
A Full formulation of the GRU-ODE cell

The full ODE equation for GRU-ODE is the following:

dh(t)

dt
= (1� z(t))� (g(t)� h(t)),

with

r(t) = �(Wrx(t) + Urh(t) + br)

z(t) = �(Wzx(t) + Uzh(t) + bz)

g(t) = tanh(Whx(t) + Uh(r(t)� h(t)) + bh).

Matrices W 2 RH⇥D, B 2 RH⇥H and bias vectors b 2 RH are the parameters of the cell. H and
D are the dimension of the hidden process and of the inputs respectively.

B Lipschitz continuity of GRU-ODE

As h is differentiable and continous on t, we know from the mean value theorem that for any ta, tb 2 t,
there exists t⇤ 2 (ta, tb) such that

h(tb)� h(ta) =
dh

dt
|t⇤ (tb � ta).

Taking the euclidean norm of the previous expression, we find

| h(tb)� h(ta) |=| dh
dt

|t⇤ (tb � ta) | .

Furthermore, we showed that h is bounded on [�1, 1]. Hence, because of the bounded functions
appearing in the ODE (sigmoids and hyperbolic tangents), the derivative of h is itself bounded by
[�2, 2]. We conclude that h(t) is Lipschitz continuous with constant K = 2.

C Comparison of numerical integration methods

We implemented three numerical integration methods, among which the classical Euler method and
the Dormand-Prince method (DOPRI). DOPRI is a popular adaptive step size numerical integration
method relying on 2 Runge-Kutta solvers of order 4 and 5. The advantage of adaptive step size
methods is that they can tune automatically the number of steps to integrate the ODE until the desired
point.

Figure 3 illustrates the number of steps taken by both solvers when given the same data and same
ODE. We observe that using an adaptive step size results in half as many time steps. More steps are
taken near the observations and as the underlying process becomes smoother, the step size increase,
as observed on the right side of the figure. However, each time step requires significantly fewer
computations for Euler than for DOPRI, so that Euler’s method appears more than competitive on
the data and simulations we have considered so far. Nevertheless, DOPRI might still be preferred as
default method because of its better numerical stability.
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Figure 3: Comparison of Euler and DOPRI numerical integration methods for same inputs and same
ODE. Colored ticks on the x axis represent the evaluation time for each method. Dotted lines show
the evolution of the estimated mean distribution of the observations while the dots stand for the
observations fed to the model.

D Mapping to deal with missingness across features

The preprocessing step fprep for GRU-Bayes takes in the hidden state h and computes the parameters
for the observation PDFs ✓ = fobs(h(t)). In the case of a Gaussian, ✓d contains the means and log-
variances for dimension d of Y(t). Then, we create a vector qd that concatenates ✓d with the observed
value y[k]d and the normalized error term, which for the Gaussian case is (y[k]d � µd)/�d, where
µd and �d are the mean and standard deviation derived from ✓d. We then multiply the vectors qd by
a dimension-specific weight matrix Wd and apply a ReLU nonlinearity. Next, we zero all results that
did not have an observation (by multiplying them with mask md). Finally, the concatenation of the
results is fed into the GRU unit of GRU-Bayes.

E Observation model mapping

The mapping from hidden h to the parameters of the distribution µY(t) and log(⌃Y(t)). For this
purpose we use a classical multi-layer perceptron architecture with a 25 dimensional hidden layer.
Note that me map to the log of the variance in order to keep it positive.

F GRU-ODE-Bayes-seq

On top of the architecture described in the main bulk of this paper, we also propose a variant which
process the sporadic inputs sequentially. In other words, GRU-Bayes will update its prediction
on the hidden h for one input dimension after the other rather than jointly. We call this approach
GRU-ODE-Bayes-seq.

In this sequential approach for GRU-Bayes, we process one-by-one all dimensions of y[k] that
were observed at time t[k] by first applying the preprocessing to each and then sending them to the
GRU unit. The preprocessing steps are the same as in the nonsequential scheme (Appendix D) but
without concatenation at the end because only one dimension is processed at a time. Note that the
preprocessing of dimensions cannot be done in parallel as the hidden state h changes after each
dimension is processed, which affects the computed ✓d and thus the resulting vector qd.
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G Minimal GRU-ODE

Following the same reasoning as for the full GRU cell, we also derived the minimal GRU-ODE cell,
based on the minimal GRU cell. The minimal GRU writes :

ft = �(Wfxt + Ufht�1 + bf )

ht = ft � ht�1 + (1� ft)� �(Whxt + Uh(ht�1 � ft) + bh)

This can be rewritten as the following difference equation :

�ht = (1� ft)� (�(Whxt + Uh(ht�1 � ft) + bh)� ht�1)

Which leads to the corresponding ODE :

dh(t)

dt
= (1� f(t))� (�(Whx(t) + Uh(h(t)� f(t)) + bh)� h(t))

H Ablation study of GRU-Bayes

In order to demonstrate the fitness of the GRU-Bayes module for our architecture, we ran an ablation
study where we replaced the GRU-Bayes with a 2 layers multi-layer perceptron. We used a tanh
activation function for the hidden units and a linear activation for the output layer. We evaluate the
performance of this modified architecture on the MIMIC dataset for the forecasting task. The results
are presented in table 3. The proposed architecture outperforms a simple MLP module, due to the
properties described in sections 2.2 and 2.3.

Table 3: NegLL and MSE results for proposed GRU-Bayes module and replaced with MLP.

MODEL MSE NEGLL

GRU-BAYES ORIGINAL 0.48± 0.01 0.83± 0.04
GRU-BAYES MLP 0.54± 0.05 1.05± 0.02

I Application to Ornstein-Uhlenbeck SDEs

We demonstrate the capabilities of our approach on data generated from a process driven by an SDE as
in Eq. 1. In particular, we focus on extensions of the multidimensional correlated Ornstein-Uhlenbeck
(OU) process with varying parameters. For a particular sample i, the dynamics is given by the
following SDE:

dYi(t) = ✓i(ri �Yi(t))dt+ �idW(t), (5)
where W(t) is a D-dimensional correlated Wiener process, ri is the vector of targets, and ✓i is the
reverting strength constant. For simplicity, we consider ✓i and �i parameters as scalars. Each sample
yi is then obtained via the realization of process (5) with sample-specific parameters.

I.1 Representation capabilities

We now show that our model exactly captures the dynamics of the distribution of Y(t) as defined in
Eq. 5. The evolution of the PDF of a diffusion process is given by the corresponding Fokker-Planck
equation. For the OU process, this PDF is Gaussian with time-dependent mean and covariance.
Conditioned on a previous observation at time t

⇤, this gives
Yi(t) | Yi(t

⇤) ⇠ N (µY(t, t⇤),�2
Y(t, t⇤)),

µY(t, t⇤) = ri + (Yi(t
⇤)� ri) exp (�✓i(t� t

⇤)),

�
2
Y(t, t⇤) =

�
2
i

2✓i
(1� exp(�2✓i(t� t

⇤))).
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Correlation of Y(t) is constant and equal to ⇢, the correlation of the Wiener processes. The dynamics
of the mean and variance parameters can be better expressed in the following ODE form:

dµY(t, t⇤)

dt
= �✓i(µY(t, t⇤)� ri)

d�
2
Y(t, t⇤)

dt
= �2✓i

✓
�
2
Y(t, t⇤)� �

2
i

2✓i

◆ (6)

With initial conditions µY(0, t⇤) = Y(t⇤) and �
2
Y(0, t⇤) = 0. We next investigate how specific

versions of this ODE can be represented by our GRU-ODE-Bayes.

I.1.1 Standard Ornstein-Uhlenbeck process

In standard OU, the parameters ri, �i, and ✓i are fixed and identical for all samples. The ODE (6)
is linear and can then be represented directly with GRU-ODE by storing µY(t, t⇤) and �

2
Y(t, t⇤) in

the hidden state h(t) and matching the Equations (3) and (6). The OU parameters ri, �i and ✓i are
learned and encoded in the weights of GRU-ODE. GRU-Bayes then updates the hidden state and
stores µY(t, t⇤) and �

2
Y(t, t⇤).

I.1.2 Generalized Ornstein-Uhlenbeck processes

When parameters are allowed to vary over samples, these have to be encoded in the hidden state
of GRU-ODE-Bayes, rather than in the fixed weights. For ri and �i, GRU-Bayes computes and
stores their current estimates as the observations arrive. This is based on previous hidden and current
observation as in Eq. 4. The GRU-ODE module then simply has to keep these estimates unchanged
between observations:

dri(t)

dt
=

d�i(t)

dt
= 0.

This can be easily done by switching off the update gate (i.e., setting z(t) to 1 for these dimensions).
These hidden states can then be used to output the mean and variance in Eq. 6, thus enabling the
model to represent generalized Ornstein-Uhlenbeck processes with sample-dependent ri and �i.

Perfect representation for sample dependent ✓i requires the multiplication of inputs in Eq. 6, which
GRU-ODE is not able to perform exactly but should be able to approximate reasonably well. If an
exact representation is required, the addition of a bilinear layer is sufficient.

Furthermore, the same reasoning applies when parameters are also allowed to change over time
within the same sample. GRU-Bayes is again able to update the hidden vector with the new estimates.

I.1.3 Non-aligned time series

Our approach can also handle samples that would be dephased in time (i.e, the observation windows
are not aligned on an intrinsic time scale). Longitudinal patient data recorded at different stages of
the disease for each patient is one example, developed in Section 5. This setting is naturally handled
by the GRU-Bayes module.

I.2 Case Study: 2D Ornstein-Uhlenbeck Process

I.2.1 Setup

We evaluate our model on a 2-dimensional OU process with correlated Brownian motion as defined
in Eq. 5. For best illustration of its capabilities, we consider the three following cases.

In the first setting, ri varies across samples as r
1
i
⇠ U(0.5, 1.5) and r

2
i
⇠ U(�1.5,�0.5). The

correlation between the Wiener processes ⇢ is set to 0.99. We also set � = 0.1 and ✓ = 1. The second
case, which we call random lag is similar to the first one but adds an extra uniformly distributed
random lag to each sample. Samples are then time shifted by some �T ⇠ U(0, 0.5). The third setting
is identical to the first but with ⇢ = 0 (i.e., both dimensions are independent and no information is
shared between them).

We evaluate all methods and settings on the forecast of samples after time t = 4. The training set
contains 10,000 samples with an average of 20 observations scattered over a 10-second time interval.
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Figure 4: Example of predictions (with shaded confidence intervals) given by GRU-ODE-Bayes for
two samples of a correlated 2-dimensional stochastic process (dotted line) with unknown parameters.
Dots show the observations. Only a few observations are required for the model to infer the parameters.
Additionally, GRU-ODE-Bayes learns the correlation between the dimensions resulting in updates of
nonobserved variables (red dashed arrow).

Table 4: NegLL and MSE results for 2-dimensional general Ornstein-Uhlenbeck process.

NEGATIVE LOG-LIKELIHOOD MSE
MODEL RANDOM r RANDOM LAG ⇢ = 0 RANDOM R RANDOM LAG ⇢ = 0

NEURALODE-VAE-MASK 0.222 0.223 0.204 0.081 0.069 0.081
NEURALODE-VAE 0.183 0.230 0.201 0.085 0.119 0.113
GRU-ODE-BAYES �1.260 �1.234 �1.187 0.005 0.005 0.006
GRU-ODE-BAYES-MINIMAL �1.257 �1.226 �1.188 0.005 0.006 0.006
GRU-ODE-BAYES-SEQ �1.266 �1.225 �1.191 0.005 0.005 0.006
GRU-ODE-BAYES-SEQ-MINIMAL �1.260 �1.225 �1.189 0.005 0.005 0.006

Models are trained with a negative log-likelihood objective function, but mean square errors (MSE)
are also reported. We compare our methods to NeuralODE-VAE (Chen et al., 2018). Additionally,
we consider an extended version of this model where we also feed the observation mask, called
NeuralODE-VAE-Mask.

I.2.2 Empirical evaluation

Figure 1 shows a comparison of predictions between NeuralODE-VAE and GRU-ODE-Bayes for
the same sample issued from the random ri setting. Compared to NeuralODE-VAE, which retrieves
the average dynamics of the sample, our approach detects the correlation between both features and
updates its predictions more finely as the observations arrive. In particular, note that GRU-ODE-Bayes
updates its prediction and confidence on a feature even when only the other one is observed, taking
advantage from the fact that they are correlated. This can be seen on the left pane of Figure 1 where
at time t = 3 Dimension 1 (blue) is updated because of the observation of Dimension 2 (green).

By directly feeding sporadic inputs into the ODE, GRU-ODE-Bayes sequentially filters the hidden
state and thus estimates the PDF of the future observations. This is the core strength of the proposed
method, allowing it to perform long-term predictions. In contrast, NeuralODE-VAE first stores the
whole dynamics in a single vector and later maps it to the dynamics of the time series (illustrated in
Figure 1).

This analysis is confirmed by the performance results presented in Table 4. Our approach performs
better on all setups for both NegLL and MSE. What is more, the method deals correctly with lags
(i.e., the second setup) as it results in only marginal degradation of NegLL and MSE. When there is
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no correlation between both dimensions (i.e., ⇢ = 0), the observation of one dimension contains no
information on the other and this results in lower performance.

Figure 5 illustrates how GRU-ODE-Bayes updates its prediction and confidence as more and more
observations are processed. This example is for the first setup (randomized ri). Initially, the
predictions have large confidence intervals and reflect the general statistics of the training data.
Then, observations gradually reduce the variance estimate as the model refines its predictions of the
parameter ri. As more data is processed, the predictions converge to the asymptotic distribution of
the underlying process.

Figure 5: GRU-ODE-Bayes updating its prediction trajectory with every new observation for the
random ri setup. Shaded regions are propagated confidence intervals conditioned on previous
observations.

J Application to synthetic nonlinear SDE: the Brusselator

On top of the extended multivariate OU process, we also studied a nonlinear SDE. We derived it
from the Brusselator ODE, which was proposed by Ilya Prigogine to model autocatalytic reactions
(Prigogine, 1982). It is a 2-dimensional process characterized by the following equations:

dx

dt
= 1 + (b+ 1)x+ ax

2
y

dy

dt
= bx� ax

2
y

Where x and y stand for the two dimensions of the process and a and b are parameters of the ODE.
This system becomes unstable when b > 1 + a. We add a stochastic component to this process to
make it the following SDE, which we will model:

dx

dt
= 1 + (b+ 1)x+ ax

2
y + �dW1(t)

dy

dt
= bx� ax

2
y + �dW2(t)

(7)

Where dW1(t) and dW2(t) are correlated Brownian motions with correlation coefficient ⇢. We
simulate 1,000 trajectories driven by the dynamics given in Eq. 7 with parameters a = 0.3 and
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b = 1.4 such that the ODE is unstable. Figure 6 show some realization of this process. The data
set we use for training consists in random samples from those trajectories of length 50. We sample
sporadically with an average rate of 4 samples every 10 seconds.

Figure 6: Examples of generated trajectories for the stochastic Brusselator Eq. 7 over 50 seconds.
Trajectories vary due to stochastic component and sensitivity to initial conditions. Orange and blue
lines represent both components of the process.

Figures 7 show the predictions of the trained model on different samples of the proposed stochastic
Brusselator process (newly generated samples). At each point in time are displayed the means and
the standard deviation of the filtered process. We stress that it means that those predictions only use
the observations prior to them. Red arrows show that information is shared between both dimensions
of the process. The model is able to pick up the correlation between dimensions to update its belief
about one dimension when only the other is observed. The model presented in these figures used 50
dimensional latents with DOPRI solver.

Figure 7: Examples of predicted trajectories for the Brusselator. The model has been trained
with DOPRI solver. Solid line shows the predicted filtered mean, the shaded areas show the 95%
confidence interval while dotted lines represent the true generative process. The dots show the
available observations for the filtering. Red arrows show the collapse of the belief function from one
dimension to another.

K MIMIC-III: preprocessing details

MIMIC-III is a publicly available database containing deidentified health-related data associated for
about 60,000 admissions of patients who stayed in critical care units of the Beth Israel Deaconess
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Medical Center between 2001 and 2012. To use the database, researchers must formally request
access to the data via http://mimic.physionet.org.

K.1 Admission/Patient clean-up

We only take a subset of admissions for our analysis. We select them on the following criteria:

• Keep only patient who are in the metavision system.

• Keep only patients with single admission.

• Keep only patients whose admission is longer than 48 hours, but less than 30 days.

• Remove patients younger than 15 years old at admission time.

• Remove patients without chart events data.

• Remove patients with fewer than 50 measurements over the 48 hours. (This corresponds to
measuring only half of retained variable a single time in 48 hours.)

This process restricts the data set to 21,250 patients.

K.2 Variables preprocessing

The subset of 96 variables that we use in our study are shown in Table 5. For each of those, we
harmonize the units and drop the uncertain occurrences. We also remove outliers by discarding the
measurements outside the 5 standard deviations interval. For models requiring binning of the time
series, we map the measurements in 30-minute time bins, which gives 97 bins for 48 hours. When
two observations fall in the same bin, they are either averaged or summed depending on the nature
of the observation. Using the same taxonomy as in Table 5, lab measurements are averaged, while
inputs, outputs, and prescriptions are summed.

This gives a total of 3,082,224 unique measurements across all patients, or an average of 145
measurements per patient over 48 hours.

L USHCN-Daily: preprocessing details

The United States Historical Climatology Network (USHCN) data set contains data from 1,218
centers scattered across the US. The data is publicly available and can be downloaded at the following
address: https://cdiac.ess-dive.lbl.gov/ftp/ushcn_daily/. All states files contain daily
measurements for 5 variables: precipitation, snowfall, snow depth, maximum temperature and
minimum temperature.

L.1 Cleaning and subsampling

We first remove all observations with a bad quality flag, then remove all centers that do not have
observation before 1970 and after 2001. We then only keep the observations between 1950 and 2000.
We subsample the remaining observations to keep on average 5% of the observations of each center.
Lastly, we select the last 4 years of the kept series to be used in the analysis.

This process leads to a data set with 1,114 centers, and a total of 386,068 unique observations (or an
average of 346 observations per center, sporadically spread over 4 years).

M Small-sample regime: additional results

In the main text of the paper, we presented the results for the Mean Square Error (MSE) for the
different data subsets of MIMIC. In Table 6, we present the negative log-likelihood results. They
further illustrate that the continuity prior embedded in our GRU-ODE-Bayes strongly helps in the
small-sample regime.
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Retained Features
Lab measurements Inputs Outputs Prescriptions
Anion Gap Potassium Chloride Stool Out Stool D5W
Bicarbonate Calcium Gluconate Urine Out Incontinent Docusate Sodium
Calcium, Total Insulin - Regular Ultrafiltrate Ultrafiltrate Magnesium Sulfate
Chloride Heparin Sodium Gastric Gastric Tube Potassium Chloride
Glucose K Phos Foley Bisacodyl
Magnesium Sterile Water Void Humulin-R Insulin
Phosphate Gastric Meds TF Residual Aspirin
Potassium GT Flush Pre-Admission Sodium Chloride 0.9% Flush
Sodium LR Chest Tube 1 Metoprolol Tartrate
Alkaline Phosphatase Furosemide (Lasix) OR EBL
Asparate Aminotransferase Solution Chest Tube 2
Bilirubin, Total Hydralazine Fecal Bag
Urea Nitrogen Midazolam (Versed) Jackson Pratt 1
Basophils Lorazepam (Ativan) Condom Cath
Eosinophils PO Intake
Hematocrit Insulin - Humalog
Hemoglobin OR Crystalloid Intake
Lymphocytes Morphine Sulfate
MCH D5 1/2NS
MCHC Insulin - Glargine
MCV Metoprolol
Monocytes OR Cell Saver Intake
Neutrophils Dextrose 5%
Platelet Count Norepinephrine
RDW Piggyback
Red Blood Cells Packed Red Blood Cells
White Blood Cells Phenylephrine
PTT Albumin 5%
Base Excess Nitroglycerin
Calculated Total CO2 KCL (Bolus)
Lactate Magnesium Sulfate (Bolus)
pCO2
pH
pO2
PT
Alanine Aminotransferase
Albumin
Specific Gravity

Table 5: Retained longitudinal features in the intensive care case study.

Table 6: Vitals forecasting results on MIMIC-III (NegLL) - Low number of samples setting

1,000 PATIENTS 2,000 PATIENTS FULL

MODEL NEGLL NEGLL NEGLL

NEURAL-ODE 1.40± 0.01 1.39± 0.005 1.35± 0.01
GRU-DISC-BAYES 1.35± 0.01 1.20± 0.015 0.74± 0.04
GRU-ODE-BAYES 1.23± 0.006 1.13± 0.01 0.83± 0.04

N Computing Infrastructure

All models were run using a NVIDIA P100 GPU with 16GB RAM and 9 CPU cores (Intel(R)
Xeon(R) Gold 6140). Implementation was done in Python, using Pytorch as autodifferentitation
package. Required packages are available in the code

O Hyper-parameters used

All methods were trained using the same dimension for the hidden h, for sake of fairness. For each
fold, we tuned the following hyper-parameters using a 20% left out validation set:

Dropout rate of 0, 0.1, 0.2 and 0.3.
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Weight decay: 0.1, 0.03, 0.01, 0.003, 0.001, 0.0001 and 0.

Learning rate : 0.001 and 0.0001

Best model was selected using early stopping and performance were assessed by applying the best
model on a held out test set (10% of the total data). The different folds were reused for each compared
model for sake of reproducibility and fair comparison. We performed 5-fold cross validation and
present the test performance average and standard deviation in all tables.
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