
Thank you very much for your detailed reviews and comments. In the rebuttal we will focus on the main issue raised:1

lack of clarity in the description of our theoretical model. At the end of the rebuttal we will address the remaining2

comments.3

Confusion about our landscape model toy task and the definition of n-wedges. A common point you brought up4

is the difficulty in understanding our loss landscape toy task construction, especially what exactly we mean by the5

n-wedges. We found that in order to be able to verify whether a particular landscape model matched the behaviour6

observed in real nets, we needed to implement an explicit simulation.7

The simplest version of our toy landscape is constructed as follows. We populate the D-dim weight space with n-dim8

low-loss attractors we call n-wedges. Each of these n-wedges has n infinitely extended long dimensions, and D − n9

infinitely thin short directions. We take each n-tuple of axes, and position a single n-wedge such that its long directions10

are aligned with them. We then define a surrogate loss Ltoy(~P ∈ RD) for a network configuration P in this weight11

space, which we choose to depend monotonically on the L2 distance to the nearest n-wedge. Luckily for us, this12

distance is simply d(P ) =
√
sum (sorted(P )[: D − n]2) – an easy to understand explicit expression13

While this construction is very specific, we find that it is the dimensions D and n that influence our results, rather than14

the specific angles between the n-sheets or their axis-alignment. As such, our toy model serves us well, albeit it doesn’t15

capture many other features of the loss landscape. Nonetheless, on this landscape, we are able to perform connectivity16

experiments, as well as experiments with optimizing on random hyperplanes, and empirically verify the similarity to17

real network experiments.18

In real nets, we find a large number of weight-space directions in which we can move very far, while the loss doesn’t19

change – those would be the n long directions of the wedge; we also find a small number of extremely sensitive20

directions in which a small motion incurs a high loss cost – those are the D − n short directions. Together, these21

define locally an n-dimensional hyperplane of finite thickness in the remaining D − n thin direction, i.e. a cuboid.22

Experimentally we notice a strong effect of radius r2 =
∑

i w
2
i , the sum of squares of all weights. While locally a23

cuboid, we find that individual parts of the manifold of low loss points radiate from the origin at a well-defined range of24

angles, like a wedge. We find the full low-loss manifold to be a union of those in different directions and orientations.25

We will include this extended discussion in the paper. We will also include an Appendix with a detailed description of26

the toy landscape + the code that we use to experiment with it + we will publish a demo Jupyter Notebook / Colab.27

R1: More experiments, larger networks, and harder datasets. To strengthen the case for our landscape model,28

we extended the experiments in our paper to include fully-connected as well as convolutional networks of various29

sizes (width, depth, non-linearity) including large models such as the ResNet20v1 (>90% test on CIFAR-10), trained30

on MNIST, Fashion MNIST and CIFAR-10 & 100. To go beyond classification, we also looked at CNN-based31

autoencoders. In all cases the results supported our landscape model and we will include them in the final version.32

This also demonstrates that our landscape model did not overfit to a small CNN on F-MNIST, as it holds for other33

architectures and datasets.34

R5: Overfitting the landscape model to a particular task? New predictions and their empirical observation to35

the rescue. We constructed a model for the loss landscape of neural networks based on existing observations in36

literature and our own verification of them. While we were very happy that our model incorporates them all (people in37

general had trouble reconciling them together), what gave us confidence were new effects that we predicted based on38

the model, that we only later observed in real networks. Those were 1) the existence of (N − 1)-dimensional low-loss39

connectors between N -tuples of independent optima, and the scaling of the number of short (=high curvature) directions40

in their middle with N , 2) the changing of the predicted labels in the middle of a low-loss connector between two41

optima, 3) stochastic weight ensembling (SWA) not working when checkpoints are too far from each other (belonging42

to different wedges). We were aware of none of those at the time of building our model, and only later we predict they43

should happen, and verified them in real networks.44

R2: Getting better at visualizing high-dimensional intuitions in 2D. During the time between the submission and45

now, we developed a better set of figures and explanations to convey the high-dimensional intuitions in 2D and 3D. For46

example, we have a better version of Figure 1, where we do not make the wedges circular and smooth, as this was a47

confusing illustration for some of our readers.48

R5: Radial tunnels = what low-dimensional cuts would show. We noticed a confusion about the two types of49

"tunnels" we discuss: we use the low-loss connectors between two independent optima as an observation to reconcile50

with our model + a diagnostic tool. The other type of a tunnel – the radial tunnel – is what we would see on 2D cuts51

through the landscape. At any point in training, making a random, 2D visualization of the loss around our current52

point, we would (very likely) see a convex depression. As training progresses mainly radially, and at each point there is53

convex depression around us, we can visualize this as a radial tunnel going out. We will be clearer with the distinction54

in the final version.55


