
We thank the reviewers for their constructive feedback. While there are many papers on rigid robot control each year at1

NeurIPS, control of soft robots has seldom been addressed. Our submission is novel, bridging learning and soft robotics,2

and is the first to tackle end-to-end control and co-optimization of soft robots of arbitrary morphology. Our algorithm3

takes natural advantage of fully differentiable simulation, which is exploding in popularity and relevance1,2,3.4

We appreciate the reviewers’ compliments that our submission is “an interesting piece of work that can have a good5

impact in the field of soft robotics...” (R3), “very novel learning work on soft robots” with “impressive” experiments6

and performance (R1), and that the approach is “promising” (R2, R3) with “potential to be relevant for future work...”7

(R3). We believe concerns can be addressed within the review cycle with text improvements and additional experiments.8

More Complex, Non-Blocky/3D Designs (R2, R3). We can easily add more complex, non-blocky and 3D designs to9

the results and video. MPM particles are flexible enough to represent most irregular geometry found in soft robotics and10

CNNs can adequately learn over such inputs. We include a few new results below. We hope these new results complete11

a convincing gamut of experiments already described as “impressive,” (R1) and “diverse” and “promising” (R3).12

a) A new rhino robot loaded from image, serving as a curvy, non-blocky 2D example. b) Convergence of the rhino control task over 10 trials. The topheavy, unactuated head makes this a challenging
control task. c) With 24 actuators and highly nonlinear dynamics, this 3D Hexapod is now our most complex demo. After 100 optimization iters., it runs 1.5 body lengths in 4s. d) This new 3D
Quadruped’s hemispherical body proves our method works on less blocky 3D shapes as well. After 100 optimization iterations, it runs two body lengths in 4s.

Clarification on FEM vs. MPM for Learning (R1). We are not saying that one cannot learn a latent representation13

on FEM nodes; in fact, it is possible our approach could extend to FEM by rasterizing node velocities to a grid and14

directly applying our method. However, such an approach has never been demonstrated. We chose MPM because 1)15

prior work1 demonstrates its success for control, as it naturally handles differentiable contact, and 2) it acts directly on16

a velocity grid, providing a representation amenable to CNNs for free.17

Why a Latent Space Is Necessary (R1). It is indeed impractical to try to learn directly on FEM node or MPM particle18

coordinates. This approach doesn’t scale: we tried feeding 1000 MPM particles into our controller (a relatively small19

number), and runtime for simulation and backprop ballooned by 10× compared to compact latent features. As a further20

advantage, velocity grids can easily be captured in the real world via optical flow; dense node coordinates cannot.21

Simulation as Prior Knowledge (R1). We do not consider the simulator, be it FEM or MPM, as prior knowledge, but22

rather the data it generates. In previous work the robot is simulated along many random trajectories to build a prior23

dataset. If the dynamics of the target trajectory are not explored initially, the observer and resulting optimization suffer.24

This issue is especially salient during design optimization, where system dynamics change. LITL continually generates25

representative data throughout the optimization phase and re-learns, thus it does not suffer this drawback.26

Initial Dataset Generation (R3). A small initial dataset is generated from simulating just once with the initial,27

untrained controller. This is enough to bootstrap our learning.28

Benefits of Co-Optimization and Co-Learning (R1). The value of co-optimization has been highlighted in prior work29

for rigid4,5 and soft robots1; it allows robots to solve difficult tasks more easily and improve performance. We can30

add comparisons of performances with and without co-optimization. The latent space must be co-learned since the31

experienced dynamics (and thus, optimal observer) change during co-optimization.32

Problem Scope (R1). R1 wrote “of course the paper’s focus is on multi-task learning for soft robotics.” We wish to33

clarify that this paper’s focus is not on multi-task learning, but single task learning with highly dynamic soft robots. As34

R3 states, “this is a challenging problem.” It is one that has seldom been successfully tackled by any literature; ours is35

the first end-to-end co-design solution for general morphologies. While multi-task learning would be an interesting36

extension, it is yet another very hard problem, one rich enough for its own dedicated manuscript.37

Training Stability (R1, R2, R3). R2 and R3 asked how feature oscillation affects “stability and convergence.” “Back-38

ward progress” from feature oscillation is dominated by the following optimization phase and typically undone within39

1-2 iterations. We can add tables quantifying this effect. R1 asked why we couldn’t learn “the representation explicitly40

over learning the controller directly for the task.” We tried a joint optimization, (see section 4.3, Alternative vs.41

Simultaneous Minimization), but the CNN layers learned too slowly to provide useful signal, leading to bad local42

minima. Alternating minimization avoids this issue in economical fashion.43
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