Learning-In-The-Loop Optimization: End-To-End
Control And Co-Design of Soft Robots Through
Learned Deep Latent Representations

Andrew Spielberg, Allan Zhao, Tao Du, Yuanming Hu, Daniela Rus, Wojciech Matusik
CSAIL
Massachusetts Institute of Technology
Cambridge, MA 02139
aespielberg@csail.mit.edu, azhao@mit.edu, taodul@csail.mit.edu
yuanming@mit.edu, rus@csail.mit.edu, wojciech@csail.mit.edu

Abstract

Soft robots have continuum solid bodies that can deform in an infinite number
of ways. Controlling soft robots is very challenging as there are no closed form
solutions. We present a learning-in-the-loop co-optimization algorithm in which a
latent state representation is learned as the robot figures out how to solve the task.
Our solution marries hybrid particle-grid-based simulation with deep, variational
convolutional autoencoder architectures that can capture salient features of robot
dynamics with high efficacy. We demonstrate our dynamics-aware feature learning
algorithm on both 2D and 3D soft robots, and show that it is more robust and faster
converging than the dynamics-oblivious baseline. We validate the behavior of our
algorithm with visualizations of the learned representation.

ES] I

e O e (] W W T e - O Taw Cow W) e [= = ==
SN e ot ) o) i e i

Figure 1: Our algorithm learns a latent representation of robot state which it uses as input for control. Above
are velocity field snapshots of a soft 2D biped walker moving to the right (top), the corresponding latent
representations (middle), and their reconstructions (bottom) from our algorithm. In each box, the = (left) and y
(right) components of the velocity fields are shown; red indicates negative values, blue positive.

— » - . - .

v‘

ol el oY

d ‘

1 Introduction

Recent breakthroughs have demonstrated capable computational methods for both controlling (Heess
et al.|[2017]],Schulman et al.|[2017]], |Lillicrap et al. [2015]]) and designing (Ha et al.|[2017]], Spielberg
et al.,[Wampler and Popovic|[2009]]) rigid robots. However, control and design of soft robots have
been explored comparatively little due to the incredible computational complexity they present. Due
to their continuum solid bodies, soft robots’ state dimensionality is inherently infinite. High, but
finite dimensional approximations such as finite elements can provide robust and accurate forward
simulations; however, such representations have thousands or millions of degrees of freedom, making
them ill-suited for most control tasks. To date, few compact, closed-form models exist for describing
soft robot state, and none apply to the general case. In this paper, we address the problem of learning
low-dimensional robot state while simultaneously optimizing robot control and/or material parameters.
In particular, we require a representation applicable to physical control of real-world robots.

We propose a computer vision-inspired approach which makes use of the robot’s observed dynamics
in learning a compact observation model for soft robots. Our task-centric method interleaves

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.



controller (and material) optimization with learning low-dimensional state representations. Our
“learning-in-the-loop optimization” method is inspired by recent advances in hybrid particle-grid-
based differentiable simulation techniques and deep, unsupervised learning techniques. In the
learning phase, simulation grid data is fed into a deep, variational convolutional autoencoder to
learn a compact latent state representation of the soft robot’s motion. In the optimization phase, the
learned encoder function creates a compact state description to feed into a parametric controller; the
resulting, fully differentiable representation allows for backpropagating through an entire simulation
and directly optimizing a simulation loss with respect to controller and material parameters.

Because learning is interleaved with optimization, learned representations are catered to the task, robot
design (including, e.g., discrete actuator placement), and environment at hand, and not just the static
geometry of the soft structure. Because of our judicious choice of a physics engine which operates (in
part) on a grid, we are able to easily employ modern, deep learning architectures (convolutional neural
networks) to extract robust low-dimensional state representations while providing a representation
amenable to real-world control through optical flow. Because of our fully-differentiable representation
of the controller, observations, and physics, we can directly co-design robot performance.

To our knowledge, our pipeline is the first end-to-end method for optimizing soft robots without the use
of a pre-chosen, fixed representation, minimizing human overhead. In this paper, we contribute: /) An
algorithm for control and co-design of soft robots without the need for manual feature engineering; 2)
experiments on five model robots evaluating our system’s performance compared to baseline methods;
3) visualizations of the learned representations, validating the efficacy of our learning procedure.

2 Related Work

Dimensionality Reduction for Control A compact, descriptive latent space is crucial for tractably
modeling and controlling soft robots. Methods for extracting and employing such spaces for control
typically fall into two categories: a) analytical methods, and b) learning-based methods.

Analytical methods examine the underlying physics and geometry of soft structures in order to extract
an optimal subspace for capturing low-energy (likely) deformations. Most popular among these
methods are modal bases [Sifakis and Barbic| 2012]], formed by solving a generalized eigenvalue
problem based on the harmonic dynamics of a system. These methods suffer from inadequately
modeling actuation, contact, and tasks and only represent a linear approximation of system’s dynamics.
Still, such representations have been successfully applied to real-time linear control (LQR) in|Barbic
and Popovi¢|[2008]] and Thieffry et al.|[2018]], and (with some human labeling) animation [[Barbic
et al., 2009], but lack the physical accuracy needed for physical fabrication. In another line of work,
Chen et al.|[2017]] presented a method for using analytical modal bases in order to reduce the degrees
of freedom of a finite element system for faster simulation while maintaining physical accuracy.
However, the resulting number of degrees of freedom are still impractical for most modern control
algorithms. For the specific case of soft robot arms, geometrically-inspired reduced coordinates may
be employed. [Della Santina et al.|[2018]] developed a model for accurately and compactly describing
the state of soft robot arms by exploiting segment-wise constant curvature of arms.

Learning-based methods, by contrast, use captured data in order to learn representative latent spaces
for control. Since these representations are derived from robot simulations or real-world data, they can
naturally handle contact, actuation, and be catered to the task. (Goury and Duriez| [2018]] demonstrated
some theoretical guarantees on how first-order model reduction techniques could be applied to motion
planning and control for real soft robots. As drawbacks, their method is catered to FEM simulation,
requires a priori knowledge of how the robot will move, and representations are never re-computed,
making it ill-suited to co-design where dynamics can change throughout optimization.

Two works from different domains have similarities to our work. [Ma et al.[[2018]] applied deep-
learning of convolutional autoencoders in the context of controlling rigid bodies with directed fluids.
Our algorithm shares high-level similarities, but operates in the domain of soft robot co-optimization
and exploits simulation differentiability for fast convergence. |Amini et al.|[2018]] employed latent
representations for autonomous vehicle control in the context of supervised learning on images.

Co-Design of Soft Robots There exist two main threads of work in which robots are co-designed
over morphology and control — gradient-free and gradient-based. Most of the work in model-free
co-optimization of soft-robots is based on evolutionary algorithms. (Cheney et al.|[[2013|], (Corucci



Unreduced

Robot State Observer Controller Actuation Simulation Step
0&, O | | o )
‘i&@ (=] L= \
- —— - ‘—‘_ [ 1 ‘L J’\)
&° I@‘@ S N

Figure 2: At each step of our simulation, the following procedure is performed. First, the unreduced state is
fed into an observer function — centroids of a segmentation, as in|Hu et al.|[2019]], or, as we demonstrate in
this paper, an automatically learned latent space. Regardless, the observer outputs features to be processed by a
parametric controller, which converts these features to actuation signals. Finally, the actuation is fed into our
MPM simulator, which performs a simulation step. The entire pipeline is differentiable and therefore we can
compute derivatives with respect to design variables even when executing the workflow for many steps.

et al.| [2016]], and |Cheney et al.|[2018] have demonstrated task-specific co-optimization of soft robots
over materials, actuators, and topology. These approaches are less susceptible to local minima than
gradient-based approaches but are vastly more sample inefficient. For instance, a single evolved robot
in|Cheney et al.|[2013]] requires 30000 forward simulations; by comparison, optimized robots in our
work are optimized in the equivalent of 400 simulations (treating gradient calculation as equal to
3 forward simulations). Further, their approach was limited to simple open-loop controllers tied to
form, while ours solves for more robust, closed-loop control.

While some algorithms exist for gradient-based co-optimization of rigid robots (Wampler and Popovic
[2009], Spielberg et al., Ha et al.| [2017]],[Wang et al.[[2019]]), results in model-based co-optimization
of soft robots have been sparse. Closest to our work, Hu et al.|[2019] presented a method for gradient-
based co-optimization of soft robotic arms using a fully-differentiable simulator based on the material
point method (MPM). As a limitation, their method relied on ad-hoc features that needed to be labeled
at the time the robot topology was specified and could not be easily measured in the physical world,
making them ill-suited for physical control tasks. Our work addresses this shortcoming.

3 Overview and Preliminaries

We seek an algorithm for co-optimizing soft robots over control and design parameters without manu-
ally prescribing a state description for the controller to observe. Our solution will be to periodically
learn an updated observation model from the simulation data generated during optimization. For the
remainder of this paper, we refer to the dimensionally reduced representation of the soft robot as the
latent representation and the unreduced representation as the full representation. To avoid confusion,
we use the term learning to refer to the procedure of learning a latent representation and the term
optimization to exclusively refer to the procedure of improving a robot’s controller or design.

A full overview of our system is shown in Fig. 2] At each time step, the full representation is fed
into a (learned) observer function, which reduces it down to a latent representation. The latent
representation is fed into an (optimized) controller function, which produces control signals for
the robot’s actuators. Those control signals are applied to the full robot state to simulate the robot
forward one time step, producing the next full state. At the end of the simulation, a specified final loss
function L is computed. Direct optimization of this loss function over controller and physical design
parameters is possible since each component of our system, including our simulator, is differentiable.

Formally, let v! € R* denote a robot’s full state at time ¢, let g € R" denote the corresponding
latent space, and let u? € R™ denote the actuation control signal at time ¢. The observer function,
O : R* — R” maps a full state to a latent state and is governed by observer parameters ®. The
controller function, C : R” — R™ maps a reduced state to deterministic actuation output and is
governed by control parameters 6. The simulation step function, f : R* x R™ — RY, time steps the
system for some specified At given the full state and the actuation, and is governed by physical design
parameters ¢. In other words, v'*2! = f(vt,C(O(vt; ®);0); ¢). For brevity, we will omit writing
the parameterizations explicitly except when necessary. The final loss L : R* — R at final time T'
operates on some final full state v” to produce a scalar loss; this could be the distance the robot has
traveled, its final velocity, efc. - anything that’s dependent on the robot’s final state. Computing L

amounts to iteratively applying f to generate states v°, v, v?2t .. v” and applying L to the final



} |
c3 ca cs N Djeconv_1 b2 D3
C2 K33 K33 K3x3 K33~ K33 Kki3x3 D4
K55 s:2 sl S sl s1 S22 KSxs T ps
(Clonv_1 S:2 $2 K:5x5

(C)

(S)tride: 2 [ (De)Conv +ReLU [l (De)Conv Only [l Flattening Layer o, u, $:2 Input (L1, only) Hidden Layers Output

Figure 3: Left: The architecture of our convolutional variational autoencoder. The autoencoder takes in
2-channel pixel grid data as input, with each channel representing the x or y velocity field at that pixel. We
use five layers of strided convolutions followed by ReLLU operations. This is followed by a final flattening
operation which coalesces the weights into latent variables. The latent variables parameterize Gaussians, used in
our variational loss (L£,). The architecture is mirrored on the opposite side (without a final ReLU, to allow for
negative outputs). The 3D version is completely analogous, but takes in 3-channel voxel grid velocity field data
and applies 3D convolutions. Above, the filter sizes are specified with K, and the strides are specified with S.
Right: At inference time, simulation data is fed into the encoder, £, which produces a latent [, o-}T vector. The
mean g variables are then fed as inputs to the controller, C.

one. We use S to denote the full process of simulating a robot and then computing the loss value /; in
other words, | = L(vT) = S(L, v°) for some simulation time length 7". The chain rule can then be
used to backward-propagate through this chain of functions to compute gradients for optimization. In
our algorithm, the learning phase learns ® while the optimization step optimizes ¢, and 6.

minimize L(vT)

0,¢
where vt, v A = f(vf C(O(v!; ©);0); ¢)
subject to d)min < d) < d)max

Though O is not part of the optimization, it is an auxiliary variable that must be learned in tandem.

4 Method

Simulation and Data Generation We use a simulator based on ChainQueen [Hu et al.|[2019]], the
differentiable Moving Least Squares Material Point Method (MLS-MPM) [Hu et al., |2018]] simulator,
for the underlying physics of robots. In ChainQueen, robots are represented as collections of particles,
and a background velocity grid is used for particle interaction and is exposed to users. ChainQueen
also provides analytical gradients of functions of simulation trajectories with respect to controller
parameters and robot design. Our algorithm is not simulator specific, and can operate on any fully
differentiable simulator where differentiable grid velocity data can be extracted.

In the remaining of this section we describe our LITL optimization algorithm. First, we assume we
have a large dataset of robot motion data from the simulator, representative of the way the robot
will move when completing the prescribed task, and describe the learning phase of the algorithm.
Next, we describe how we use the simulation data to optimize the controller and design. Finally, we
describe how to combine these two phases into a cohesive, complete algorithm.

4.1 Learning

During the learning phase, we seek to learn a compact, expressive representation of robot state to
feed to the controller. As input, learning takes in snapshots of robot simulation; namely, the robot’s
velocity field on a background grid. Note that this field implicitly also provides robot positional
information. As output, weights for an observer function with a descriptive latent space are learned.

In particular, we learn a variational autoencoder [Kingma and Welling, 2013 [Rezende et al., [2014]]
that takes, as input, a state description of a robot and minimizes the reconstruction cost of said state.
Our assumption is that features which allow reconstruction are highly expressive. Fig. [3|presents the
architecture we used for all experiments. We experimented with various network depths; ours was
chosen for stability and generality across experiments. We use a convolutional architecture, which
operates naturally on input velocity grid data and generalizes to robot translation due to equivariance.

Formally, for an unreduced u-dimensional object, let £ : R* — R" be an encoder function with
parameter weights ¢, and D : R” — R" be a decoder function with parameter weights ®p. For an



input training dataset grid velocity data Y , the reconstruction loss is defined as:

_ % Y Doy (oc (v)) — 3.

veYT

Lr(T)

We omit the details of the VAE formulation, which adds a variational representation and regularization
term. For a more extensive treatment, please refer to [Doersch, 2016]. We minimize this loss by
performing mini-batch stochastic gradient descent on our input dataset. For updates, we employ the
Adam [Kingma and Ba| 2014] first-order optimizer. We also experimented with a non-variational
autoencoder. However, in the majority of experiments, that network overfit to a 1D manifold.
This caused control optimization to fail, quickly resulting in unpredictable, erratic behaviors. The
regularization from the variational formulation is necessary for avoiding collapse in the latent space.

4.2 Optimization

Our optimization procedure is similar to that of Hu et al.| [2019]]. At each optimization iteration, we
compute Vg 4L, providing a gradient of our loss with respect to all of our decision variables. We
then use this gradient to apply a gradient descent update step to our parameters. Finally, we account
for potential bounds in our design variables (e.g., maximum and minimum Young’s Modulus) by
projecting the variable bounds back to the feasible region; i.e. ¢; < max(min(®;, ®max); Pmin)- In
practice, we use the Adam optimizer. At each iteration of the optimization, during forward simulation,
we record snapshots of the grid data to be used in the learning phase.

4.3 Algorithm

Our algorithm is an alternating minimization. First, we optimize the robot controller and design
parameters for a fixed number of iterations, during which we record snapshots of grid velocities.
Then, we use these grid velocities to learn an observer for a fixed number of iterations. With the
observer and latent representation improved, we return to our optimization procedure, and keep
alternating until convergence. The initial grid velocity dataset is generated from simulating just
once with the initial, untrained controller. This is enough to bootstrap our learning. Two key design
decisions are discussed below:

Alternative vs. Simultaneous Minimization Learning a descriptive latent encoding is harder than
optimizing the controller, and therefore requires more minimization iterations. When trained simulta-
neously, the controller tends to get trapped into a local minimum under a non-descriptive latent space.
Performance-wise, evaluating Ve L is orders of magnitude more expensive than evaluating Ve Lr
since it requires backpropagating through an entire simulation. The alternating scheme allows us
to economically draw a large amount of historical snapshots, and to evaluate Vg Lz only, for the
autoencoder training.

Continuous vs. One-Shot Autoencoder Training Since robot dynamics change with changing
control and design, continual retraining is critical. See, for example, Fig.[da. (robot arm control).
With one-shot autoencoder training using only initial motion, the autoencoder only disambiguates
motions of a mostly static arm, and optimization fails.

Our algorithm has no obvious guarantee of convergence; here, we describe three specific ways this
algorithm can theoretically fail, and the steps we take to make our algorithm work reliably in practice.

Overfitting to Historical Snapshots It is important to fit to an entire trajectory, and not just the
trajectory’s individually captured historical snapshots. Overfitting the autoencoder to history will
degrade feature quality on future scenarios. Therefore, we employ early stopping to be conservative
with autoencoder training. Before training the autoencoder, we evenly split the snapshots into a
training and validation set. We early stop the training when the validation loss has remained worse
than the best seen loss value, for a certain number of consecutive iterations.

Overfitting to Recent Trajectories The autoencoder tends to prioritize learning the most recent
trajectories, harming generalization to future snapshots. To remedy this problem, we maintain an
experience replay buffer [Mnih et al., 2015] of snapshots from multiple simulations. We use all
snapshots currently in the replay buffer to train the autoencoder. This increases the diversity of
autoencoder training inputs, and stabilizes our algorithm against a changing controller.



Algorithm 1 Learning-In-The-Loop Co-Optimization

Hyperparameters: Max episode K, Max optimization iterations M, max learning iterations /N, minibatch size b, max replay buffer size
B, target update step size «, latent space dimensionality 7.

Given: user-specified robot morphology R, loss function L, design parameter bounds ¢min, ®max. initial design parameters ¢, and initial
full state v°.

Randomly initialize network weights @, and © (with latent space of dimension ), and initialize autoencoder copy ®’ < ©.
Initialize empty replay buffer Z < [] with maximum size B.
for episodei=1...K do
for optimization iteration j=1...M do
Compute loss I; and simulation snapshots T;: 1;, T; = S(L, v°).
Store snapshots Y ; in Z.
Update 6, ¢ using the analytical simulation loss gradients Vg ¢ L.
Clamp physical design variables ¢»; <— max(min(¢;, Pmax); Pmin)-
end for
Split Z randomly and evenly into training set Z and validation set Z,,.
for learning iterationj=1...N do
for minibatch 1 ...len(Z,)/b do
Sample minibatch I~ from Z, (without replacement)
Update ®” using analytical autoencoder loss gradients Ve £(Y)|r=1,
end for
Compute validation loss £; = £(Z,)
if £; has not decreased for q iterations then
Break (Early Stopping).
end if
end for
Update Autoencoder weights using target: @ < @'« + (1 — @)@
end for
Return: R with optimized design ¢ and controller 6.

Feature Oscillation Despite our precautions thus far, the autoencoder can still change rapidly, which
injects instability to the controller optimization. Inspired by the smoothed target network update
scheme in [Lillicrap et al.|[2015]], we perform learning on a copy of the autoencoder network weights,
and use the original autoencoder network throughout an episode. After each episode, we step the
original autoencoder toward the updated copy ©’; i.e., ® + @' + (1 — a)O.

We combine these refinements with our learning and optimization phases in our final algorithm (See
Alg. [T]for details).

5 Results and Discussion

In this section, we summarize the results of our experiments on four of our model robots: 2D Biped,
2D Arm, 2D “Elephant,” 2D “Bunny,” and briefly describe demonstrations on four further robots: 2D
Rhino, 3D Quadruped, 3D Curved Quadruped, and 3D Hexapod. Robot morphologies can be seen in
Figs. @ and[6] The Biped and its variants are co-design experiments, while the others are pure control,
as we found co-design matters much more for locomotion tasks. We encourage the reader to watch
the accompanying video for simulations of our optimized robots. For each 2D example, we compare
to another automated procedure, a k-means clustering baseline, inspired as an automated version
of the manual labels from [Hu et al., 2019]]. In this baseline, the particles were clustered prior to
optimization based on their Euclidean distance in the robot’s rest configuration; the average position
and velocity of each cluster in each Cartesian coordinate is fed as input to the controller network.
Further details about our hyperparameters are included in the Appendix for reproducibility. Each
experiment was run ten times. All results are presented with a 90% confidence interval. We provide
some ablation tests in each experiment to justify the necessity of certain aspects of our algorithm. For
all 2D experiments, iteration vs. loss is presented; autoencoder training time is trivial compared to
simulation, and both the VAE and k-means simulations/backpropagation times are similar. Each 2D
simulation and corresponding backpropagation is computed in less than 20 seconds. All experiments
were performed on a computer with an Intel i7 2.91-GHz processor, NVIDIA GeForce GTX 1080
GPU, and 16GB of RAM.

2D Arm The 2D arm presents the simplest of all of our tasks in which the centroid of a region of a
fixed-base soft robot arm must reach a prescribed point in space with no gravity. While geometrically
simple, the problem is not dynamically trivial. The actuators are too weak to allow the robot to
directly bend to to the goal; it must swing back and forth to build up momentum to reach its target.
This is the easiest problem we present; in this one example, k-means clustering is competitive, and at
finer resolutions, faster converging than our VAE (though slower at coarser resolutions). See Fig. [4{a.



L

Figure 4: Progress of robot performance vs. optimization iteration, along with drawings of our 2D demos. Each
black rectangle denotes an actuated region; in precision tasks, regions denoted with black X’s are those which
must reach target locations, denoted with green circles.

We use the 2D arm as an opportunity to present ablation tests ~ **
for what happens if the replay buffer is eliminated. In the
former case, the representation oscillates wildly, making con-
trol optimization impossible. In the latter case, since earlier
iterations have less dynamic motion, they provide less dynam-
ically descriptive, insufficient representations of the robot’s full
motion.

Autoencoder loss

2D Biped The 2D Biped presents a locomotion task in which
the robot must run to the right as far as possible in the allotted ~ *°" 5 20w ew w0 w030
time. The biped’s progress can be seen in Fig. 4 b. In the video, -

Figure 5: The average reconstruction

we present two design variations in the robot’s shape. We also
show the results of a typical VAE training procedure in Fig.
5, showing typical convergence. In four out of the ten trials,
k—means clustering completely failed to converge, landing in
poor local minima near the robot’s starting configuration.

We further use the Biped as an opportunity to show the minimal

loss Lr per pixel for the 2D Biped
scaled as measured in average pixel
distance vs. stochastic gradient de-
scent step, demonstrating that not only
does our algorithm converge in objec-
tive value, but also in model learning.

adverse effects of retraining. Table 1 presents the change in the distance traveled after retraining the
autoencoder and then performing a single optimization step. The single optimization step cancels out
virtually all backward progress caused by retraining.

Retrain # Mean Standard Dev. | Retrain # Mean Standard Dev.

1 —1.08x 1072 2.64x 1072 9 —853x 1073  6.07x 1072
2 —1.68x 1072 153 x 1072 10 —1.26x 1072 1.80x 1072
3 —1.25x 1072  3.06 x 1072 11 —270 x 107>  2.61 x 1072
4 3.56 x 1072 8.36 x 1072 12 —1.00x 1072 1.36 x 1072
5 —1.86 x 1072 2.88 x 102 13 —6.54 x 1073 4.29 x 1073
6 —1.17x 1072 128 x 1072 14 5.93 x 1073 1.16 x 102
7 —4.13x107% 155 x 1072 15 —327%x107* 839x10°3
8 —9.69x 1073  1.44 x 1072

Table 1: The mean backward progress remaining from retraining after a single optimization iteration on the 2D
Biped locomotion task, with corresponding standard deviations. A negative value indicates a decrease in the
distance traversed. As can be seen, the backward progress is a very small negative number, or positive in all
cases, indicating that a single optimization almost completely reverses the adverse effects of retraining.

2D Elephant The 2D Elephant presents a task which is a mixture of locomotion and manipulation.
The elephant must walk to the right while a part of the trunk must reach a prescribed location. A subset
of the results are seen in Fig. 4 c for readability, further results can be found in the Appendix.We use
the Elephant to perform experiments over a wide range of latent variable and cluster sizes. While we
try to compare the same number of clusters and latent variables in experiments (since inputs from a
cluster give highly dependent data) we acknowledge that each cluster (in 2D) provides six inputs to
the controller. Thus, this experiment also allows comparisons over controllers of similar size.

The VAE dominates k-means over all cluster/latent variable counts. As can be seen, the latent variable
procedure has a weakness that the autoencoder can suffer the well-known “collapse” phenomenon as
the latent variable size grows; increasing the VAE’s regularizer weight combats this phenomenon.

2D Bunny The 2D Bunny provides a task in which two arms must reach two target locations in space.
The robot must walk forward and bend the arms to reach the target points as closely as possible. This
is our most dynamically challenging task and cannot be solved perfectly. Results are in Fig. 4 d.















