- **Reviewer #3 & #4** We thank the reviewers for the positive feedback and helpful comments.
- **Reviewer #5** We thank the reviewer for raising the questions, which we respond to below.
- (2) "Why does switching cost make sense in finite-horizon MDPs?"
- We believe there is some misunderstanding in the switching cost considered in this paper. First, our switching cost
- is not to measure the change of per-step policy from step to step, but rather the change of the overall policies from
- episode to episode. Concretely, what we meant by a policy π is the aggregation of per-step policies:

$$\pi = \left\{\pi^h : \mathcal{S} \to \mathcal{A}\right\}_{h=1}^H, \text{ or equivalently, a stationary mapping from } \mathcal{S} \times [H] \text{ to } \mathcal{A}$$
 and our switching cost measures how π_k differs from π_{k+1} , where π_k is the policy deployed in episode k .

- If we understand correctly, part of the reviewer's concern is that since optimal policies in finite-horizon MDPs are
- nonstationary, to execute the policy one always needs to switch (between time steps), so switching is ubiquitous and 9
- should not be costly. This argument confuses the two kinds of switching (between steps vs. between episodes): 10
- Switching between steps is cheap as it can be eliminated if we specify a full policy that takes the time step as part of its 11
- input. In contrast, switching between episodes can only be eliminated if our (augmented) policy takes data from all 12
- previous episodes as input, which is much more costly and sometimes impossible. See our response about motivation 13
- below for more examples where frequent policy switching between episodes is impractical.
- Finally, we agree with the reviewer that switching cost can also be meaningfully studied in infinite-horizon MDPs, but 15
- that is asking the same question under a different MDP formulation, and does not differ from the question we consider 16
- here in a fundamentally different manner. 17
- (1) "Practical relevance & technical contributions." 18
- Practical Motivation. There are strong practical motivations for designing RL algorithms with low switching cost: it 19
- happens whenever changing the policy has a higher cost than using the same policy to gather data. Our introduction 20
- lists a variety of such scenarios in practice, but we'd like to make it clearer here by the following concrete example.
- In personalized recommendation systems such as video recommendation on YouTube, the policy specifies what videos 22
- we recommend to users given their features. Standard (provably efficient) RL algorithms typically require adjusting 23
- its policy based on instantaneous feedback, so for example it needs to update the policy for User 2 after obtaining the 24
- feedback on User 1. But this is computationally impractical as there are so many users visiting at every second. In 25
- contrast, it makes more sense to use the same policy to aggregate data in a certain period before coming up with an 26
- improved policy, which is precisely the setting of low switching cost algorithms. We will improve the presentation of 27
- our motivation part to make this clearer to the audience.
- Technical Contributions. Our key technical contribution is the establishment of finite-sample regret bound under delayed 29
- O updates. As our algorithm plays greedily according to a delayed version of the O estimate, a priori it may be the case 30
- that the errors caused by the delay may blow up and break the regret bound. We provide a tight control of the errors 31
- under UCB2 scheduling and show that these errors do not affect the regret bound. Our techniques are novel and we 32
- believe of broader interest for understanding the effect of delayed updates in exploration problems. 33
- (4) "What is new about concurrent RL / relationship with asynchronous Q-Learning."
- The concerns of concurrent RL and asynchronous Q-Learning are quite different: concurrent RL cares about the 35
- improvement in speedup of exploration when multiple machines can each play a copy of the MDP at the same time, 36
- whereas asynchronous Q-Learning is about the convergence under asynchrony of updating Q(s,a) for different (s,a). 37
- Indeed, existing results on asynchronous Q-Learning [e.g., Even-Dar and Mansour, 2003] only show convergence 38
- and do not provide an explicit sample complexity bound, and thus do not cover our result. Furthermore, classical 39
- Q-Learning analyses (including the asynchronous ones) dodge the challenge of exploration by assuming that all states 40
- are visited sufficiently often, but exploration is a key concern in our setting, so the results are generally incomparable. 41 In fact, concurrent PAC RL is first studied by Guo and Brunskill in 2015, and is a relatively new research direction. 42
- (5) "Why constrained setting in the lower bound." 43
- We chose this simplified setting (lower bounding the regret for algorithms with switching cost $\leq HSA/2$) as the 44
- problem cannot be formulated in a standard fashion and reduced to information-theoretic tools. Indeed, as we assumed 45
- deterministic rewards, it is in principle possible for an algorithm with HSA switches to achieve optimal regret. (Think 46
- about a bandit with A arms.) We believe our lower bound provides a useful initial step in understanding the limit of 47
- switching costs; stronger lower bounds could be possible when rewards are stochastic, which we leave as future work. 48

References

Eyal Even-Dar and Yishay Mansour. Learning rates for q-learning. *Journal of machine learning Research*, 5(Dec): 1-25, 2003.