
Supplementary Materials: Provably Efficient
Q-Learning with Low Switching Cost

Yu Bai
Stanford University
yub@stanford.edu

Tengyang Xie Nan Jiang
UIUC

{tx10, nanjiang}@illinois.edu

Yu-Xiang Wang
UC Santa Barbara

yuxiangw@cs.ucsb.edu

A Proof of Theorem 2

This section is structured as follows. We collect notation in Section A.1 and list some basic properties
of the running estimate Q̃ in Section A.2, establish useful perturbation bounds on [Q̃kh − Q̃k

′

h]+ in
Section A.3, and present the proof of the main theorem in Section A.4.

A.1 Notation

Let Q̃kh(x, a) and Qkh(x, a) denote the estimates Q̃ and Q in Algorithm 2 before the k-th episode has
started. Note that Q̃1

h(x, a) = Q1
h(x, a) ≡ H .

Define the sequences

α0
t :=

t∏
i=1

(1− αi), αit := αi ·
t∏

τ=i+1

(1− ατ).

For t ≥ 1, we have α0
t = 0 and

∑t
i=1 α

i
t = 1. For t = 0, we have α0

t = 1.

With the definition of αit in hand, we have the following explicit formula for Q̃kh:

Q̃kh(x, a) = α0
tH +

t∑
i=1

αit

(
rh(x, a) + Ṽ kih+1(xkih+1) + bi

)
,

where t is the number of updates on Q̃h(x, a) prior to the k-th epoch, and k1, . . . , kt are the indices
for the epochs. Note that k = kt+1 if the algorithm indeed observes x and takes the action a on the
h-th step of episode k.

Throughout the proof we let ` := log(SAT/p) denote a log factor, where we recall p is the pre-
specified tail probability.

A.2 Basics

Lemma A.1 (Properties of αit; Lemma 4.1, [1]). The following properties hold for the sequence αit:

(a) 1√
t
≤
∑t
i=1

αit√
i
≤ 2√

t
for every t ≥ 1.

(b) maxi∈[t] α
i
t ≤ 2H

t and
∑t
i=1(αit)

2 ≤ 2H
t for every t ≥ 1.

(c)
∑∞
t=i α

i
t = 1 + 1

H for every i ≥ 1.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

Lemma A.2 (Q̃ is optimistic and accurate; Lemma 4.2 & 4.3, [1]). We have for all (h, x, a, k) ∈
[H]× S ×A× [K] that

Q̃kh(x, a)−Q?h(x, a)

= α0
t (H −Q?h(x, a)) +

t∑
i=1

αit

(
rh(x, a) + Ṽ kih+1(xkih+1)− V ?h+1(xkih+1) +

[(
P̂kih − Ph

)
V ?h+1

]
(x, a) + bi

)
,

where [P̂kih Vh+1](x, a) := Vh+1(xkih+1).

Further, with probability at least 1− p, choosing bt = c
√
H3`/t for some absolute constant c > 0,

we have for all (h, x, a, k) that

0 ≤ Q̃kh(x, a)−Q?h(x, a) ≤ α0
tH +

t∑
i=1

αit(Ṽ
ki
h+1 − V

?
h+1)(xkih+1) + βt

where βt := 2
∑t
i=1 α

i
tbi ≤ 4c

√
H3`/t.

Remark. This first part of the Lemma, i.e. the expression of Q̃kh − Q?h in terms of rewards and
value functions, is an aggregated form for the Q functions under the Q-Learning updates, and is
independent to the actual exploration policy as well as the bonus.

A.3 Perturbation bound under delayed Q updates

For any (h, k) ∈ [H]× [K], let

δ̃kh :=
(
Ṽ kh − V

πk
h

)
(xkh), φ̃kh :=

(
Ṽ kh − V ?h

)
(xkh)

denote the errors of the estimated Ṽ kh relative to V πk and V ?. As Q̃ is optimistic, the regret can be
bounded as

Regret(K) =

K∑
k=1

[
V ?1 (xk1)− V πk1 (xk1)

]
≤

K∑
k=1

[
Ṽ k1 (xk1)− V πk1 (xk1)

]
=

K∑
k=1

δ̃k1 .

The goal of the propagation of error is to related
∑K
k=1 δ̃

k
h by

∑K
k=1 δ̃

k
h+1.

We begin by showing that δ̃kh is controlled by the max of Q̃kh and Q̃k
′

h , where k′ = kτlast(t)+1.
Lemma A.3 (Max error under delayed policy update). We have

δ̃kh ≤
(

max
{
Q̃k
′

h , Q̃
k
h

}
−Qπkh

)
(xkh, a

k
h) =

(
Q̃k
′

h −Q
πk
h +

[
Q̃kh − Q̃k

′

h

]
+

)
(xkh, a

k
h). (1)

where k′ = kτlast(t)+1 (which depends on k.) In particular, if t = τlast(t), then k = k′ and the upper
bound reduces to (Q̃k

′

h −Q
πk
h)(xkh, a

k
h).

Proof. We first show (1). By definition of πk we have V πkh (xkh) = Qπkh (xkh, a
k
h),

so it suffices to show that

Ṽ kh (xkh) ≤ max
{
Q̃kh(xkh, a

k
h), Q̃k

′

h (xkh, a
k
h)
}
.

Indeed, we have

Ṽ kh (xkh) = min
{
H,max

a′
Q̃kh(xkh, a

′)
}
≤ max

a′
Q̃kh(xkh, a

′).

On the other hand, akh maximizes Qh(xkh, ·). Due to the scheduling of the delayed update, Qh(xkh, ·)
was set to Q̃

kτlast(t)+1

h (xkh, ·), and Q̃k̃h(xkh, a
k
h) was not updated since then before k̃ = k′ = kτlast(t)+1,

so Qh(xkh, ·) = Q̃k
′

h (xkh, ·).

Now, defining
qold(·) := Q̃k

′

h (xkh, ·), qnew(·) := Q̃kh(xkh, ·),

2

the vectors qold and qnew only differ in the akh-th component (which is the only action taken therefore
also the only component that is updated). If qnew is also maximized at akh, then we have Ṽ kh (xkh) ≤
qnew(akh); otherwise it is maximized at some a′ 6= akh and we have

Ṽ kh (xkh) ≤ qnew(a′) = qold(a′) ≤ max
a

qold(a) = Q̃k
′

h (xkh, a
k
h).

Putting together we get

Ṽ kh (xkh) ≤ max
{
Q̃kh(xkh, a

k
h), Q̃k

′

h (xkh, a
k
h)
}
,

which implies (1).

Lemma A.3 suggests bounding δ̃kh via bounding the “main term” Q̃k
′ −Qπkh and “perturbation term”

[Q̃kh − Q̃k
′

h]+ separately. We now establish the bound on the perturbation term.

Lemma A.4 (Perturbation bound on (Q̃kh − Q̃k
′

h)+). For any k such that k > k′ (so that the
perturbation term is non-zero), we have[

Q̃kh − Q̃k
′

h

]
+

(xkh, a
k
h) ≤ βt +

t∑
i=τlast(t)+1

αitφ̃
ki
h+1 + ζ

k

h,

where

ζ
k

h :=

∣∣∣∣∣∣
t∑

i=τlast(t)+1

αit[(P̂kh − Ph)V ?h+1](xkh, a
k
h)

∣∣∣∣∣∣
and w.h.p. we have uniformly over all (h, k) that ζ

k

h ≤ C
√
H3`/t for some absolute constant C > 0.

Proof. Throughout this proof we will omit the arguments (xkh, a
k
h) in Q̃h and rh as they are clear

from the context. By the update formula for Q̃ in Algorithm 2, we get

Q̃kh =

 t∏
i=τlast(t)+1

(1− αi)

 Q̃k
′

h +

t∑
i=τlast(t)+1

αit

[
rh(xkh, a

k
h) + Ṽ kih+1(xkih+1) + bi

]
.

Subtracting Q̃k
′

h on both sides (and noting that
(∏t

i=τlast(t)+1(1− αi)
)

+
∑t
i=τlast(t)+1 α

i
t = 1),

we get

Q̃kh − Q̃k
′

h =

t∑
i=τlast(t)+1

αit

[
rh + Ṽ kih+1(xkih+1) + bi − Q̃k

′

h

]
︸ ︷︷ ︸

di

. (2)

We now upper bound di for each i. Adding and subtracting Q?h, we obtain

di =
(
rh + Ṽ kih+1(xkih+1) + bi −Q?h

)
− (Q̃k

′

h −Q?h)

(i)
= Ṽ kih+1(xkih+1)− V ?(xkih+1) + (P̂kh − Ph)V ?h+1 + bi −

(
Q̃k
′

h −Q?h
)

(ii)
≤ bi + φ̃kih+1 + (P̂kh − Ph)V ?h+1︸ ︷︷ ︸

:=ζi

.

where (i) follows from the Bellman optimality equation on Q?h, and that [P̂khV ?h+1](xkh, a
k
h) =

V ?h+1(xkh+1) and (ii) follows from the optimistic property of Q̃k
′

h (from Lemma A.2) and the definition
of φ̃kih+1. Substituting this into (2) gives[
Q̃kh − Q̃k

′

h

]
+
≤

 t∑
i=τlast(t)+1

αit

(
bi + φ̃kih+1 + ζi

)
+

≤ βt +

t∑
i=τlast(t)+1

αitφ̃
ki
h+1 +

∣∣∣∣∣∣
t∑

i=τlast(t)+1

αitζi

∣∣∣∣∣∣︸ ︷︷ ︸
ζ
k
h

.

3

Finally, note that ζi is a martingale difference sequence, so we can apply the Azuma-Hoeffding
inequality to get that

ζ
k

h ≤ c

√√√√ t∑
i=τlast(t)+1

(αit)
2H2`

(i)
≤ c
√

2H

t
·H2` = C

√
H3`

t

uniformly over (h, k), where (i) follows from Lemma A.1(b).

A.4 Proof of Theorem 2

Proof of the main theorem is done through combining the perturbation bound and the “main term”,
and showing that the propagation of error argument still goes through.

Lemma A.5 (Error accumulation under delayed update). Suppose we choose η = 1
2H(H+1) and

r? =
⌈

log(10H2)
log(1+η)

⌉
for the triggering sequence (1) then we have for all i that∑

t:t≥i,τlast(t)≤i−1

αit +
∑

t:τlast(t)≥i

αiτlast(t) ≤ 1 + 3/H.

Proof. Let S̃i denote the above sum. We compare S̃i with

Si :=

∞∑
t=i

αit = 1 +
1

H
,

where the last equality follows from Lemma A.1(c).

Let us consider S̃i−Si by looking at the difference of the individual terms for each t ≥ i. When taking
the difference, the term

∑
t:t≥i,τlast(t)≤i−1 α

i
t will vanish, and all terms in

∑
t:τlast(t)≥i α

i
τlast(t)

will
vanish if τlast(t) = t. By the design of the triggering sequence {tn}, we know that this happens for
all t ≤ τ(r?), so we have

S̃i − Si =
∑

t:τlast(t)≥i;t>τ(r?)

αiτlast(t) − α
i
t.

Let r(i) = min {r : τ(r) ≥ i}, then the above can be rewritten as

S̃i − Si =
∑

r≥max {r?,r(i)}

τ(r+1)−1∑
t=τ(r)

αiτ(r) − α
i
t.

For each t (and associated r ≥ r?), we have the bound

αiτ(r) − α
i
t = αit

 t∏
j=τ(r)+1

(1− αj)−1 − 1

 = αit

 t∏
j=τ(r)+1

(
1− H + 1

H + j

)−1

− 1


= αit

 t∏
j=τ(r)+1

(
1 +

H + 1

j − 1

)
− 1

 ≤ αit
[(

1 +
H + 1

τ(r)

)t−τ(r)

− 1

]

≤ αit

[(
1 +

H + 1

τ(r)

)τ(r+1)−τ(r)−1

− 1

]
(i)
≤ αit

[(
1 +

H + 1

τ(r)

)ητ(r)

− 1

]
(ii)
≤ αit

[
eη(H+1) − 1

]
≤ αit · 2η(H + 1).

In the above, (i) holds as we have

τ(r + 1)− 1− τ(r) =
⌈
(1 + η)r+1

⌉
− 1− d(1 + η)re ≤ (1 + η)r+1 − (1 + η)r ≤ ητ(r),

4

and (ii) holds whenever η(H + 1) ≤ 1/2. Choosing

η =
1

2H(H + 1)
and r? =

⌈
log(10H2)

log(1 + η)

⌉
≤ 8H2 log(10H2),

the above requirement will be satisfied. Therefore we have

S̃i − Si ≤ 2η(H + 1)
∑

r≥max {r?,r(i)}

τ(r+1)−1∑
t=τ(r)

αit ≤ 2η(H + 1)

∞∑
t=i

αit =
1

H
Si,

and thus

S̃i ≤
(

1 +
1

H

)
Si ≤ 1 +

3

H
.

We are now in position to prove the main theorem.

Theorem 2 (Q-learning with UCB2H, restated). Choosing η = 1
2H(H+1) and r? =

⌈
log(10H2)
log(1+η)

⌉
,

with probability at least 1 − p, the regret of Algorithm 2 is bounded by O(
√
H4SAT`), where

` := log(SAT/p) is a log factor. Further, the local switching cost is bounded as Nswitch ≤
O(H3SA log(K/A)).

Proof of Theorem 2 The proof consists of two parts: upper bounding the regret, and upper
bounding the local switching cost.

Part I: Regret bound By Lemma A.3, we have

δ̃kh ≤
(
Q̃k
′

h −Q
πk
h +

[
Q̃kh − Q̃k

′

h

]
+

)
(xkh, a

k
h).

Applying Lemma A.2 with the k′ = kτlast(t)+1-th episode (so that there are τlast(t) visitations to
(xkh, a

k
h) prior to the k′-th episode), we have the bound(

Q̃k
′

h −Q
πk
h

)
(xkh, a

k
h) ≤

(
Q̃k
′

h −Q?h
)

(xkh, a
k
h) + (Q?h −Q

πk
h) (xkh, a

k
h)

≤ α0
τlast(t)

H +

τlast(t)∑
i=1

αiτlast(t)φ̃
ki
h+1 + βτlast(t) − φ̃

k
h+1 + δ̃kh+1 + ξkh+1,

(3)

where we recall that βt = 2
∑
i α

i
tbi = Θ(

√
H3`/t) and ξkh+1 := [(P̂kih −Ph)(V ?h+1−V

πk
h+1](xkh, a

k
h).

By Lemma A.4, the perturbation term [Q̃kh − Q̃k
′

h]+ can be bounded as

[Q̃kh − Q̃k
′

h]+(xkh, a
k
h) ≤ βt +

t∑
i=τlast(t)+1

αitφ̃
ki
h+1 + C

√
H3`

t
. (4)

We now study the effect of adding (4) onto (3). The term C
√
H3`/t in (4) and βτlast(t) in (3) can be

both absorbed into βt (as βt ≥ 2
√
H3`/t and βτlast(t) ≤

√
1 + ηβt), so these together is bounded

by C ′βt where C ′ is an absolute constant.

Adding (4) onto (3), we obtain

δ̃kh ≤ α0
τlast(t)

H︸ ︷︷ ︸
I

+

τlast(t)∑
i=1

αiτlast(t)φ̃
ki
h+1 +

t∑
i=τlast(t)+1

αitφ̃
ki
h+1︸ ︷︷ ︸

II

+C ′βt − φ̃kh+1 + δ̃kh+1 + ξkh+1.

We now sum the above bound over k ∈ [K]. For term I, it equals H only when τlast(t) = 0, which
happens only if t = 0, so the sum over k is upper bounded by SAH .

5

For term II, we consider the coefficient in front of φ̃k
′

h+1 for each k′ ∈ [K] when summing over k.
Let nkh denote the number of visitations to (xkh, a

k
h) prior to the k-th episode. For each k′, φ̃k

′

h+1 is

counted if i = nk
′

h and (xkh, a
k
h) = (xk

′

h , a
k′

h). We use t to denote nkh, then an αn
k′
h

τlast(t)
appears if

τlast(t) ≥ nk
′

h , and an αn
k′
h
t appears if τlast(t) + 1 ≤ nk′h ≤ t. So the total coefficient in front of φ̃k

′

h+1
is at most ∑

t:t≥nk′h ,τlast(t)≤n
k′
h −1

α
nk
′
h
t +

∑
t:τlast(t)≥nk

′
h

α
nk
′
h

τlast(t)
,

for each k′ ∈ [K]. Choosing η = 1
2H(H+1) and r? =

⌈
log(10H2)
log(1+η)

⌉
, applying Lemma A.5, the above

is upper bounded by 1 + 3/H .

For the remaining terms, we can adapt the proof of Theorem 1 in [1] and obtain a propagation of
error inequality, and deduce (as (1 + 3/H)H = O(1)) that the regret is bounded by O(

√
H4SAT`).

This concludes the proof.

Part II: Bound on local switching cost For each (h, x) ∈ [H]× S and each action a ∈ A = [A],
either it is in stage I, which induces a switching cost of at most τ(r?), or it is in stage II, which
according to the triggering sequence induces a switching cost of

τ(r?) + ra − r? ≤ τ(r?) + ra,

where ra is the final index for action a satisfying

A∑
a=1

d(1 + η)rae ≤ K +H,

(define ra = 0 if action a has not reached the second stage.) Applying Jensen’s inequality gives that

A∑
a=1

ra ≤
A log((K +H)/A)

log(1 + η)
= O

(
H2A log(K/A)

)
So the switching cost for (h, x) can be bounded as

Aτ(r?) +

A∑
a=1

ra

≤ A d(1 + η)r?e+O
(
H2A log(K/A)

)
≤ A

⌈
(1 + η) · 10H2

⌉
+O

(
H2A log(K/A)

)
≤ 20H2A+O

(
H2A log(K/A)

)
= O

(
H2A log(K/A)

)
.

Multiplying the above by HS (the number of (h, x) pairs) gives the desired bound.

B Q-learning with UCB2-Bernstein exploration

B.1 Algorithm description

We present the algorithm, Q-Learning with UCB2-Bernstein (UCB2B) exploration, in Algorithm 1
below.

B.2 Proof of Theorem 3

We first present the analogs of Lemmas that we used in the proof of Theorem 2.

6

Algorithm 1 Q-learning with UCB2-Bernstein (UCB2B) Exploration
input Parameter η ∈ (0, 1), r? ∈ Z>0, and c > 0.

Initialize: Q̃h(x, a)← H , Qh ← Q̃h, Nh(x, a)← 0 for all (x, a, h) ∈ S ×A× [H].
for episode k = 1, . . . ,K do

Receive x1.
for step h = 1, . . . ,H do

Take action ah ← arg maxa′ Qh(xh, a
′), and observe xh+1.

t = Nh(xh, ah)← Nh(xh, ah) + 1.
µh(xh, ah)← µh(sh, ah) + Ṽh+1(xh+1).

σh(xh, ah)← σh(xh, ah) +
(
Ṽh+1(xh+1)

)2

.

Wt(xh, ah, h) = 1
t

(
σh(xh, ah)− (µh(xh, ah))

2
)

.

βt(xh, ah, h)← min

{
c1

(√
H
t (Wt(xh, ah, h) +H)`+

√
H7SA·`
t

)
, c2

√
H3`
t

}
.

bt ← βt(xh,ah,h)−(1−αt)βt−1(xh,ah,h)
2αt

(Bernstein-type bonus).

Q̃h(xh, ah)← (1− αt)Q̃h(xh, ah) + αt[rh(xh, ah) + Ṽh+1(xh+1) + bt].
Ṽh(xh)← min

{
H,maxa′∈A Q̃h(xh, a

′)
}

.
if t ∈ {tn}n≥1 (where tn is defined in (1)) then

(Update policy) Qh(xh, ·)← Q̃h(xh, ·).
end if

end for
end for

Lemma B.1 (Q̃ is optimistic and accurate for the Bernstein case; Lemma C.1 & C.4, [1]). We have
for all (h, x, a, k) ∈ [H]× S ×A× [K] that

Q̃kh(x, a)−Q?h(x, a)

=α0
t (H −Q?h(x, a))+

t∑
i=1

αit

(
rh(x, a) + Ṽ kih+1(xkih+1)− V ?h+1(xkih+1) +

[(
P̂kih − Ph

)
V ?h+1

]
(x, a) + bi

)
,

where [P̂kih Vh+1](x, a) := Vh+1(xkih+1).

Further, with probability at least 1− p, under the choice of bt and βt in Algorithm 1, we have for all
(h, x, a, k) that

0 ≤ Q̃kh(x, a)−Q?h(x, a) ≤ α0
tH +

t∑
i=1

αit(Ṽ
ki
h+1 − V

?
h+1)(xkih+1) + βt.

The following Lemma is the analog of Lemma A.3 in the Bernstein case.
Lemma B.2 (Max error under delayed policy update). We have

δ̃kh ≤
(

max
{
Q̃k
′

h , Q̃
k
h

}
−Qπkh

)
(xkh, a

k
h) =

(
Q̃k
′

h −Q
πk
h +

[
Q̃kh − Q̃k

′

h

]
+

)
(xkh, a

k
h).

where k′ = kτlast(t)+1 (which depends on k.) In particular, if t = τlast(t), then k = k′ and the upper
bound reduces to (Q̃k

′

h −Q
πk
h)(xkh, a

k
h).

The proof of Lemma B.2 can be adapted from the proof of Lemma A.3. The following Lemma is the
analog of Lemma A.4 in the Bernstein case.

Lemma B.3 (Perturbation bound on (Q̃kh − Q̃k
′

h)+). For any k such that k > k′ (so that the
perturbation term is non-zero), we have[

Q̃kh − Q̃k
′

h

]
+

(xkh, a
k
h) ≤ βt +

t∑
i=τlast(t)+1

αitφ̃
ki
h+1 + ζ

k

h,

7

where

ζ
k

h :=

∣∣∣∣∣∣
t∑

i=τlast(t)+1

αit[(P̂kh − Ph)V ?h+1](xkh, a
k
h)

∣∣∣∣∣∣ .
The proof of Lemma B.3 can be adapted from the proof of Lemma A.4, but we used a finer bound on
the summation ζ

k

h over k ∈ [K] in the proof of Theorem 3.
Lemma B.4 (Variance is bounded and Wt is accurate; Lemma C.5 & C.6, [1]). There exists an
absolute constant c, such that

K∑
k=1

H∑
h=1

VhV πkh+1(xkh, a
k
h) ≤ c(HT +H3`),

w.p. at least (1− p).

Further, w.p. at least (1 − 4p), there exists an absolute constant c > 0 such that, letting (x, a) =
(xkh, a

k
h) and t = nkh = Nk

h (x, a), we have

Wt(x, a, h) ≤ VhV πkh+1(x, a) + 2H(δ̃kh+1 + ξkh+1) + c

(
SA
√
H7`

t
+

√
SAH7`

t

)
for all (k, h) ∈ [K]× [H], where the variance operator Vh is defined by

[VhVh+1](x, a) := Varx′∼Ph(·|x,a)(Vh+1(x′)) = Ex′∼Ph(·|x,a) [Vh+1(x′)− [PhVh+1](x, a)]
2
.

Now, it is ready to present the proof of Theorem 3.

Theorem 3 (Q-learning with UCB2B, restated). Choosing η = 1
2H(H+1) and r? =

⌈
log(10H2)
log(1+η)

⌉
, with

probability at least 1− p, the regret of Algorithm 1 is bounded by O(
√
H3SAT`2 +

√
S3A3H9`4),

where ` := log(SAT/p) is a log factor. Further, the local switching cost is bounded as Nswitch ≤
O(H3SA log(K/A)).

Proof of Theorem 3

By Lemma B.2, we have

δ̃kh ≤
(
Q̃k
′

h −Q
πk
h +

[
Q̃kh − Q̃k

′

h

]
+

)
(xkh, a

k
h).

Applying Lemma B.1 with the k′ = kτlast(t)+1-th episode (so that there are τlast(t) visitations to
(xkh, a

k
h) prior to the k′-th episode), we have the bound(

Q̃k
′

h −Q
πk
h

)
(xkh, a

k
h) ≤

(
Q̃k
′

h −Q?h
)

(xkh, a
k
h) + (Q?h −Q

πk
h) (xkh, a

k
h)

≤ α0
τlast(t)

H +

τlast(t)∑
i=1

αiτlast(t)φ̃
ki
h+1 + βτlast(t) − φ̃

k
h+1 + δ̃kh+1 + ξkh+1.

(5)

By Lemma B.3, the perturbation term [Q̃kh − Q̃k
′

h]+ can be bounded as

[Q̃kh − Q̃k
′

h]+(xkh, a
k
h) ≤ βt +

t∑
i=τlast(t)+1

αitφ̃
ki
h+1 + ζ

k

h. (6)

Thus, adding (6) onto (5), we obtain

δ̃kh ≤α0
τlast(t)

H︸ ︷︷ ︸
I

+

τlast(t)∑
i=1

αiτlast(t)φ̃
ki
h+1 +

t∑
i=τlast(t)+1

αitφ̃
ki
h+1︸ ︷︷ ︸

II

+ ζ
k

h︸︷︷︸
III

+ βτlast(t)︸ ︷︷ ︸
IV

+ ξkh+1︸︷︷︸
V

−φ̃kh+1 + δ̃kh+1 + βt.

8

We now sum the above bound over k ∈ [K] and h ∈ [H]. For term I, it equals H only when
τlast(t) = 0, which happens only if t = 0, so the sum over k is upper bounded by SAH .

For term II, we follow the same argument in the proof of Theorem 2 and obtain:

K∑
k=1

τlast(t)∑
i=1

αiτlast(t)φ̃
ki
h+1 +

t∑
i=τlast(t)+1

αitφ̃
ki
h+1

 ≤ (1 +
3

H

) K∑
k=1

φ̃kh+1

For term III, we first apply the Azuma-Hoeffding inequality to get that

ζ
k

h ≤ c

√√√√ t∑
i=τlast(t)+1

(αit)
2H2`

uniformly over (h, k), then we sum it the above over k ∈ [K], and then we obtain

K∑
k=1

ζ
k

h ≤cH
√
`

K∑
k=1

√√√√ t∑
i=τlast(t)+1

(αit)
2 ≤ cH

√
`

K∑
k=1

√√√√√√
nkh∑

i=

⌈
nk
h

1+η

⌉
(
αi
nkh

)2

≤cH
√
`

K∑
k=1

√√√√(nkh − ⌈ nkh
1 + η

⌉)(
max
i∈[nkh]

αi
nkh

)2

≤cH
√
`

K∑
k=1

√
ηnkh

4H2

(nkh)2

≤cH
√
`

K∑
k=1

√
1

nkh

(i)
= cH

√
`
∑
x,a

Nkh (s,a)∑
n=1

√
1

n

(ii)
≤ cH

√
SAK`, (7)

where (i) follows the fact
∑
s,aN

K
h (x, a) = K, and (ii) follows the property that the LHS of (ii) is

maximized when NK
h (x, a) = K/SA for all x, a.

For term IV, we have
K∑
k=1

H∑
h=1

βτlast(nkh) ≤ c1
K∑
k=1

H∑
h=1

(√
H

τlast(nkh)
(Wτlast(nkh)(x, a, h) +H)`+

√
H7SA · `
τlast(nkh)

)
(8)

by our choice of βt in Algorithm 1. We first upper bound summation the Wτlast(nkh)(x, a, h) term as
follows

K∑
k=1

H∑
h=1

Wτlast(nkh)(x, a, h)

(i)
≤

K∑
k=1

H∑
h=1

[
VhV πkh+1(x, a) + 2H(δkh+1 + ξkh+1) + c

(
SA
√
H7`

τlast(nkh)
+

√
SAH7`

τlast(nkh)

)]
(ii)
≤

K∑
k=1

H∑
h=1

[
VhV πkh+1(x, a) + 2H(δkh+1 + ξkh+1) + c(1 + η)

(
SA
√
H7`

nkh
+

√
SAH7`

nkh

)]
(iii)
≤

K∑
k=1

H∑
h=1

[
VhV πkh+1(x, a) + 2H(δkh+1 + ξkh+1)

]
+ c(1 + η)

(
S2A2

√
H9`3 + SA

√
H8T`

)
(iv)
≤2H

K∑
k=1

H∑
h=1

(δkh+1 + ξkh+1) + c′
(
HT +H3`+ S2A2

√
H9`3 + SA

√
H8T`

)
, (9)

where inequalities (i) and (iv) follow from Lemma B.4, inequality (ii) follows from τlast(n
k
h) ≥

nkh/(1 + η), and inequality (iii) uses the properties that
∑K
k=1(nkh)−1 and

∑K
k=1(nkh)−1/2 are

maximized when NK
h (x, a) = K/SA for all x, a (similar to (7)).

9

We now consider the first term in (9). By the Azuma-Hoeffding inequality, we have∣∣∣∣∣
H∑

h′=h

K∑
k=1

ξkh′+1

∣∣∣∣∣ ≤
∣∣∣∣∣
H∑

h′=h

K∑
k=1

[(P̂kih′ − Ph)(V ?h′+1 − V
πk
h′+1)](xkh′ , a

k
h′)

∣∣∣∣∣ ≤ O(H
√
T`), (10)

w.p. 1− p for all h ∈ [H]. Recall βt(x, a, h) ≤ c
√
H3`/t, we can simply obtain

K∑
k=1

δkh ≤ O(
√
H4SAT`), (11)

for all h ∈ [H] by adapting the proof of Theorem 2. Then, using (10) and (11), we obtain the upper
bound of the summation of Wτlast(nkh)(x, a, h) term for h ∈ [H] and k ∈ [K]

K∑
k=1

H∑
h=1

Wτlast(nkh)(x, a, h)

2H

K∑
k=1

H∑
h=1

(δkh+1 + ξkh+1) + c′
(
HT +H3`+ S2A2

√
H9`3 + SA

√
H8T`

)
≤O

(
HT + S2A2H7`+ S2A2

√
H9`3

)
. (12)

Now it is ready to upper bounded the summation of the first term in (8),

K∑
k=1

H∑
h=1

√
H

τlast(nkh)
(Wτlast(nkh)(x, a, h) +H)`

(i)
≤

√√√√(K∑
k=1

H∑
h=1

(Wτlast(nkh)(x, a, h) +H)

)(
K∑
k=1

H∑
h=1

H

τlast(nkh)

)
`

(ii)
≤(1 + η)

√√√√ K∑
k=1

H∑
h=1

Wτlast(nkh)(x, a, h) ·
√
H2SA`2 + (1 + η)

√
H3SAT`2

(iii)
≤O(

√
H3SAT`2) (13)

where inequality (i) follows from the Cauchy–Schwarz inequality, inequality (ii) follows from the
facts that τlast(n

k
h) ≥ nkh/(1 + η) and

∑K
k=1(nkh)−1 is maximized when NK

h (x, a) = K/SA for all
x, a, and inequality (iii) follows from (12).

The summation of the second term in (8) can be upper bounded by

K∑
k=1

H∑
h=1

√
H7SA · `
τlast(nkh)

≤
K∑
k=1

H∑
h=1

(1 + η)
√
H7SA · `
nkh

≤ (1 + η)
√
H9S3A3`4, (14)

by following τlast(n
k
h) ≥ nkh/(1 + η) and 1 + 1/2 + 1/3 + · · · ≤ `.

Putting (8), (13), and (14) together, we have

K∑
k=1

H∑
h=1

βτlast(nkh) ≤ O
(√

H3SAT`2 +
√
S3A3H9`4

)
.

For the remaining terms, we can adapt the proof of Theorem 2 in [1] and obtain a propagation of
error inequality. Thus, we deduce that the regret is bounded by O(

√
H3SAT`2 +

√
S3A3H9`4).

The bound on local switching cost can be adapted from the proof of Theorem 2. This concludes the
proof.

10

C Proof of Corollary 4

Consider first Q-Learning with UCB2H exploration. By Theorem 2, we know that the regret is
bounded by Õ(

√
H4SAT) with high probability, that is, we have

K∑
k=1

V ?1 (x1)− V πk1 (x1) ≤ Õ(
√
H4SAT).

Now, define a stochastic policy π̂ as

π̂ =
1

K

K∑
k=1

πk.

By definition we have

E
[
V ?1 (x1)− V π̂1 (x1)

]
=

1

K

K∑
k=1

[V ?1 (x1)− V πk1 (x1)] ≤ Õ

(√
H4SAT

K

)
= Õ

(√
H5SA

K

)
.

So by the Markov inequality, we have with high probability that

V ?1 (x1)− V π̂1 (x1) ≤ Õ

(√
H5SA

K

)
.

Taking K = Õ(H5SA/ε2) bounds the above by ε.

For Q-Learning with UCB2B exploration, the regret bound is Õ(
√
H3SAT). A similar argument

as above gives that K = Õ(H4SA/ε2) episodes guarantees an ε near-optimal policy with high
probability.

D Proof of Theorem 5

We first present the concurrent version of low-switching cost Q-learning with {UCB2H, UCB2B}
exploration.

Algorithm description At a high level, our algorithm is a very intuitive parallelization of the
vanilla version – we “parallelize as much as you can” until we have to switch.

More concretely, suppose the policy Qh has been switched (t− 1) times and we have a new policy
yet to be executed. We execute this policy on all M machines, and read the observed trajectories
from machine 1 to M to determine a number m ∈ {1, . . . ,M} such that the policy needs to be
switched (according to the UCB2 schedule) afterm episodes. We then only keep the data on machines
1, . . . ,m, use them to compute the next policy, and throw away all the rest of the data on machines
m+ 1, . . . ,M . The full algorithm is presented in Algorithm 2.

D.1 Proof of Theorem 5

The way that Algorithm 2 is constructed guarantees that its execution path is exactly equivalent (i.e.
equal in distribution) to the execution path of the vanilla non-parallel Q-Learning with UCB2{H, B}
exploration, except that it does not fully utilize the data on all M machines and needs to throw away
some data. As a corollary, if the non-parallel version plays Lt episodes in between the (t− 1)-th and
t-th switch, then the parallel/concurrent version will play the same episodes in dLt/Me rounds.

Now, suppose we wish to play a total of K episodes concurrently with M machines, and the
corresponding non-parallel version of Q-learning is guaranteed to have at most Nswitch local switches
with Lt episodes played before each switch. Let R denote the total number of rounds, then we have

R =

Nswitch∑
t=1

rt =

Nswitch∑
t=1

⌈
Lt
M

⌉
≤
Nswitch∑
t=1

(
1 +

Lt
M

)
≤ Nswitch +

K

M
.

11

Algorithm 2 Concurrent Q-learning with UCB2 scheduling

input One of the UCB2-{Hoeffding, Bernstein} bonuses for updating Q̃.
Initialize: Q̃h(x, a)← H , Qh ← Q̃h, t← 1.
while stopping criterion not satisfied do

for rounds rt = 1, 2, . . . do
Play according to Qh concurrently on all M machines and store the trajectories.
Aggregate the trajectories and feed them sequentially into the UCB2 scheduling to determine
whether a switch is needed.
if Switch is needed after m ∈ {1, . . . ,M} episodes then

BREAK
end if

end for
Update the policy Q̃h from all theM(rt−1)+m stored trajectories using {Hoeffding, Bernstein}
bonus.
Set Qh(·, ·)← Q̃h(·, ·) and t← t+ 1.

end while

Now, to find ε near-optimal policy, we know by Corollary 4 that Q-learning with {UCB2H, UCB2B}
exploration requires at most

K = O

(
H{5,4}SA log(HSA)

ε2

)
episodes. Further, choosing K as above, by Theorem 2 and 3, the switching cost is bounded as

Nswitch ≤ O
(
H3SA log(K/A)

)
= O

(
H3SA log(HSA/ε)

)
.

Plugging these into the preceding bound on R yields

R ≤ O
(
H3SA log(HSA/ε) +

H{5,4}SA log(HSA)

ε2M

)
= Õ

(
H3SA+

H{5,4}SA

ε2M

)
,

the desired result.

D.2 Concurrent algorithm with mistake bound

Our concurrent algorithm (Algorithm 2 can be converted straightforwardly to an algorithm with low
mistake bound. Indeed, for any given ε, by Theorem 5, we obtain an ε near-optimal policy with high
probability by running Algorithm 2 for

Õ

(
H3SA+

H{5,4}SA

ε2M

)
rounds. We then run this ε near-optimal policy forever and are guaranteed to make no mistake.

For such an algorithm, with high probability, “mistakes” can only happen in the exploration phase.
Therefore the total amount of “mistakes” (performing an ε sub-optimal action) is upper bounded by
the above number of exploration rounds multiplied by HM , as each round consists of at most M
machines1 each performing H actions. This yields a mistake bound

Õ

(
H4SAM +

H{6,5}SA

ε2

)
as desired.

E Proof of Theorem 6

Recall that M denotes the set of all MDPs with horizon H , state space S, action space A, and
deterministic rewards in [0, 1]. Let K be the number of episodes that we can run, and A be any RL

1To have a fair comparison with CMBIE, if a round does not utilize all M machines, we still let all M
machines run and count their actions as their “mistakes”.

12

algorithm satisfying that

Nswitch =
∑
(h,x)

nswitch(h, x) ≤ HSA/2

almost surely. We want to show that

sup
M∈M

Ex1,M

[
K∑
k=1

V ?1 (x1)− V πk1 (x1)

]
≥ Ω(K),

i.e. the worst case regret is linear in K.

E.1 Construction of prior

Let a? : [H]× [S]→ [A] denote a mapping that maps each (h, x) to an action a?(h, x) ∈ [A]. There
are AHS such mappings. For each a?, define an MDP Ma? where the transition is uniform, i.e.

x1 ∼ Unif([S]), xh+1|xh = x, ah = a ∼ Unif([S]) for all (x, a) ∈ [S]× [A], h ∈ [H]

and the reward is 1 if ah = a?(h, xh) and 0 otherwise, that is,

rh(x, a) = 1 {a = a?(h, x)} .

Essentially, Ma? is just a H-fold connection of S parallel bandits that are A-armed, where a?(h, x)
is the only optimal action at each (h, x).

For such MDPs, as the transition does not depend on the policy, the value functions can be expressed
explicitly as

Ex1
[V π1 (x1)] =

1

S

∑
(h,x)∈[H]×[S]

1 {πh(x) = a?(h, x)} ,

and we clearly have
Ex1 [V ?1 (x1)] ≡ H.

E.2 Minimax lower bound

Using the sup to average reduction with the above prior, we have the bound

sup
M∈M

Ex1,M

[
K∑
k=1

V ?1 (x1)− V πk1 (x1)

]
≥ Ea?EMa?

[
KH −

K∑
k=1

V πk1 (x1)

]

= KH −
K∑
k=1

Ea?,Ma?
[V πk1 (x1)].

It remains to upper bound Ea?,Ma?
[V πk1 (x1)] for each k.

For all k ≥ 1, let

nkswitch(h, x) :=

k−1∑
j=1

1
{
πhj (x) 6= πhj+1(x)

}
and Nk

switch =
∑
h,x

nkswitch(h, x)

denote respectively the switching cost at a single (h, x) and the total (local) switching cost. We use
the switching cost to upper bound Ea?,Ma?

[V πk1].

Let
Ak(h, x) :=

{
πh1 (x), . . . , πhk (x)

}
⊆ [A]

denote the set of visited actions at timestep h and state x. Observe that

Ea?,Ma?
[V πk1] =

1

S

∑
h,x

E
[
1
{
a?(h, x) = πhk (x)

}]
≤ 1

S

∑
h,x

E[1 {a?(h, x) ∈ Ak(h, x)}]︸ ︷︷ ︸
:=Φk(h,x)

.

Therefore it suffices to bound Φk(h, x).

13

It is clear that algorithms that only switch to unseen actions can maximize the value function, so we
henceforth restrict attention on these algorithms. Let a? = a?(h, x) and nkswitch = nkswitch(h, x) for
convenience. Let

Ak(h, x) =
{
a1, a2, . . . , an

k
switch+1

}
be the ordered set of unique actions that have been taken at (h, x) throughout the execution of the
algorithm. We have

Φk(h, x) = P(a? ∈ Ak(h, x)) = P

⋃
j≥1

{
nkswitch + 1 ≥ j, a? /∈

{
a1, a2, . . . , aj−1

}
, a? = aj

}
=
∑
j≥1

P(nkswitch + 1 ≥ j) · P(a? /∈
{
a1, a2, . . . , aj−1

}
, a? = aj | nkswitch + 1 ≥ j).

Now, suppose we know that nkswitch +1 ≥ j, then the algorithm have seen the reward on a1, . . . , aj−1.
By the uniform prior of a?, if the algorithm has observed the rewards for all a ∈ S and found that
a? /∈ S, the corresponding posterior for a? would be uniform on [A] \ S. Therefore, we have
recursively that

P(a? /∈
{
a1, . . . , aj−1

}
, a? = aj | nkswitch + 1 ≥ j) =

j−1∏
`=1

A− `
A− `+ 1

· 1

A− j + 1
=

1

A
.

Substituting this into the preceding bound gives

Φk(h, x) =
1

A

∑
j≥1

P(nkswitch + 1 ≥ j) =
E[nkswitch + 1]

A

and thus

Ea?,Ma?
[V πk1] ≤ 1

S

∑
h,x

Φk(h, x) ≤ 1

S

∑
h,x

E[nkswitch(h, x) + 1]

A
≤ H

A
+

E[Nk
switch]

SA

As Nk
switch ≤ NK

switch ≤ HSA/2 almost surely, we have for all k that

Ea?,Ma?
[V πk1] ≤ H/A+H/2 ≤ 3H/4

when A ≥ 4 and thus the regret can be lower bounded as

KH −
K∑
k=1

Ea?,Ma?
[V πk1] ≥ KH/4,

concluding the proof.

References
[1] C. Jin, Z. Allen-Zhu, S. Bubeck, and M. I. Jordan. Is Q-learning provably efficient? In Advances

in Neural Information Processing Systems, pages 4868–4878, 2018.

14

	Proof of Theorem 2
	Notation
	Basics
	Perturbation bound under delayed Q updates
	Proof of Theorem 2

	Q-learning with UCB2-Bernstein exploration
	Algorithm description
	Proof of Theorem 3

	Proof of Corollary 4
	Proof of Theorem 5
	Proof of Theorem 5
	Concurrent algorithm with mistake bound

	Proof of Theorem 6
	Construction of prior
	Minimax lower bound

