk)2

∥∥∥∥∥gtp,k(wt
p,k−1)− 1

P

P∑
i=1

gti,k(wt
i,k−1)

∥∥∥∥∥
2

|Htk−1


≤ (1− 2ηtkµ(1− ηtkL))

∥∥wt
p,k−1 − w̆t

k−1

∥∥2

+ 2ηtk

〈
wt
p,k−1 − w̆t

k−1, F
′(w̆t

k−1)− 1

P

P∑
i=1

F ′(wt
i,k−1)

〉

+ E

(ηtk)2

∥∥∥∥∥(gtp,k − F ′)(wt
p,k−1)− 1

P

P∑
i=1

(gti,k − F ′)(wt
i,k−1)

∥∥∥∥∥
2

|Htk−1

 .
17

Summing over p ∈ [P]:
P∑
p=1

E
[∥∥wt

p,k − w̆t
k

∥∥2 |Htk−1

]
≤ (1− ηtkµ)

P∑
p=1

∥∥wt
p,k−1 − w̆t

k−1

∥∥2

+ 2ηtk

〈
P∑
p=1

(wt
p,k−1 − w̆t

k−1)︸ ︷︷ ︸
=0

, F ′(w̆t
k−1)− 1

P

P∑
i=1

F ′(wt
i,k−1)

〉

+

P∑
p=1

E

(ηtk)2

∥∥∥∥∥(gtp,k − F ′)(wt
p,k−1)− 1

P

P∑
i=1

(gti,k − F ′)(wt
i,k−1)

∥∥∥∥∥
2

|Htk−1

 .
If we denote δtk = 1

P

∑P
p=1 E

[∥∥∥wt
p,k − w̆t

k

∥∥∥2
]

, we thus have δ0 = 0 and

δtk ≤ (1− ηtkµ)δtk−1 +
1

P

P∑
p=1

E

(ηtk)2

∥∥∥∥∥(gtp,k − F ′)(wt
p,k−1)− 1

P

P∑
i=1

(gti,k − F ′)(wt
i,k−1)

∥∥∥∥∥
2

|Htk−1

 .
≤ 1

P

P∑
p=1

k∑
j=1

E

(ηtj)
2

∥∥∥∥∥(gtp,j − F ′)(wt
p,j−1)− 1

P

P∑
i=1

(gti,j − F ′)(wt
i,j−1)

∥∥∥∥∥
2
 k∏
s=j+1

(1− ηtsµ)

≤
k∑
j=1

E

(ηtj)
2

∥∥∥∥∥(gt1,j − F ′)(wt
1,j−1)− 1

P

P∑
i=1

(gti,j − F ′)(wt
i,j−1)

∥∥∥∥∥
2
 k∏
s=j+1

(1− ηtsµ)

≤
k∑
j=1

E
[
(ηtj)

2
∥∥(gt1,j − F ′)(wt

1,j−1)
∥∥2
] k∏
s=j+1

(1− ηtsµ).

Note that everything is tight until the last line for P = 1 (then for all k, δtk = 0). Under Assump-
tion A4, we thus have:

δtk ≤
k∑
j=1

(ηtj)
2σ2
∞

k∏
s=j+1

(1− ηtsµ).

This concludes the proof.

E Convergence guaranties for the fourth order moment.

In this section, we prove several Lemmas that allow to control the fourth order moment of the iterate.
While controlling the second order moment is sufficient for quadratic functions as no “residual” term
appears in Equation (3) (the “residual” corresponds to the rest of a linear expansion of the gradient,
which is thus exact for a quadratic function), in the general case, we also need to control the 4th order
moment.

We first give guarantees for the inner iterates (within a phase) in Appendix E.1, then in the local SGD
framework in Appendix E.2.

E.1 Inner Iteration Lemmas

Here, we can use the following Lemma from [25], that gives a recursion for the 4th order moment.

Lemma S24 Under the Assumptions A1, A2, A3, A5 for th 4th-order moment, assuming η ≤ 1
18L

we have,

E
[
(
∥∥wt

i,k −w?
∥∥)4
]1/2 ≤ (1− ηµ)E [∥∥wt

i,k−1 −w?
∥∥4
]1/2

+ 20η2σ2

18

E
[∥∥wt

i,k −w?
∥∥4
]1/2

≤ (1− ηµ)kE
[∥∥wt

i,0 −w?
∥∥4
]1/2

+
20ησ2

µ
.

In the mini-batch setting, we have of course the same result with a variance reduction:

Lemma S25 Under the Assumptions A1, A2, A3, A5 for th 4th-order moment for mini-batch
averaging we have, assuming η ≤ 1

18L we have,

E
[∥∥ŵt −w?

∥∥4
]1/2

≤
(
1− ηµ

)
E
[∥∥ŵt−1 −w?

∥∥4
]1/2

+
20η2

P
σ2

E
[∥∥ŵt −w?

∥∥4
]1/2

≤
(
1− ηµ

)t ∥∥w0 −w?
∥∥2

+
20η

Pµ
σ2.

Analogous to Lemma S24 we have the following result for fourth order moments,

Lemma S26 Under the Assumptions A1, A2, A3, A5 for th 4th-order moment, assuming η ≤ 1
18L

we have,

E
[∥∥wt

i,k −w?
∥∥4
]1/2

≤
(
1− ηtkµ

)
E
[∥∥wt

i,k−1 −w?
∥∥4
]1/2

+ 20η2σ2

E
[∥∥wt

i,k −w?
∥∥4
]1/2

≤
k∏
j=1

(1− ηtjµ)
∥∥w0 −w?

∥∥2
+ 20σ2

k∑
j=1

k∏
l=j+1

(1− µηtl)(ηtj)2.

Similarly for mini-batch analogous to Lemma S25,

Lemma S27 Under the Assumptions A1, A2, A3, A5 for th 4th-order moment for mini-batch
averaging and decreasing step size we have, assuming η ≤ 1

18L we have,

E
[∥∥ŵt −w?

∥∥4
]1/2

≤
(
1− ηtµ

)
E
[∥∥ŵt−1 −w?

∥∥4
]1/2

+
20η2

P
σ2

E
[∥∥ŵt −w?

∥∥4
]1/2

≤
t∏

j=1

(
1− ηjµ

) ∥∥ŵ0 −w?
∥∥2

+
20σ2

P

t∑
j=1

t∏
l=j+1

(1− µηl)(ηj)2.

The proof is included for completeness and because the same proof technique is used afterwards in
Appendix E.2.

Proof 28 For i ∈ [P], k ∈ [Nt] and t ∈ [C] we define the notation φti,k =
∥∥∥wt

i,k −w?
∥∥∥. We have

that,

(φti,k)4 =
(∥∥wt

i,k−1 −w?
∥∥2 − 2η

〈
gti,k(wt

i,k−1),wt
i,k−1 −w?

〉
+ η2

∥∥gti,k(wt
i,k−1)

∥∥2)2
=
(
(φti,k−1)2 − 2η

〈
gti,k(wt

i,k−1),wt
i,k−1 −w?

〉
+ η2

∥∥gti,k(wt
i,k−1)

∥∥2)2
= (φti,k−1)4 − 4η(φti,k−1)2

〈
gti,k(wt

i,k−1),wt
i,k−1 −w?

〉
+ 4η2

〈
gti,k(wt

i,k−1),wt
i,k−1 −w?

〉2
+ 2η2(φti,k−1)2

∥∥gti,k(wt
i,k−1)

∥∥2

− 4η3
〈
gti,k(wt

i,k−1),wt
i,k−1 −w?

〉 ∥∥gti,k(wt
i,k−1)

∥∥2
+ η4

∥∥gti,k(wt
i,k−1)

∥∥4
.

Moreover,

E
[∥∥gti,k(wt

i,k−1)
∥∥p |Htk−1

]
≤ 2p−1

(
E
[∥∥gti,k(wt

i,k−1)− gti,k(w?)
∥∥p |Htk−1

]
+ E

[∥∥gti,k(w?)
∥∥p |Htk−1

])
≤ 2p−1

(
E
[∥∥gti,k(wt

i,k−1)− gti,k(w?)
∥∥p]+ E

[∥∥gti,k(w?)
∥∥p |Htk−1

])
≤ 2p−1

(∥∥gti,k(wt
i,k−1)− gti,k(w?)

∥∥p + σp
)
, (S31)

Where we have used at the first line Minkowski’s inequality and the fact that x 7→ xp is convex on R+

for p = 1, . . . , 4 thus (x+ y)p ≤ 2p−1(xp + yp), and at the last line the Assumption A5 on the noise

: E
[∥∥∥f ti,k(w?)

∥∥∥p |Htk−1

]
≤ σp.

19

This leads to

N := E
[
(φti,k)4|Htk−1

]
≤ (φti,k−1)4 − 4η(φti,k−1)2E

[〈
gti,k(wt

i,k−1),wt
i,k−1 −w?

〉
|Htk−1

]
+ 4η2E

[〈
gti,k(wt

i,k−1),wt
i,k−1 −w?

〉2|Htk−1

]
+ 2η2(φti,k−1)2E

[∥∥gti,k(wt
i,k−1)

∥∥2 |Htk−1

]
− 4η3E

[〈
gti,k(wt

i,k−1),wt
i,k−1 −w?

〉 ∥∥gti,k(wt
i,k−1)

∥∥2 |Htk−1]
]

+ η4E
[∥∥gti,k(wt

i,k−1)
∥∥4 |Htk−1

]
≤ (φti,k−1)4 − 4η(φti,k−1)2

〈
F ′(wt

i,k−1),wt
i,k−1 −w?

〉
+ 4η2E

[∥∥gti,k(wt
i,k−1)

∥∥2
(φti,k−1)2|Htk−1

]
+ 2η2(φti,k−1)2E

[∥∥gti,k(wt
i,k−1)

∥∥2 |Htk−1

]
+ 4η3φti,k−1E

[∥∥gti,k(wt
i,k−1)

∥∥3 |Htk−1

]
+ η4E

[∥∥gti,k(wt
i,k−1)

∥∥4 |Htk−1

]
≤ (φti,k−1)4 − 4η(φti,k−1)2

〈
F ′(wt

i,k−1),wt
i,k−1 −w?

〉
+ 12η2σ2(φti,k−1)2 + 16η3φti,k−1σ

3 + 8η4σ4

+ 12η2(φti,k−1)2E
[∥∥gti,k(wt

i,k−1)− gti,k(w?)
∥∥2 |Htk−1

]
+ 16η3φti,k−1E

[∥∥gti,k(wt
i,k−1)− gti,k(w?)

∥∥3 |Htk−1

]
+ 8η4E

[∥∥gti,k(wt
i,k−1)− gti,k(w?)

∥∥4 |Htk−1

]
.

Above we have used Cauchy Schwartz inequality several times for the second inequality and equa-
tion (S31) for the third one.

F := E
[
(φti,k)4|Htk−1

]
≤ (φti,k−1)4 − 4η(φti,k−1)2

〈
F ′(wt

i,k−1),wt
i,k−1 −w?

〉
+ 12η2L(φti,k−1)2

〈
F ′(wt

i,k−1),wt
i,k−1 −w?

〉
+ 16η3L2(φti,k−1)2

〈
F ′(wt

i,k−1),wt
i,k−1 −w?

〉
+ 8η4L3(φti,k−1)2

〈
F ′(wt

i,k−1),wt
i,k−1 −w?

〉
+ 12ησ2(φti,k−1)2 + 8η2σ2(φti,k−1)2 + 8η4σ4 + 8η4σ4

= (φti,k−1)4 + (−4η + 12η2L+ 16η3L2 + 8η4L3)(φti,k−1)2
〈
F ′(wt

i,k−1),wt
i,k−1 −w?

〉
+ (12η2σ2 + 8η2σ2)(φti,k−1)2 + 16η4σ4

≤ (φti,k−1)4 − 4η(1− 9ηL)(φti,k−1)2
〈
F ′(wt

i,k−1),wt
i,k−1 −w?

〉
+ 20η2σ2(φti,k−1)2 + 16η4σ4.

Above we used ηL ≤ 1 in the last line. Finally, using strong convexity, we have:

E
[
(φti,k)4|Htk−1

]
≤
(
1− 4ηµ(1− 9ηL)

)
(φti,k−1)4 + 20η2σ2(φti,k−1)2 + 16η4σ4,

Now E
[
(φti,k−1)2

]
≤ E

[
(φti,k−1)4

]1/2
by Jensen’s inequality. Also since we assume η ≤ 1

9L and
µ
L ≤ 1 we can obtain (1− 4ηµ(1− 9ηL))1/2 ≥ (1− 4ηµ)1/2 ≥ (1− 4µ

9L)1/2 ≥ (1− 4
9)1/2 ≥ 1/2.

This finally leads to 20η2σ2E
[
(φti,k−1)2

]
≤ (1−4ηµ(1−9ηL))1/2E

[
(φti,k−1)4

]1/2
40η2σ2, which

can be used below to obtain

E
[
(φti,k)4|Htk−1

]
≤
(
1− 4ηµ(1− 9ηL)

)
E
[
(φti,k−1)4

]
+ 20η2σ2E

[
(φti,k−1)2

]
+ 16η4σ4

≤
((

1− 4ηµ(1− 9ηL)
)1/2E [(φti,k−1)4

]1/2
+ 20η2σ2

)2

E
[
(φti,k)4

]1/2 ≤ (1− 2ηµ(1− 9ηL)
)
E
[
(φti,k−1)4

]1/2
+ 20η2σ2.

This Concludes the proof.

E.2 Proof of Lemma S29

In this section, we prove the following Lemma, which is necessary to conclude the proof for the
second set of Assumptions in Theorem 6. Indeed, we need to control the moment of order 4 to be
able to control the residual term that arises from linear expansion of the gradient around w?.

Lemma S29 There exist absolute constants C4, D4, E4, such that if ηtkL ≤ 1
C4

:

E
[∥∥w̆t

k+1 −w?
∥∥4
]1/2

≤ (1− ηtkµ)E
[∥∥w̆t

k −w?
∥∥4
]1/2

+D4(ηtk)2σ
2
∞
P

20

+ E4η
t
k+1

∥∥w̆t
k −w?

∥∥∥∥∥∥∥F ′(w̆t
k)− 1

P

P∑
p=1

F ′(wt
p,k)

∥∥∥∥∥ . (S32)

In other words, E
[∥∥w̆t

k+1 −w?
∥∥4
]1/2

satisfies the same recursion as E
[∥∥w̆t

k+1 −w?
∥∥2
]
, as this

equation is the same as Equation (S30) (up to absolute constants).

Proof 30 This proof combines element from the classical bound for the fourth order moment, and
from the proof of Lemma S22, which addresses the similar setting but only for the second order
moment. We start from the definition of w̆t

k+1:

∥∥w̆t
k+1 −w?

∥∥2 ≤
∥∥w̆t

k −w?
∥∥2 − 2ηtk+1

〈
w̆t
k −w?,

1

P

P∑
i=1

gti,k+1(w̆t
k)
〉

+ (ηtk+1)2

∥∥∥∥∥ 1

P

P∑
i=1

gti,k+1(wt
i,k)

∥∥∥∥∥
2

+ 2ηtk+1

〈
w̆t
k −w?,

1

P

P∑
i=1

gti,k+1(w̆t
k)− 1

P

P∑
p=1

F ′(wt
p,k)
〉
. (S33)

Thus, squaring this equation we get, denoting φ̆tk =
∥∥w̆t

k −w?
∥∥:

(φ̆tk+1)4 ≤ (φ̆tk)4 − 4(φ̆tk)2ηtk+1

〈
w̆t
k −w?,

1

P

P∑
i=1

gti,k+1(w̆t
k)
〉

+ 2(φ̆tk)2(ηtk+1)2

∥∥∥∥∥ 1

P

P∑
i=1

gti,k+1(wt
i,k)

∥∥∥∥∥
2

+ 4(φ̆tk)2ηtk+1

〈
w̆t
k −w?,

1

P

P∑
i=1

gti,k+1(w̆t
k)− 1

P

P∑
p=1

F ′(wt
p,k)
〉

+ 3(ηtk+1)2
〈
w̆t
k −w?,

1

P

P∑
i=1

gti,k+1(w̆t
k)
〉2

+ 3(ηtk+1)4

∥∥∥∥∥ 1

P

P∑
i=1

gti,k+1(wt
i,k)

∥∥∥∥∥
4

+ 3(2ηtk+1)2
〈
w̆t
k −w?,

1

P

P∑
i=1

gti,k+1(w̆t
k)− 1

P

P∑
p=1

F ′(wt
p,k)
〉2
,

formally, we have used (a+ b+ c+ d)2 ≤ a2 + 2ab+ 2ac+ 2ad+ 3b2 + 3c2 + 3d2.

That is, conditioning on the past, and using Assumption A5 (cocoercivity and the fact that gtk is
a.s. L-Lipshitz):

E
[
(φ̆tk+1)4|Htk

]
≤ (φ̆tk)4 − 4(φ̆tk)2ηtk+1(1− ηtkL)

〈
w̆t
k −w?, F ′(w̆t

k)
〉

+ 2(φ̆tk)2(ηtk+1)2E

∥∥∥∥∥ 1

P

P∑
i=1

gti,k+1(wt
i,k)− F ′(wt

i,k)

∥∥∥∥∥
2

|Htk


+ 4(φ̆tk)2ηtk+1

〈
w̆t
k −w?, F ′(w̆t

k)− 1

P

P∑
p=1

F ′(wt
p,k)
〉

+ 3(ηtk+1)2
〈
w̆t
k −w?,

1

P

P∑
i=1

F ′(w̆t
k)
〉
L(φ̆tk)2

21

+ 6(ηtk+1)4E

∥∥∥∥∥ 1

P

P∑
i=1

gti,k+1(wt
i,k)− F ′(wt

i,k)

∥∥∥∥∥
4

|Htk


+ 6(ηtk+1)4L2(φ̆tk)2

〈
w̆t
k −w?, F ′(w̆t

k)
〉

+ 3(2ηtk+1)2
〈
w̆t
k −w?,

1

P

P∑
i=1

F ′(w̆t
k)− 1

P

P∑
p=1

F ′(wt
p,k)
〉2
.

Rearranging terms and using the uniform upper bound on the 4-th moment of the noise A6, we have:

E
[
(φ̆tk+1)4|Htk

]
≤ (φ̆tk)4 − 4(φ̆tk)2ηtk+1(1− ηtkL− 3ηtkL− 6(ηtk+1)4L2)

〈
w̆t
k −w?, F ′(w̆t

k)
〉

+ 2(φ̆tk)2(ηtk+1)2σ
2
∞
P

+ 6(ηtk+1)4σ
4
∞
P 2

+ 4(φ̆tk)2ηtk+1

〈
w̆t
k −w?, F ′(w̆t

k)− 1

P

P∑
p=1

F ′(wt
p,k)
〉

+ 3(2ηtk+1)2E

[〈
w̆t
k −w?,

1

P

P∑
i=1

gti,k+1(w̆t
k)− 1

P

P∑
p=1

F ′(wt
p,k)
〉2|Htk

]
.

(S34)

The first 2 lines of Equation (S34) correspond to the expansion in Equation (S32) (the constants are
slightly different because we use a uniform bound on the gradient instead of co-coercivity). The last
two lines correspond to the residual term, for which we will use Lemma S23.

We have:

4(φ̆tk)2ηtk+1

〈
w̆t
k −w?, F ′(w̆t

k)− 1

P

P∑
p=1

F ′(wt
p,k)
〉

+ 6(2ηtk+1)2E

[〈
w̆t
k −w?,

1

P

P∑
i=1

gti,k+1(w̆t
k)− 1

P

P∑
p=1

F ′(wt
p,k)
〉2|Htk

]

≤ 4(φ̆tk)3ηtk+1

∥∥∥∥∥F ′(w̆t
k)− 1

P

P∑
p=1

F ′(wt
p,k)

∥∥∥∥∥
+ 6(2ηtk+1)2L

∥∥w̆t
k −w?

∥∥3

∥∥∥∥∥ 1

P

P∑
i=1

F ′(w̆t
k)− 1

P

P∑
p=1

F ′(wt
p,k)

∥∥∥∥∥
= (φ̆tk)3ηtk+1(4 + 24ηtkL)

∥∥∥∥∥F ′(w̆t
k)− 1

P

P∑
p=1

F ′(wt
p,k)

∥∥∥∥∥ .
As a result, there exist absolute constants (“numbers”) C4, D4, E4, such that if ηtkL ≤ 1

C4
:

E
[
(φ̆tk+1)4

]1/2
≤ (1− ηtkµ)E

[
(φ̆tk)4

]1/2
+D4(ηtk)2σ

2
∞
P

+ E4η
t
k+1E

[
(φ̆tk)

∥∥∥∥∥F ′(w̆t
k)− 1

P

P∑
p=1

F ′(wt
p,k)

∥∥∥∥∥
]
. (S35)

This is the result of the Lemma.

F Main error decomposition

F.1 General decomposition

In this section, we prove the following decomposition for the on-line setting.

22

Lemma S31 Under the differentiability of A2 we have7,

F ′′(w?)(w
C −w?) =

P
(
w0 −w?

)
Tη1

1

−
P
(
ŵC −w?

)
TηC

NC+1

− 1

T

C∑
t=1

Nt∑
k=1

P∑
i=1

(
wt
i,k −w?

)(1

ηtk
− 1

ηtk+1

)

+
1

T

C∑
t=1

Nt∑
k=1

P∑
i=1

δti,k +
1

T

C∑
t=1

Nt∑
k=1

P∑
i=1

ξti,k,

where ξti,k = F ′(wt
i,k−1)− gti,k(wt

i,k−1) and δti,k = F ′′(w?)(wt
i,k−1 −w?)− F ′(wt

i,k−1).

Proof 32 Below, we have gti,k(wt
i,k−1) as the stochastic gradient at step k on machine i for commu-

nication phase t. After adding and subtracting few quantities and rearranging we have,

wt
i,k = wt

i,k−1 − ηtkgti,k(wt
i,k−1)

wt
i,k = wt

i,k−1 − ηtkF ′(wt
i,k−1) + ηtk

(
F ′(wt

i,k−1)− gti,k(wt
i,k−1)

)
wt
i,k = wt

i,k−1 − ηtkF ′(wt
i,k−1) + ηtkδ

t
i,k + ηF ′′(w?)(wt

i,k−1 −w?)− ηtkF ′′(w?)(wt
i,k−1 −w?)

wt
i,k = wt

i,k−1 + ηtkξ
t
i,k + ηtkδ

t
i,k − ηtkF ′′(w?)(wt

i,k−1 −w?).

where ξti,k and δti,k are respectively terms related to stochastic noise and quadratic residual. Obtaining
the horizontal average over all the machines and recalling the definition of the ghost process w̆t

k as
defined above we have,

1

P

P∑
i=1

F ′′(w?)(wt
i,k−1 −w?) =

1

P

P∑
i=1

1

ηtk

(
wt
i,k−1 −wt

i,k

)
+

1

P

P∑
i=1

δti,k +
1

P

P∑
i=1

ξti,k

F ′′(w?)(w̆t
k−1 −w?) =

w̆t
k−1 − w̆t

k

ηtk
+

1

P

P∑
i=1

δti,k +
1

P

P∑
i=1

ξti,k.

Obtaining the vertical average over all the machines first within a communication phase and then
among different phases we have,

1

N t

Nt∑
k=1

F ′′(w?)(w̆t
k−1 −w?) =

1

N t

Nt∑
k=1

w̆t
k−1 − w̆t

k

ηtk
+

1

N tP

Nt∑
k=1

P∑
i=1

δti,k +
1

N tP

Nt∑
k=1

P∑
i=1

ξti,k

1∑C
t=1N

t

C∑
t=1

Nt∑
k=1

F ′′(w?)(w̆t
k−1 −w?) =

1∑C
t=1N

t

C∑
t=1

Nt∑
k=1

w̆t
k−1 − w̆t

k

ηtk
+

1

P
∑C
t=1N

t

C∑
t=1

Nt∑
k=1

P∑
i=1

δti,k

+
1

P
∑C
t=1N

t

C∑
t=1

Nt∑
k=1

P∑
i=1

ξti,k.

Now recalling the definitions for the overall iterate w
C

= 1∑C
t=1N

t

∑C
t=1

∑Nt

k=1 w̆
t
k, ŵt = w̆t

Nt ,

the initial point ŵ0 = w0, and the total number of gradients T = P
∑C
t=1N

t as we have defined
above. After making these changes and on rearranging we obtain,

F ′′(w?)(w
C −w?) =

P

T

C∑
t=1

Nt∑
k=1

w̆t
k−1 − w̆t

k

ηtk
+

1

T

C∑
t=1

Nt∑
k=1

P∑
i=1

δti,k +
1

T

C∑
t=1

Nt∑
k=1

P∑
i=1

ξti,k

F ′′(w?)(w
C −w?) =

P
(
w0 −w?

)
Tη1

1

−
P
(
ŵC −w?

)
TηC

NC+1

− P

T

C∑
t=1

Nt∑
k=1

(
w̆t
k −w?

)(1

ηtk
− 1

ηtk+1

)

+
1

T

C∑
t=1

Nt∑
k=1

P∑
i=1

δti,k +
1

T

C∑
t=1

Nt∑
k=1

P∑
i=1

ξti,k.

7Note that after the final iteration of the phase the learning rate (which the algorithm uses nowhere) corre-
sponds to the first learning rate for the next phase. This anomaly in notation is a direct result of us considering
the ghost process, which runs continuously till the end.

23

Thus we have obtained the required result as,

F ′′(w?)(w
C −w?) =

P
(
w0 −w?

)
Tη1

1

−
P
(
ŵC −w?

)
TηC

NC+1

− 1

T

C∑
t=1

Nt∑
k=1

P∑
i=1

(
wt
i,k −w?

)(1

ηtk
− 1

ηtk+1

)

+
1

T

C∑
t=1

Nt∑
k=1

P∑
i=1

δti,k +
1

T

C∑
t=1

Nt∑
k=1

P∑
i=1

ξti,k.

F.2 Bounding the noise term

The stochastic noise term which appears above can be bounded using the following lemma,

Lemma S33 Under the Assumptions A3, A5, A6 we have

E
[∥∥ξti,k∥∥2

]
≤ 2L2E

[∥∥wt
i,k−1w

?
∥∥2
]

+ 2σ2.

Proof 34 Using Assumptions A3, A5, A6 respectively we prove the result

E
[∥∥ξti,k∥∥2

]
= E

[∥∥F ′(wt
i,k−1)− gti,k(wt

i,k−1)
∥∥2
]
≤ E

[∥∥gti,k(wt
i,k−1)

∥∥2
]
−
∥∥F ′(wt

i,k−1)
∥∥2

≤ 2E
[∥∥gti,k(wt

i,k−1)− gti,k(w?)
∥∥2
]

+ 2E
[∥∥gti,k(w?)

∥∥2
]

≤ 2L2E
[∥∥wt

i,k−1 −w?
∥∥2
]

+ 2σ2.

G Proofs for OSA, MBA and Local-SGD in the finite horizon setting

In this Section and Appendix H we prove convergence results for E
[∥∥F ′′(w?)(wC −w?)

∥∥]. The
proof technique is the one proposed by Polyak and Judisky in the original article on averaging [1].
This proof technique has also been used in [10, 15]. We notice here the following differences, that
justify including the proofs:

1. Polyak and Judisky were mainly interested in the asymptotic analysis, and the set of
assumptions considered was different.

2. In [10], the authors prove comparable bounds in the case of bounded gradients. However,
their analysis in the smooth and strongly convex setting is not optimal. Precisely, they use
a sub-optimal upper bound when controlling the second order moments, that significantly
worsens the subsequent proof. This point was underlined in [25, 47]. The result they provide
under our set of assumptions is eventually 1) not optimal, 2) uselessly complex, and 3) only
for serial-SGD.

3. In [15], authors prove a result close to us, using a similar approach for one-shot averaging.
Their bounds only apply to decaying step size. Moreover, they rely on the following

asymptotic upper bound: E
[∥∥∥wt

i,k −w?
∥∥∥2
]
≤ C1η

t
k: this bound is correct but the constant

C1 is "asymptotic" (see for e.g., [34]). On contrary, we use non-asymptotic upper bounds
on the second order moment involved. As a consequence, our bounds are both simpler and
tighter.

G.1 Technical Lemmas

Lemma S35 (Jensen’s Inequality) For ai ∈ Rd,
∥∥∥ 1
P

∑P
i=1 ai

∥∥∥2

≤ 1
P

∑P
i=1 ‖ai‖

2.

Proof 36 The result is an application of Jensen’s inequality with the convex function f(.) = ‖.‖2.

24

Lemma S37 (Minkowski’s Inequality) For ai ∈ Rd, E
[∥∥∥∑P

i=1 ai

∥∥∥2
]
≤
(∑P

i=1 E
[
‖ai‖2

] 1
2

)2

Proof 38 The inequality is an application of Minkowski’s inequality (or simply triangle’s inequality)

with the norm ‖.‖E = E
[
‖.‖2

] 1
2

.

G.2 Proof of Proposition 1 (Mini-batch case)

Lemma S8 proves the first part of the proposition. We prove the second part of the proposi-
tion here following the approach by [1]. Using Lemma S31, Lemma S24 we can obtain an up-

per bound on E
[∥∥∥F ′′(w?)(w

C −w?)
∥∥∥2
]

, which is in-fact a tighter quantity when compared to

E
[∥∥∥wC −w?

∥∥∥2
]

. We prove the following lemma,

Lemma S39 Under the Assumptions A1, A2, A3, A5, A6 we have,

E
[∥∥∇2F (w?)(w −w?)

∥∥2
]
≤ 4

5∑
i=1

A2
i,P,C ,

where the terms are respectively,

A2
1,P,C =

P 2

T 2η2

∥∥w0 −w?
∥∥2
, A2

2,P,C =
P 2

T 2η2

(
(1− µη)C

∥∥w0 −w?
∥∥2

+ 2σ2 η

µP

)
,

A2
3,P,C =

P 2M2

T 2µ2η2

(∥∥w0 −w?
∥∥2

+
C20η2

P
σ2

)2

, A2
4,P,C =

2σ2

T
,

A2
3,P,C =

2L2P

T 2

(
1

µη

∥∥w0 −w?
∥∥2

+ 2σ2

(
Cµη − 1 + (1− µη)C

)
µ2P

)
.

Proof 40 In order to upper bound the expectation we need to separately upper bound all the terms
that appear in the result for Lemma S31. But before that we can actually simplify the result with
constant step size and using N t = 1 ∀t ∈ [C] as follows,

F ′′(w?)(w
C −w?) =

w0 −w?

Cη
− ŵC −w?

Cη
+

1

T

C∑
t=1

P∑
i=1

δti,1 +
1

T

C∑
t=1

P∑
i=1

ξti,1.

Now we bound each of the terms in the above decomposition one by one. For the first term,

E

[∥∥∥∥ 1

Cη

(
w0 −w?

)∥∥∥∥2
]

=
P 2

T 2η2

∥∥w0 −w?
∥∥2

= A2
1,P,C .

For the second term using Lemma S8,

E

[∥∥∥∥ 1

Cη

(
ŵC −w?

)∥∥∥∥2
]

=
P 2

T 2η2
E
[∥∥wC

MB −w?
∥∥2
]

≤ P 2

T 2η2

(
C∏
k=1

(1− µη)E
[∥∥w0 −w?

∥∥2
]

+ 2σ2 1

P

C∑
k=1

C∏
l=k+1

(1− µη)η2

)

≤ P 2

T 2η2

(
(1− µη)C

∥∥w0 −w?
∥∥2

+ 2σ2 1

P

(
1− (1− µη)C

µη

)
η2

)
≤ P 2

T 2η2

(
(1− µη)C

∥∥w0 −w?
∥∥2

+ 2σ2 η

µP

)
= A2

2,P,C .

25

For the third term using Lemma S35 and Lemma S37 we get,

E

∥∥∥∥∥ 1

T

C∑
t=1

P∑
i=1

δti,1

∥∥∥∥∥
2
 =

1

T 2
E

∥∥∥∥∥
C∑
t=1

P∑
i=1

(
F ′(wt

i,0)− F ′′(w?)(wt
i,0 −w?)

)∥∥∥∥∥
2


≤ P

T 2

P∑
i=1

E

∥∥∥∥∥
C∑
t=1

(
F ′(ŵt−1)− F ′′(w?)(ŵt−1 −w?)

)∥∥∥∥∥
2


≤ P 2

T 2

(
C∑
t=1

√
E
[∥∥(F ′(ŵt−1)− F ′′(w?)(ŵt−1 −w?)

)∥∥2
])2

.

Now using the upper bound from A2 followed by Lemma S25 we get,

E

∥∥∥∥∥ 1

T

C∑
t=1

P∑
i=1

δti,1

∥∥∥∥∥
2
 ≤ P 2M2

T 2

(
C∑
t=1

√
E
[∥∥ŵt−1 −w?

∥∥4
])2

≤ P 2M2

T 2

(
C∑
t=1

(
(1− ηµ)t−1E

[
(ŵ0 −w?)4

]1/2
+

20η

Pµ
σ2

))2

≤ P 2M2

T 2

(
1− (1− ηµ)C

ηµ
E
[
(ŵ0 −w?)4

]1/2
+

20Cη

Pµ
σ2

)2

≤ P 2M2

T 2µ2η2

(∥∥w0 −w?
∥∥2

+
20Cη2

P
σ2

)2

= A2
3,P,C .

For the fourth term, note that we are sampling i.i.d observations and thus the stochastic noise across
all machines and iterations is independent and equal to zero in expectation (see A3). This implies the
first equation below while the second inequality is obtained using Lemma S33,

E

∥∥∥∥∥ 1

T

C∑
t=1

P∑
i=1

ξti,1

∥∥∥∥∥
2
 =

1

T 2

C∑
t=1

P∑
i=1

E
[∥∥ξti,1∥∥2

]
≤ 1

T 2

C∑
t=1

P∑
i=1

(
2L2E

[∥∥wt
i,0 −w?

∥∥2
]

+ 2σ2
)

≤ 2σ2

T
+

2L2P

T 2

C∑
t=1

E
[∥∥wt

1,0 −w?
∥∥2
]
.

Now using Lemma S8 we have,

E

∥∥∥∥∥ 1

T

C∑
t=1

P∑
i=1

ξti,1

∥∥∥∥∥
2
 ≤ 2σ2

T
+

2L2P

T 2

C∑
t=1

E
[∥∥ŵt−1

MB −w?
∥∥2
]

≤ 2σ2

T
+

2L2P

T 2

C∑
t=1

(
(1− µη)t−1

∥∥w0 −w?
∥∥2

+ 2σ2 η
(
1− (1− µη)C

)
µP

)

≤ 2σ2

T
+

2L2P

T 2

(
1− (1− µη)C

µη

∥∥w0 −w?
∥∥2

+ 2σ2

(
Cµη − (1− (1− µη)C)

)
µ2P

)

≤ 2σ2

T
+

2L2P

T 2

(
1

µη

∥∥w0 −w?
∥∥2

+ 2σ2Cη

µP

)
= A2

4,P,C +A2
5,P,C .

Now using Lemma S35, we have proved the lemma.

It can be seen in the above lemma that there are two kinds of terms: one that depend on the history or
initialization and second the ones that depend on the variance bound. This implies that it would be
possible to restate Lemma S39 as follows,

26

Lemma S41 Under the assumptions A1, A2, A3, A5, A6 we have,

E
[∥∥∇2F (w?)(w −w?)

∥∥2
]
≤ 4(Â2

1,P,C + Â2
2,P,C)

Where the terms are respectively,

Â2
1,P,C =

∥∥w0 −w?
∥∥2

η2C2

(
1 + (1− µη)C +

2M2

µ2

∥∥w0 −w?
∥∥2

+
2L2η

µP

)
,

Â2
2,P,C =

2σ2

T

(
1 +

P

Tηµ
+

400M2C2η2σ2

Tµ2
+

2L2Cη

Tµ

)
.

Ignoring constants the above constants can be upper bounded as follows,

Â2
1,P,C ≤

∥∥w0 −w?
∥∥2

η2C2

(
1 + 1 +

2M2

µ2

∥∥w0 −w?
∥∥2

+
2L2η

µP

)
≤ 2

∥∥w0 −w?
∥∥2

η2C2

(
1 +

M2

µ2

∥∥w0 −w?
∥∥2

+
L2η

µP

)
-

∥∥w0 −w?
∥∥2

η2C2

(
1 +

M2

µ2

∥∥w0 −w?
∥∥2

+
L2η

µP

)
,

Â2
2,P,C ≤ 800

σ2

T

(
1 +

P

Tηµ
+
M2C2η2σ2

Tµ2
+
L2Cη

Tµ

)
-
σ2

T

(
1 +

P

Tηµ
+
M2C2η2σ2

Tµ2
+
L2Cη

Tµ

)
.

Thus, we recover Proposition 1.

G.3 Proof Proposition 2 (One-shot averaging case)

To prove the proposition we need to prove a bound on second moment of the inner iterations followed
by a bound on the final average outer iteration. For inner iterations we follow the result from [53] as
the process on a single worker is completely independent of any other worker. We have the following
lemma,

Lemma S42 Under the Assumptions A1, A2, A3, A5, A6 for constant step size for one shot averaging
we have,

E
[∥∥F ′′(w?)(w1

i,k −w?)
∥∥2
]
≤ 4

5∑
i=1

B2
i,P,N1

where the terms are respectively,

B2
1,P,N1 =

P 2

T 2η2

∥∥w0 −w?
∥∥2
, B2

2,P,N1 =
P 2

T 2η2

(
(1− µη)N

1 ∥∥w0 −w?
∥∥2

+
2σ2η

µ

)
,

B2
3,P,N1 =

P 2M2

T 2µη

(∥∥w0 −w?
∥∥2

+ 20η2N1σ2
)2

, B2
4,P,N1 =

2σ2

T
,

B2
5,P,N1 =

2L2P

T 2

(
1

µη

∥∥w0 −w?
∥∥2

+
2σ2N1η

µ

)
.

Proof 43 We follow the same line of proof as before. We can use the decomposition from Lemma S31
with constant step size and C = 1, which results in the following simpler decomposition,

F ′′(w?)(w
C −w?) =

w0 −w?

Nη
− ŵ1 −w?

N1η
+

1

T

N1∑
k=1

P∑
i=1

δ1
i,k +

1

T

N1∑
k=1

P∑
i=1

ξ1
i,k

27

For the first term,

E

[∥∥∥∥w0 −w?

N1η

∥∥∥∥2
]
≤ P 2

T 2η2

∥∥w0 −w?
∥∥2

= B2
1,P,N1 .

For the second term using Lemma S10 and rearranging we have,

E

∥∥∥∥∥ŵ1 −w?

N1η

∥∥∥∥∥
2
 = E

∥∥∥∥∥ 1

PN1η

P∑
i=1

w1
i,N1 −w?

∥∥∥∥∥
2
 ≤ P

T 2η2

P∑
i=1

E
[∥∥w1

i,N1 −w?
∥∥2
]

≤ P 2

T 2η2

N1∏
l=1

(1− µη)
∥∥w0 −w?

∥∥2
+ 2σ2

N1∑
l=1

N1∏
m=l+1

(1− µη)η2


≤ P 2

T 2η2

(
(1− µη)N

1 ∥∥w0 −w?
∥∥2

+ 2σ2 1− (1− µη)N
1

µη
η2

)

≤ P 2

T 2η2

(
(1− µη)N

1 ∥∥w0 −w?
∥∥2

+
2σ2η

µ

)
= B2

2,P,N1 .

For the third term using Lemma S35 and Lemma S37 we obtain,

E


∥∥∥∥∥∥ 1

T

P∑
i=1

N1∑
k=1

δ1
i,k

∥∥∥∥∥∥
2
 =

1

T 2
E


∥∥∥∥∥∥
P∑
i=1

N1∑
k=1

F ′(wt
i,k−1)− F ′′(w?)(wt

i,k−1 −w?)

∥∥∥∥∥∥
2


≤ P

T 2

P∑
i=1

E


∥∥∥∥∥∥
N1∑
k=1

F ′(wt
i,k−1)− F ′′(w?)(wt

i,k−1 −w?)

∥∥∥∥∥∥
2


≤ P

T 2

P∑
i=1

N1∑
k=1

√
E
[∥∥∥F ′(w1

i,k−1)− F ′′(w?)(w1
i,k−1 −w?)

∥∥∥2
]2

Now first using the upper bound of A2, followed by Lemma S24 and some rearranging we can obtain
the following,

E


∥∥∥∥∥∥ 1

T

P∑
i=1

N1∑
k=1

δ1
i,k

∥∥∥∥∥∥
2
 ≤ PM2

T 2

P∑
i=1

N1∑
k=1

E
[∥∥w1

i,k−1 −w?
∥∥4
]1/22

≤ PM2

T 2

P∑
i=1

N1∑
k=1

(
(1− µη)k−1E

[∥∥w1
i,0 −w?

∥∥4
]1/2

+
20ησ2

µ

)2

≤ P 2M2

T 2

N1∑
k=1

(
(1− µη)k−1

∥∥w0 −w?
∥∥2

+
20ησ2

µ

)2

≤ P 2M2

T 2

(
1− (1− µη)N

1

µη

∥∥w0 −w?
∥∥2

+
20ηN1σ2

µ

)2

≤ P 2M2

T 2µ2η2

(∥∥w0 −w?
∥∥2

+ 20η2N1σ2
)2

= B2
3,P,N1 .

For the fourth term, using the fact that on different machines noise of the gradient is i.i.d. over
different iterations and zero in expectation (A3) we obtain,

E


∥∥∥∥∥∥ 1

T

P∑
i=1

N1∑
k=1

ξ1
i,k

∥∥∥∥∥∥
2
 =

1

T 2

P∑
i=1

N1∑
k=1

E
[∥∥ξ1

i,k

∥∥2
]
.

28

Now using Lemma S33 we have,

E


∥∥∥∥∥∥ 1

T

P∑
i=1

N1∑
k=1

ξ1
i,k

∥∥∥∥∥∥
2
 ≤ 1

T 2

P∑
i=1

N1∑
k=1

(
2L2E

[∥∥w1
i,k−1 −w?

∥∥2
]

+ 2σ2
)

≤ 2σ2

T
+

2L2

T 2

P∑
i=1

N1∑
k=1

E
[∥∥w1

i,k−1 −w?
∥∥2
]
.

Now using Lemma S10 we have,

E


∥∥∥∥∥∥ 1

T

P∑
i=1

N1∑
k=1

ξ1
i,k

∥∥∥∥∥∥
2
 ≤ 2σ2

T
+

2L2P

T 2

N1∑
k=1

(
k−1∏
l=1

(1− µη)
∥∥w0 −w?

∥∥2
+ 2σ2

k−1∑
l=1

k−1∏
m=l+1

(1− µη)η2

)

≤ 2σ2

T
+

2L2P

T 2

N1∑
k=1

(
(1− µη)k−1

∥∥w0 −w?
∥∥2

+
2σ2η

µ

)
≤ 2σ2

T
+

2L2P

T 2

(
1

µη

∥∥w0 −w?
∥∥2

+
N12σ2η

µ

)
= B2

4,P,N1 +B2
5,P,N1 .

Finally using Lemma S37, concludes the proof.

Similar to the mini-batch case, there are two kinds of terms one that depend on the history or
initialization and second that depend on the variance bound of the functions. This implies that it
would be possible to restate Lemma S42 as follows,

Lemma S44 Under the Assumptions A3, A2, A1, A5, A6 we have,

E
[∥∥∇2F (w?)(w −w?)

∥∥2
]
≤ 4(B̂2

1,P,N1 + B̂2
2,P,N1)

Where the terms are respectively,

B̂2
1,P,N1 =

∥∥w0 −w?
∥∥2

(N1)2η2

(
1 + (1− µη)N

1

+
2M2η

µ

∥∥w0 −w?
∥∥2

+
2L2η

Pµ

)
,

B̂2
2,P,N1 =

2σ2

T

(
1 +

2L2η

µ
+

P 2

Tµη
+

400M2σ2η2T

µ2

)
.

On upper-bounding the above two terms while ignoring the constants,

B̂2
1,P,N1 ≤

∥∥w0 −w?
∥∥2

(N1)2η2

(
1 + 1 +

2M2η

µ

∥∥w0 −w?
∥∥2

+
2L2η

Pµ

)
≤ 2

∥∥w0 −w?
∥∥2

(N1)2η2

(
1 +

M2η

µ

∥∥w0 −w?
∥∥2

+
L2η

Pµ

)
-

∥∥w0 −w?
∥∥2

(N1)2η2

(
1 +

M2η

µ

∥∥w0 −w?
∥∥2

+
L2η

Pµ

)
,

B̂2
2,P,N1 ≤ 800

σ2

T

(
1 +

L2η

µ
+

P 2

Tµη
+
M2σ2η2T

µ2

)
B̂2

2,P,N1 -
σ2

T

(
1 +

L2η

µ
+

P 2

Tµη
+
M2σ2η2T

µ2

)
.

Thus we have recovered Proposition 2.

29

H Proofs for OSA, MBA and Local-SGD in the online setting

Recall that the step size at iteration (t, k),∈ [C] × [N t] is defined as ηtk =
cη

(
∑t−1

t′=1
Nt+k)

α where

α ∈ (0, 1). Though our results can be extended for the entire range of learning rates, we prove results
only for α ∈ (1

2 , 1).

H.1 Technical Lemmas

We first state a few technical results which are helpful in the following proofs.

Lemma S45 For η̃m =
cη
mα , α ∈ (0, 1) we have

∏t
m=1(1− µη̃m) ≤ exp

(
−µcηt

1−α

2(1−α)

)
.

Proof 46 The proof simply follows from applying the inequality 1 + x ≤ exp (x), followed by an
integral bound over the series as

∑t
m=1

1
mα ≥

1
2

∫ t
0

1
mα dm = t1−α

1−α . Note that it is possible to
consider α = 1 but the integral bound changes. For brevity we don’t include it here.

Lemma S47 For η̃m =
cη
mα , α ∈ (0, 1) we have

t∑
m=1

(η̃m)2
t∏

l=m+1

(1− µη̃l) ≤ exp

(
− µcηt

1−α

2(1− α)

(
1− 1

21−α

))
c2η

(
1 +

t1−2α − 1

1− 2α

)
+

2cη
tαµ

.

Further if α ∈ (1
2 , 1), then for large t,

∑t
m=1(η̃m)2

∏t
l=m+1(1 − µη̃l) ≤

exp
(
−µcηt

1−α

2(1−α)

(
1− 1

21−α

)) 2αc2η
2α−1 +

2cη
tαµ .

Proof 48 First we decompose the term, then use 1 + x ≤ exp(x), followed by a series of integral
bounds like Lemma S45,

t∑
m=1

η̃2
m

t∏
l=m+1

(1− µη̃l) ≤
t
2∑

m=1

(η̃m)2
t∏

l=m+1

(1− µη̃l) +

t∑
m= t

2

(η̃m)2
t∏

l=m+1

(1− µη̃l)

≤
t∏

l= t
2 +1

(1− µη̃l)
t
2∑

m=1

(η̃m)2 +

t∑
m= t

2

η̃m
µ

(
t∏

l=m+1

(1− µη̃l)−
t∏

l=m

(1− µη̃l)

)

≤ exp

−µ t∑
l= t

2 +1

η̃l

 t∑
m=1

(η̃m)2 +
η̃ t

2

µ

t∑
m= t

2

(
t∏

l=m+1

(1− µη̃l)−
t∏

l=m

(1− µη̃l)

)

≤ exp

(
−µcη

t1−α −
(
t
2

)1−α
2(1− α)

)
t∑

m=1

c2η
m2α

+
η̃ t

2

µ

1−
t∏

l= t
2 +1

(1− µη̃l)


≤ exp

(
− µcηt

1−α

2(1− α)

(
1− 1

21−α

))
c2η

(
1 +

t1−2α − 1

1− 2α

)
+

2cη
tαµ

.

The additional condition on α is obtained by simply taking the limiting case for t→∞. Also note
that this upper bound is tight up to constants (for both terms), especially one could easily show∑t
m=1(η̃m)2

∏t
l=m+1(1− µη̃l) ≥ cη

2tαµ .

Lemma S49 For the gamma function Γ(s) =
∫∞

0
ys−1 exp(−y)dy we have,

∑C
t=1 exp

(
−atb

)
≤

1
ba1/b

Γ(1
b).

Proof 50 First we use an integral bound as
∑C
t=1 exp

(
−atb

)
≤
∫∞

0
exp

(
−azb

)
dz, followed by

the integral substitution u = azb after which the proof follows from the definition of the gamma
function.

30

Lemma S51 For the gamma function Γ(s) =
∫∞

0
ys−1 exp(−y)dy we have,

∑C
t=1

exp(−atb)
tc ≤

1
ba(1−c)/b

Γ(1−c
b).

Proof 52 First we use an integral bound as
∑C
t=1

exp(−atb)
tc ≤

∫∞
0

exp(−azb)
zc dz, followed by the

integral substitution u = azb after which the proof follows from the definition of the gamma function.

Lemma S53 For a ∈ (0, 1),
∑C
t=1

1
t1−a ≤

Ca

a .

Proof 54 It is a simple application of the integral bound on a decreasing function,
∑C
t=1

1
t1−a ≤∫ C

0
xa−1dx = Ca

a .

Lemma S55 (Weighted Minkowski) For bi ∈ R and ai ∈ Rd, we have E
[∥∥∥∑P

i=1 aibi

∥∥∥2
]
≤(∑P

i=1 bi

√
E
[
‖ai‖2

])2

.

Proof 56 We consider again the norm ‖.‖E = E
[
‖.‖2

] 1
2

. Now the above result follows by first

applying triangle inequality as
∥∥∥∑P

i=1 aibi

∥∥∥
E
≤
∑P
i=1 ‖aibi‖E , followed by Holder’s inequality to

give
∑P
i=1 bi ‖ai‖E .

H.2 Proof of Proposition S7 (Mini-batch Averaging Case)

We have the following lemma for mini-batch averaging for the decreasing step-size case,

Lemma S57 Under the Assumptions A1, A2, A3, A5, A6 we have for mini-batch averaging,

E
[∥∥∇2F (w?)(w −w?)

∥∥2
]
≤ 5

6∑
i=1

C2
i,P,C .

Where the terms are,

C2
1,P,C =

1

C2c2η

∥∥w0 −w?
∥∥2
,

C2
2,P,C =

4

C2−2αc2η

(
exp

(
−µcηC

1−α

2(1− α)

)∥∥w0 −w?
∥∥2

+
2σ2

P

(
exp

(
− µC1−α

2(1− α)

(
1− 1

21−α

))
2αc2η

2α− 1
+

2cη
Cαµ

))
,

C2
3,P,C =

P 2α2

T 2c2η

(
β1

∥∥w0 −w?
∥∥2

+ β2
σ2

P
+ β3

σ2Cα

P

)
,

C2
4,P,C =

P 2M2

T 2

(
2β2

1

∥∥w0 −w?
∥∥4

+ 2
400σ4

P 2

(
β2

2 + β2
3C

2−2α
))

,

C2
5,P,C =

2σ2

T
+

2L2P

T 2

(
β1

∥∥w0 −w?
∥∥2

+ β2
σ2

P
+ β3

σ2C1−α

P

)
.

And the constants are,

β1 =
2

1+3α
1−α (1− α)

4α−2
1−α

(µcη)
2α

1−α
Γ(

α

1− α
)2, β2 =

4
1+2α−α2

(1−α) (1− α)
2α−1
(1−α) c2η

(2α− 1) (µcη(21−α − 1))
2α

(1−α)

Γ

(
α

1− α

)2

, β3 =
32cη
α2µ

,

β4 =
2

1
1−α (1− α)

α
1−α

(µcη)
1

1−α
Γ

(
1

1− α

)
, β5 =

2
3−2α
1−α (1− α)

α
1−ααc2η

(2α− 1) (µcη(21−α − 1))
1

1−α
Γ

(
1

1− α

)
, β6 =

2cη
(1− α)µ

.

31

Proof 58 Using again the decomposition in Lemma S31, we can obtain the following simpler version
for mini-batch averaging,

F ′′(w?)(w
C −w?) =

w0 −w?

Cη1
1

− ŵC −w?

CηC2
− 1

T

C∑
t=1

P∑
i=1

(
wt
i,1 −w?

)(1

ηt1
− 1

ηt2

)

+
1

T

C∑
t=1

P∑
i=1

δti,1 +
1

T

C∑
t=1

P∑
i=1

ξti,1.

Note again that we assume α ∈ (1
2 , 1), just for the sake of brevity. For the first term,

E

[∥∥∥∥w0 −w?

Cη1
1

∥∥∥∥2
]

=
1

C2c2η

∥∥w0 −w?
∥∥2

= C2
1,P,C .

For the second term using Lemma S9, followed by Lemma S45 and Lemma S47 we obtain,

E

∥∥∥∥∥ŵC −w?

CηC2

∥∥∥∥∥
2
 =

(C + 1)2α

C2c2η
E
[∥∥wC

MB −w?
∥∥2
]

≤ 22α

C2−2αc2η

(
C∏

m=1

(1− µη̃m)E
[∥∥w0 −w?

∥∥2
]

+ 2σ2 1

P

C∑
m=1

(η̃m)2
C∏

l=m+1

(1− µη̃l)

)

≤ 4

C2−2αc2η

(
exp

(
−µcηC

1−α

2(1− α)

)∥∥w0 −w?
∥∥2

+
2σ2

P

(
exp

(
− µC1−α

2(1− α)

(
1− 1

21−α

))
2αc2η

2α− 1
+

2cη
Cαµ

))
= C2

2,P,C

For the third term using Lemma S55 and (t+ 1)α − tα ≤ αtα−1,

E

∥∥∥∥∥ 1

T

C∑
t=1

P∑
i=1

(
wt
i,1 −w?

)(1

ηt1
− 1

ηt2

)∥∥∥∥∥
2


≤ 1

T 2c2η
E

∥∥∥∥∥
C∑
t=1

P∑
i=1

(
wt
i,1 −w?

)
((t+ 1)α − tα)

∥∥∥∥∥
2


≤ P 2α2

T 2c2η

 C∑
t=1

((t+ 1)α − tα)

√√√√√E

∥∥∥∥∥
P∑
i=1

(
wt
i,1 −w?

)∥∥∥∥∥
2



2

≤ P 2α2

T 2c2η

(
C∑
t=1

tα−1

√
E
[
‖wt

MB −w?‖2
])2

.

Now using Lemma S9, Lemma S45, Lemma S47 and
√
a+ b ≤

√
a+
√
b we get,

E

∥∥∥∥∥ 1T
C∑
t=1

P∑
i=1

(
wt
i,1 −w?)(1

ηt1
− 1

ηt2

)∥∥∥∥∥
2


≤ P 2α2

T 2c2η

 C∑
t=1

tα−1

√√√√ t∏
m=1

(1− µη̃m) ‖w0 −w?‖2 + 2σ2
1

P

t∑
m=1

(η̃m)2
t∏

l=m+1

(1− µη̃l)

2

≤ P 2α2

T 2c2η

(
C∑
t=1

tα−1

√
exp

(
− µcηt

1−α

2(1− α)

)
‖w0 −w?‖2 + 2σ2

P

(
exp

(
− µcηt

1−α

2(1− α)

(
1− 1

21−α

))
2αc2η
2α− 1

+
2cη
tαµ

))2

32

≤ P 2α2

T 2c2η

(
C∑
t=1

tα−1

(
exp

(
− µcηt

1−α

4(1− α)

)∥∥w0 −w?
∥∥+√2σ2

P
exp

(
− µcηt

1−α

2(1− α)

(
1− 1

21−α

))
2αc2η
2α− 1

+

√
4cησ2

Ptαµ

))2

≤ P 2α2

T 2c2η

(
C∑
t=1

tα−1 exp

(
− µcηt

1−α

4(1− α)

)∥∥w0 −w?
∥∥+ C∑

t=1

tα−1

√
2σ2c2η

P (2α− 1)
exp

(
− µcηt

1−α

2(1− α)

(
1− 1

21−α

))

+

C∑
t=1

t
α
2
−1

√
4cησ2

Pµ

)2

≤ P 2α2

T 2c2η

(
C∑
t=1

tα−1 exp

(
− µcηt

1−α

4(1− α)

)∥∥w0 −w?
∥∥+√ 2σ2c2η

P (2α− 1)

C∑
t=1

tα−1 exp

(
− µcηt

1−α

4(1− α)

(
1− 1

21−α

))

+

√
4cησ2

Pµ

C∑
t=1

1

t1−
α
2

)2

.

Now using Lemma S51 (with b = 1− α, c = 1− α and a =
µcη

4(1−α)), followed by using Lemma S51
again (with a =

µcη
4(1−α)

(
1− 1

21−α

)
, b = 1 − α and c = 1 − α) and Lemma S53 (with a = α

2) we
get,

E

∥∥∥∥∥ 1

T

C∑
t=1

P∑
i=1

(
wt
i,1 −w?

)(1

ηt1
− 1

ηt2

)∥∥∥∥∥
2


≤ P 2α2

T 2c2η

(
4

α
1−α (1− α)

2α−1
1−α

(µcη)
α

1−α
Γ(

α

1− α
)
∥∥w0 −w?

∥∥+

√
2σ2c2η

P (2α− 1)

2
α(3−α)
1−α (1− α)

2α−1
1−α

(µcη(21−α − 1))
α

1−α
Γ(

α

1− α
)

+

√
4cησ2

Pµ

2C
α
2

α

)2

.

Finally using Lemma S35 and re-organizing with constants defined as above,

E

∥∥∥∥∥ 1

T

C∑
t=1

P∑
i=1

(
wt
i,1 −w?

)(1

ηt1
− 1

ηt2

)∥∥∥∥∥
2


≤ P 2α2

T 2c2η

(
2

4
2α

1−α (1− α)
4α−2
1−α

(µcη)
2α

1−α
Γ(

α

1− α
)2
∥∥w0 −w?

∥∥2
+ 2

2σ2c2η
P (2α− 1)

4
α(3−α)
(1−α) (1− α)

2α−1
(1−α)

(µcη(21−α − 1))
2α

(1−α)

Γ

(
α

1− α

)2

+ 2
4cησ

2

Pµ

4Cα

α2

)

≤ P 2α2

T 2c2η

(
β1

∥∥w0 −w?
∥∥2

+ β2
σ2

P
+ β3

σ2Cα

P

)
= C2

3,P,C .

For the fourth term first proceeding as in Lemma S39 with Lemma S35 and Lemma S37 we can obtain,

E

∥∥∥∥∥ 1

T

C∑
t=1

P∑
i=1

δti,1

∥∥∥∥∥
2
 =

1

T 2
E

∥∥∥∥∥
C∑
t=1

P∑
i=1

(
F ′(wt

i,0)− F ′′(w?)(wt
i,0 −w?)

)∥∥∥∥∥
2


≤ P

T 2

P∑
i=1

E

∥∥∥∥∥
C∑
t=1

(
F ′(ŵt−1)− F ′′(w?)(ŵt−1 −w?)

)∥∥∥∥∥
2


≤ P

T 2

P∑
i=1

(
C∑
t=1

√
E
[∥∥(F ′(ŵt−1)− F ′′(w?)(ŵt−1 −w?)

)∥∥2
])2

33

≤ PM2

T 2

P∑
i=1

(
C∑
t=1

√
E
[
(ŵt−1 −w?)4

])2

≤ P 2M2

T 2

(
C∑
t=1

√
E
[
(wt−1

MB −w?)4
])2

.

Now using Lemma S26, followed by Lemma S45 and Lemma S47 we get8,

E

∥∥∥∥∥ 1

T

C∑
t=1

P∑
i=1

δti,1

∥∥∥∥∥
2
 ≤ P 2M2

T 2

 C∑
t=1

t−1∏
j=1

(1− η̃jµ)
∥∥w0 −w?

∥∥2
+

20σ2

P

t−1∑
j=1

(η̃j)
2

t−1∏
l=j+1

(1− µη̃l)

2

≤ P 2M2

T 2

(
C∑
t=1

exp

(
−µcη(t− 1)1−α

2(1− α)

)∥∥w0 −w?
∥∥2

+

C∑
t=2

20σ2

P

(
exp

(
−µcη(t− 1)1−α

2(1− α)

(
1− 1

21−α

))
2αc2η

2α− 1
+

2cη
(t− 1)αµ

))2

≤ P 2M2

T 2

(
C∑
t=1

exp

(
−µcη(t− 1)1−α

2(1− α)

)∥∥w0 −w?
∥∥2

+

C∑
t=1

20σ2

P

(
exp

(
− µcηt

1−α

2(1− α)

(
1− 1

21−α

))
2αc2η

2α− 1
+

C∑
t=1

2cη
tαµ

))2

.

Now using Lemma S49 (with b = 1 − α and a =
µcη

2(1−α)), followed by Lemma S49 again (with
a =

µcη
2(1−α)

(
1− 1

21−α

)
and b = 1− α), followed by Lemma S53 (with a = 1− α) and Lemma S35

we get,

E

∥∥∥∥∥ 1

T

C∑
t=1

P∑
i=1

δti,1

∥∥∥∥∥
2


≤ P 2M2

T 2

(
2

1
1−α (1− α)

α
1−α

(µcη)
1

1−α
Γ

(
1

1− α

)∥∥w0 −w?
∥∥2

+
20σ2

P

(
2

2−α
1−α (1− α)

α
1−α

(µcη(21−α − 1))
1

1−α
Γ

(
1

1− α

)
2αc2η

2α− 1
+

2cηC
1−α

(1− α)µ

))2

≤ P 2M2

T 2

(
2

2
2

1−α (1− α)
2α

1−α

(µcη)
2

1−α
Γ

(
1

1− α

)2 ∥∥w0 −w?
∥∥4

+ 2
400σ4

P 2

(
2

4−2α
1−α (1− α)

2α
1−α

(µcη(21−α − 1))
2

1−α
Γ

(
1

1− α

)2 4α2c4η
(2α− 1)2

+
4c2ηC

2−2α

(1− α)2µ2

))
Bounding again with the constants defined above,

E

∥∥∥∥∥ 1

T

C∑
t=1

P∑
i=1

δti,1

∥∥∥∥∥
2
 ≤ P 2M2

T 2

(
2β2

4

∥∥w0 −w?
∥∥4

+ 2
400σ4

P 2

(
β2

5 + β2
6C

2−2α
))

= C2
4,P,C .

For the fifth term, proceeding as in Lemma S39,

E

∥∥∥∥∥ 1

T

C∑
t=1

P∑
i=1

ξti,1

∥∥∥∥∥
2
 =

1

T 2

C∑
t=1

P∑
i=1

(
2L2E

[∥∥wt
i,0 −w?

∥∥2
]

+ 2σ2
)

8Note that we ignore t=1 in second inequality for second term as we have already incorporated it in the first
term

34

≤ 2σ2

T
+

2L2P

T 2

C∑
t=1

E
[∥∥wt

1,0 −w?
∥∥2
]

≤ 2σ2

T
+

2L2P

T 2

C∑
t=1

E
[∥∥ŵt−1

MB −w?
∥∥2
]
.

Now using Lemma S9, Lemma S45 and Lemma S47 like before,

E

∥∥∥∥∥ 1

T

C∑
t=1

P∑
i=1

ξti,1

∥∥∥∥∥
2
 ≤ 2σ2

T
+

2L2P

T 2

C∑
t=1

(
exp

(
− µcη

2(1− α)
t1−α

)∥∥w0 −w?
∥∥2

+
2σ2

P
exp

(
− µcηt

1−α

2(1− α)

(
1− 1

21−α

))
2αc2η

2α− 1
+

4σ2cη
Ptαµ

)
.

Further using Lemma S49 (with b = 1− α and a =
µcη

2(1−α)), followed by Lemma S49 again (with
a =

µcη
2(1−α)

(
1− 1

21−α

)
and b = 1−α), followed by Lemma S53 (with a = 1−α) and the constants

as used above we get,

E

∥∥∥∥∥ 1

T

C∑
t=1

P∑
i=1

ξti,1

∥∥∥∥∥
2
 ≤ 2σ2

T
+

2L2P

T 2

(
2

1
1−α (1− α)

α
1−α

(µcη)
1

1−α
Γ

(
1

1− α

)∥∥w0 −w?
∥∥2

+
2

2−α
1−α (1− α)

α
1−α

(µcη(21−α − 1))
1

1−α
Γ

(
1

1− α

)
2αc2η

2α− 1
+

2cηC
1−α

(1− α)µ

)

≤ 2σ2

T
+

2L2P

T 2

(
β4

∥∥w0 −w?
∥∥2

+ β5
σ2

P
+ β6

σ2C1−α

P

)
= C2

5,P,C .

Finally using Lemma S35 we have proved the lemma.

The following lemma separates the terms above into bias and variance terms, following which we can
easily prove Proposition S7,

Lemma S59 Under the Assumptions A1, A2, A3, A5, A6 we have for mini-batch averaging,

E
[∥∥∇2F (w?)(w −w?)

∥∥2
]
≤ 5

(
Ĉ2

1,P,C + Ĉ2
2,P,C

)
Where for constants defined as above the terms are,

Ĉ2
1,P,C =

∥∥w0 −w?
∥∥2

C2c2η

(
1 + 4C2α exp

(
−µcηC

1−α

2(1− α)

)
+ α2β1 + 2M2c2ηβ

2
1

∥∥w0 −w?
∥∥2

+
2L2β1c

2
η

P

)
,

Ĉ2
2,P,C =

2σ2

T

(
1 +

8αC2α−1

2α− 1
exp

(
− µC1−α

2(1− α)

(
1− 1

21−α

))
+

8

C1−αcηµ
+
α2β2

2Cc2η
+

α2β3

2C1−αc2η

+
400M2σ2

T

(
β2

2 + β2
3C

2−2α
)

+
L2

T

(
β2 + β3C

1−α)).
To get Proposition S7, we upper bound every term up to constants depending only on α. Specifically,
we use β1 - (µcη)−

1
1−α , β2 - (µcη)−

α
1−α , and β3 -

cη
µ .

H.3 Proof of Proposition S7 (One-shot Averaging case)

The analysis for the one-shot case is very similar to the mini-batch case, just like the constant step-size
case. In fact at many place the communications C of MBA get replaced by N1 and the form of the
bound remains the same. This intuitive conversion strengthens our analysis, which smoothly extends
to both the extreme cases.

35

Lemma S60 Under the Assumptions A1, A2, A3, A5, A6 for decreasing step size, for one shot
averaging we have,

E
[∥∥∇2F (w?)(w1

i,k −w?)
∥∥2
]
≤ 5

6∑
i=1

D2
i,P,C

where the terms are,

D2
1,P,N1 =

P 2

T 2c2η

∥∥w0 −w?
∥∥2
, D2

2,P,N1 =
4

(N1)2−2αc2η

(
exp

(
−µcη(N1)1−α

1− α

)∥∥w0 −w?
∥∥2

+
2σ2cη
µ

)
,

D2
3,P,N1 =

P 2α2

T 2c2η

(
4β2

∥∥w0 −w?
∥∥2

+
2σ2(N1)2αcη

µα2

)
, D2

4,P,N1 =
P 2M2

T 2

(
β
∥∥w0 −w?

∥∥2
+

20σ2N1cη
µ

)2

,

D2
5,P,N1 =

2σ2

T
,D2

6,P,N1 =
2L2P

T 2

(
β
∥∥w0 −w?

∥∥2
+

2σ2N1cη
µ

)
.

And the constants are β1 = 1 +
(

(1−α)α

µcη

) 1
1−α

Γ
(

1
1−α

)
and β2 =

(
2α (1−α)2α−1

(µcη)α

) 1
1−α

Γ
(

α
1−α

)
.

Proof 61 We follow an analysis similar to [15]. We can simplify the decomposition from Lemma S31
for one outer phase as follows,

F ′′(w?)(w
C −w?) =

w0 −w?

N1η1
1

− ŵ1 −w?

N1η1
N1+1

− 1

T

P∑
i=1

N1∑
k=1

(
w1
i,k −w?

)(1

η1
k

− 1

η1
k+1

)

+
1

T

N1∑
k=1

P∑
i=1

δ1
i,k +

1

T

N1∑
k=1

P∑
i=1

ξ1
i,k.

For the first term,

E

[∥∥∥∥w0 −w?

N1η1
1

∥∥∥∥2
]
≤ P 2

T 2c2η

∥∥w0 −w?
∥∥2

= D2
1,P,N1 .

For the second term note that the inner iterate bound is independent for different machines using
Lemma S11 for say machine 1, followed by Lemma S45 and Lemma S47 we get,

E

∥∥∥∥∥ ŵ1 −w?

N1η1
N1+1

∥∥∥∥∥
2
 ≤ (N1 + 1)2α

(N1)
2
c2η

E

∥∥∥∥∥ 1

P

P∑
i=1

(
w1
i,N1 −w?

)∥∥∥∥∥
2


≤ 22α

(N1)2−2αc2η
E
[∥∥w1

1,N1 −w?
∥∥2
]

≤ 4

(N1)2−2αc2η

 N1∏
m=1

(1− µη1
m)
∥∥w0 −w?

∥∥2
+ 2σ2

N1∑
m=1

(η1
m)2

N1∏
l=m+1

(1− µη1
l)


≤ 4

(N1)2−2αc2η

(
exp

(
−µcη(N1)

1−α

1− α

)∥∥w0 −w?
∥∥2

+
2σ2cη
µ

)
= D2

2,P,N1 .

For the third term using (k+ 1)α − kα ≤ αkα−1, Lemma S55, and noting that the individual bounds
on inner iterates for different machines are the same, thus using machine 1 for brevity we can obtain,

E


∥∥∥∥∥∥ 1

T

P∑
i=1

N1∑
k=1

(
w1
i,k −w?

)(1

η1
k

− 1

η1
k+1

)∥∥∥∥∥∥
2
 ≤ P 2α2

T 2c2η
E


∥∥∥∥∥∥
N1∑
k=1

kα−1
(
w1

1,k −w?
)∥∥∥∥∥∥

2


≤ P 2α2

T 2c2η

N1∑
k=1

kα−1

√
E
[∥∥∥w1

1,k −w?
∥∥∥2
]2

.

36

Now using Lemma S11, Lemma S45, Lemma S47 and
√
a+ b ≤

√
a+
√
b we get,

E


∥∥∥∥∥∥ 1

T

N1∑
k=1

P∑
i=1

(
w1
i,k −w?

)(1

η1
k

− 1

η1
k+1

)∥∥∥∥∥∥
2


≤ P 2α2

T 2c2η

N1∑
k=1

kα−1

√√√√E

[
k∏

m=1

(1− µη̃m) ‖w0 −w?‖2 + 2σ2

k∑
m=1

(η̃m)2

k∏
l=m+1

(1− µη̃l)

]2

≤ P 2α2

T 2c2η

N1∑
k=1

kα−1

√
exp

(
−µcηk

1−α

1− α

)
‖w0 −w?‖2 +

2σ2cη
µ

2

≤ P 2α2

T 2c2η

N1∑
k=1

kα−1

(
exp

(
−µcηk

1−α

2(1− α)

)∥∥w0 −w?
∥∥+

√
2σ2cη
µ

)2

.

Now using Lemma S51 again with b = 1 − α and a =
µcη

2(1−α) with β2 defined as above and
Lemma S53 we get,

E


∥∥∥∥∥∥ 1

T

N1∑
k=1

P∑
i=1

(
w1
i,k −w?

)(1

η1
k

− 1

η1
k+1

)∥∥∥∥∥∥
2


≤ P 2α2

T 2c2η

((
2α

(1− α)2α−1

(µcη)α

) 1
1−α

Γ

(
α

1− α

)∥∥w0 −w?
∥∥+

√
2σ2(N1)2αcη

µα2

)2

≤ P 2α2

T 2c2η

(
β2

∥∥w0 −w?
∥∥+

√
2σ2(N1)2αcη

Pµα2

)2

≤ P 2α2

T 2c2η

(
2β2

2

∥∥w0 −w?
∥∥2

+
4σ2(N1)2αcη

µα2

)
= D2

3,P,N1 .

Now for the fourth term proceeding as in Lemma S42 with Lemma S35 and Lemma S37 we can obtain
,

E


∥∥∥∥∥∥ 1

T

P∑
i=1

N1∑
k=1

δ1
i,k

∥∥∥∥∥∥
2
 =

1

T 2
E


∥∥∥∥∥∥
P∑
i=1

N1∑
k=1

F ′(wt
i,k−1)− F ′′(w?)(wt

i,k−1 −w?)

∥∥∥∥∥∥
2


≤ P

T 2

P∑
i=1

E


∥∥∥∥∥∥
N1∑
k=1

F ′(wt
i,k−1)− F ′′(w?)(wt

i,k−1 −w?)

∥∥∥∥∥∥
2


≤ P

T 2

P∑
i=1

N1∑
k=1

√
E
[∥∥∥F ′(w1

i,k−1)− F ′′(w?)(w1
i,k−1 −w?)

∥∥∥2
]2

Now first using the upper bound of A2, followed by Lemma S26, Lemma S45, Lemma S47 and
Lemma S49 we can obtain the following,

E


∥∥∥∥∥∥ 1

T

P∑
i=1

N1∑
k=1

δ1
i,k

∥∥∥∥∥∥
2
 ≤ PM2

T 2

P∑
i=1

N1∑
k=1

E
[∥∥w1

i,k−1 −w?
∥∥4
]1/22

37

≤ P 2M2

T 2

N1∑
k=1

k−1∏
j=1

(1− η1
jµ)

∥∥w0 −w?
∥∥2

+ 20σ2
k−1∑
j=1

k−1∏
l=j+1

(1− µη1
l)(η1

j)2

2

≤ P 2M2

T 2

N1∑
k=1

(
exp

(
−µcη(k − 1)1−α

1− α

)∥∥w0 −w?
∥∥2

+
20σ2cη
µ

)2

≤ P 2M2

T 2

((
1 +

(
(1− α)α

µcη

) 1
1−α

Γ

(
1

1− α

))∥∥w0 −w?
∥∥2

+
20σ2N1cη

µ

)2

≤ P 2M2

T 2

(
β1

∥∥w0 −w?
∥∥2

+
20σ2N1cη

µ

)2

= D2
4,P,N1 .

For the fifth term, using the fact that for different machines noise is independent, zero in expectation
(A3) we obtain,

E


∥∥∥∥∥∥ 1

T

P∑
i=1

N1∑
k=1

ξ1
i,k

∥∥∥∥∥∥
2
 =

1

T 2

P∑
i=1

N1∑
k=1

E
[∥∥ξ1

i,k

∥∥2
]
.

Now using Lemma S33 we have,

E


∥∥∥∥∥∥ 1

T

P∑
i=1

N1∑
k=1

ξ1
i,k

∥∥∥∥∥∥
2
 ≤ 1

T 2

P∑
i=1

N1∑
k=1

(
2L2E

[∥∥w1
i,k−1 −w?

∥∥2
]

+ 2σ2
)

≤ 2σ2

T
+

2L2

T 2

P∑
i=1

N1∑
k=1

E
[∥∥w1

i,k−1 −w?
∥∥2
]
.

Now using Lemma S11, followed by Lemma S45, Lemma S47 and Lemma S49 with definition of β as
before, and we have,

E


∥∥∥∥∥∥ 1

T

P∑
i=1

N1∑
k=1

ξ1
i,k

∥∥∥∥∥∥
2
 ≤ 2σ2

T
+

2L2P

T 2

N1∑
k=1

(
k−1∏
m=1

(1− µη1
m)
∥∥w0 −w?

∥∥2
+ 2σ2

k−1∑
m=1

(η1
m)2

k−1∏
l=m+1

(1− µη1
l)

)

≤ 2σ2

T
+

2L2P

T 2

N1∑
k=1

(
exp

(
−µcη(k − 1)1−α

1− α

)∥∥w0 −w?
∥∥2

+
2σ2cη
µ

)

≤ 2σ2

T
+

2L2P

T 2

((
1 +

(
(1− α)α

µcη

) 1
1−α

Γ

(
1

1− α

))∥∥w0 −w?
∥∥2

+
2σ2N1cη

µ

)

≤ 2σ2

T
+

2L2P

T 2

((
1 +

(
(1− α)α

µcη

) 1
1−α

Γ

(
1

1− α

))∥∥w0 −w?
∥∥2

+
2σ2N1cη

µ

)

≤ 2σ2

T
+

2L2P

T 2

(
β
∥∥w0 −w?

∥∥2
+

2σ2Ncη
µ

)
= D2

5,P,N1 +D2
6,P,N1 .

Thus using Lemma S35 we have proved the lemma.

We can get the following lemma combining the bias and variance terms separately,

Lemma S62 Under the Assumptions A1, A2, A3, A5, A6 for decreasing step size, for one shot
averaging we have,

E
[∥∥∇2F (w?)(w −w?)

∥∥2
]
≤ 5

(
D̂2

1,P,N1 + D̂2
2,P,N1

)
38

Where for constants defined as above the terms are,

D̂2
1,P,N1 =

∥∥w0 −w?
∥∥2

(N1)2c2η

(
1 + 4(N1)2α exp

(
−µcη(N

1)1−α

2(1− α)

)
+ α2β1 + 2M2c2ηβ

2
1

∥∥w0 −w?
∥∥2 + 2L2β1c

2
η

P

)
,

D̂2
2,P,N1 =

2σ2

T

(
1 +

8αP (N1)2α−1

2α− 1
exp

(
−µ(N

1)1−α

2(1− α)

(
1− 1

21−α

))
+

8P

(N1)1−αcηµ
+
α2Pβ2
2N1c2η

+
α2Pβ3

2(N1)1−αc2η

+
400M2Pσ2

N1

(
β2
2 + β2

3(N
1)2−2α)+ L2

N1

(
β2 + β3(N

1)1−α
))

.

I Brief overview of distributed optimization

The above three schemes (OSA, MBA, Local-SGD) are the most studied synchronous parallel
schemes. However, communication latencies often make it difficult to use these algorithms for
large-scale problems. Thus many alternative parallelization schemes which minimize communication
or perform better have been studied. The major problem with some of these variants is that they are
often difficult to tune, are not as stable and don’t scale well to non-convex optimization problems.
Result-wise, most of the machine learning packages use centralized mini-batch synchronous SGD.

Asynchronous SGD: These techniques are characterized by avoiding a centralized synchronization,
using delayed updates, maintaining parameter server estimates and being fault tolerant. Some of the
notable references in a chronological order are [46, 52, 54–70].

Federated optimization: This setting is characterized by a huge number of mobile user devices,
which run their local model in a decentralized manner with often unbalanced data, but aim to train
jointly. Many research questions still remain open but the direction is very relevant for distributed AI.
Some references are [71–73].

Compressed Communication: A common strategy to combat the communication overhead is to
introduce lossless or lossy compression of exchanged information, often the gradients. Some of the
work in this direction can be found in [74–81].

Non-SGD methods: Many other optimization algorithms (coordinate descent, quasi newton, etc.)
have also been studied in the parallel setting, owing to their better distributivity or convergence for
some applications compared to the SGD algorithm. Some of them are [82] (ADMM), [83] (DANE),
[84] (DiSCO), [85] (AIDE), [86–88] (COCOA) and some of the references therein. Recently [89]
gave provably optimal algorithms for the strongly convex and smooth functions for both synchronous
and asynchronous cases. More broadly speaking, variance reduction methods are often the methods
of choice in better understood, convex optimization problems [add reference]. Yet, their usage in the
deep learning community has been relatively scarce, and often they are more difficult to parallelize
[add reference]. Some of the works for instance are [61, 90–92]. Among second order methods,
quasi newton methods like distributed L-BFGS [93, 94] are also widely popular among the machine
learning community.

Communication Lower Bounds: On a broader level our work is related to communication lower
bounds which arise from information and learning-theoretic considerations. Unfortunately, these
bounds are difficult to match for convex optimization as they are provided in [95]. Similar bounds
have also been provided for the generally easier statistical estimation setting in [96–98].

Feature Distribution: As clearly evident training data is not the only element of our optimization
scheme which can be parallelized. Often in many problems in natural language processing and
linear estimation, the features number in hundreds of thousands, and it might be of some interest to
distribute the features alongside or beside training data. Some relevant references are [87, 99–102].

There has also been work in parallelizing stochastic optimization algorithms for specific problems
(like PCA) in the past, for e.g., [31, 32, 103–107].

39

Reference Setting Limitations

Zhang et. al. [33] OSA Small learning rates c
µt ; µ often unknown; Non-

asymptotic bound on single worker convergence rate is
used ([34]);

Jain et. al. [20] OSA, MBA Results for least square regression (LSR) in finite horizon
setting only;

Godichon et. al. [108] OSA Uses uniform gradient bound A4 and thus not usable for
LSR; Non-asymptotic result ([34]) is used;

Stich [40] Local SGD Small learning rates c
µt ; µ often unknown; Uses uniform

gradient bound A4 and thus not usable for LSR; Doesn’t
capture the need for an adaptive communication frequency
[21]; Doesn’t extend to one-shot averaging, implying it is
not tight enough;

Table S3: Limitations of the previously existing results.

We also provide a brief overview of some other techniques in distributed optimization in Appendix I.

40

	Introduction
	Algorithms and setting
	Local-SGD algorithm
	Related Work
	Assumptions

	Main Results
	Results for MBA and OSA, Finite Horizon setting
	Convergence of Local-SGD, Finite Horizon setting

	Conclusion
	Main results in the on-line Setting and tightness of Proposition 1
	Most general assumption
	Main results: On-line Setting
	Tight bias term for finite horizon setting

	Experimental results
	Some Additional Material
	Pseudo codes
	Summary of Results
	Example: Learning from i.i.d. observations

	Convergence guaranties for the second order moment.
	Inner iteration Lemma
	Proof of prop:convquadSimple
	Proof of prop:convquadDSS
	Proof of prop:convgeneralfunctionDSS

	Convergence guaranties for the fourth order moment.
	Inner Iteration Lemmas
	Proof of lem:moment4genF

	Main error decomposition
	General decomposition
	Bounding the noise term

	Proofs for OSA, MBA and Local-SGD in the finite horizon setting
	Technical Lemmas
	Proof of prop:converMiniBatch (Mini-batch case)
	Proof prop:converOneShot (One-shot averaging case)

	Proofs for OSA, MBA and Local-SGD in the online setting
	Technical Lemmas
	Proof of prop:converMiniBatchDSS (Mini-batch Averaging Case)
	Proof of prop:converMiniBatchDSS (One-shot Averaging case)

	Brief overview of distributed optimization

