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Abstract

The problem of adversarial robustness has been studied extensively for neural
networks. However, for boosted decision trees and decision stumps there are almost
no results, even though they are widely used in practice (e.g. XGBoost) due to their
accuracy, interpretability, and efficiency. We show in this paper that for boosted
decision stumps the exact min-max robust loss and test error for an l∞-attack can be
computed in O(T log T ) time per input, where T is the number of decision stumps
and the optimal update step of the ensemble can be done inO(n2 T log T ), where n
is the number of data points. For boosted trees we show how to efficiently calculate
and optimize an upper bound on the robust loss, which leads to state-of-the-art
robust test error for boosted trees on MNIST (12.5% for ε∞ = 0.3), FMNIST
(23.2% for ε∞ = 0.1), and CIFAR-10 (74.7% for ε∞ = 8/255). Moreover,
the robust test error rates we achieve are competitive to the ones of provably
robust convolutional networks. The code of all our experiments is available at
http://github.com/max-andr/provably-robust-boosting.

1 Introduction

It has recently been shown that deep neural networks are easily fooled by imperceptible perturba-
tions called adversarial examples [62, 24] or tend to output high-confidence predictions on out-of-
distribution inputs [51, 49, 29] that have nothing to do with the original classes. The most popular
defense against adversarial examples is adversarial training [24, 45], which is formulated as a robust
optimization problem [59, 45]. However, the inner maximization problem is likely to be NP-hard
for neural networks as computing optimal adversarial examples is NP-hard [33, 71]. A large variety
of sophisticated defenses proposed for neural networks [31, 7, 43] could be broken again via more
sophisticated attacks [1, 18, 48]. Moreover, empirical robustness, evaluated by some attack, can also
arise from gradient masking or obfuscation [1] in which case gradient-free or black-box attacks often
break heuristic defenses. A solution to this problem are methods that lead to provable robustness
guarantees [28, 72, 54, 77, 68, 75, 13, 25] or lead to classifiers which can be certified via exact com-
binatorial solvers [63]. However, these solvers do not scale to large neural networks, and networks
having robustness guarantees lack in terms of prediction performance compared to standard ones.
The only scalable certification method is randomized smoothing [41, 42, 12, 57], however obtaining
tight certificates for norms other than l2 is an open research question.

While the adversarial problem has been studied extensively for neural networks, other classifiers have
received much less attention e.g. kernel machines [76, 56, 28], k-nearest neighbors [69], and decision
trees [52, 3, 9]. Boosting, in particular boosted decision trees, are very popular in practice due to
their interpretability, competitive prediction performance, and efficient recent implementations such
as XGBoost [10] and LightGBM [34]. Thus there is also a need to develop boosting methods which
are robust to worst-case measurement error or adversarial changes of the input data. While robust
boosting has been extensively considered in the literature [70, 44, 19], it refers in that context to a

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

http://github.com/max-andr/provably-robust-boosting


0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00
Plain boosted stumps

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00
Robust boosted stumps

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00
Plain boosted trees

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00
Robust boosted trees

Figure 1: Left: boosted decision stumps: normal and our robust models. Right: boosted decision trees: normal
and our robust models. In both cases, the normal models have very small geometric margin, while our robust
models also classify all training points correctly but additionally enforce a large geometric margin.

large functional margin or robustness with respect to outliers e.g. via using a robust loss function,
but not to the adversarial robustness we are considering in this paper. In the context of adversarial
robustness, very recently [9] considered the robust min-max loss for an ensemble of decision trees
with coordinate-aligned splits. They proposed an approximation of the inner maximization problem
but without any guarantees. The robustness guarantees were then obtained via a mixed-integer
formulation of [32] for the computation of the minimal adversarial perturbation for tree ensembles.
However, this approach has limited scalability to large problems.

Contributions In this paper, we show how to exactly compute the robust loss and robust test error
with respect to l∞-norm perturbations for an ensemble of decision stumps with coordinate-aligned
splits. This can be done efficiently in O(T log T ) time per data point, where T is the number of
decision stumps. Moreover, we show how to perform the globally optimal update of an ensemble of
decision stumps by directly minimizing the robust loss without any approximation in O(n2 T log T )
time per coordinate, where n is the number of training examples. We also derive a strict upper bound
on the robust loss for tree ensembles based on our results for an ensemble of decision stumps. It
can be efficiently evaluated in O(T l) time, where l is the number of leaves in the tree. Then we
show how this upper bound can be minimized during training in O(n2 l) time per coordinate. Our
derived upper bound is quite tight empirically and leads to provable guarantees on the robustness of
the resulting tree ensemble. The difference of the resulting robust boosted decision stumps and trees
compared to normally trained models is visualized in Figure 1.

2 Boosting and Robust Optimization for Adversarial Robustness

In this section we fix the notation, the framework of boosting, and define briefly the basis of robust
optimization for adversarial robustness, underlying adversarial training. In the next sections we derive
the specific robust training procedure for an ensemble of decision stumps where we optimize the
exact robust loss and for a tree ensemble where we optimize an upper bound.

Boosting While the main ideas can be generalized to the multi-class setting (using one-vs-all, see
Appendix E), for simplicity of the derivations we restrict ourselves to binary classification, that is our
labels y are in {−1, 1} and we assume to have d real-valued features. Boosting can be described as the
task of fitting an ensemble F : Rd → R of weak learners ft : Rd → R given as F (x) =

∑T
t=1 ft(x).

The final classification is done via the sign of F (x). In boosting the ensemble is fitted in a greedy way
in the sense that given the already estimated ensemble we determine an update F ′ = F + fT+1, by
fitting the new weak learner fT+1 being guided by the performance of the current ensemble F . In this
paper we use in the experiments the exponential loss L : R→ R, where we use the functional margin
formulation where for a point (x, y) ∈ Rd × {−1, 1} it is defined as L(y f(x)) = exp(−y f(x)).
However, all following algorithms and derivations hold for any margin-based, strictly monotonically
decreasing, convex loss function L, e.g. logistic loss L(y f(x)) = ln(1 + exp(−yf(x))). The
advantage of the exponential loss is that it decouples F and the update fT+1 in the estimation process
and allows us to see the estimation process for fT+1 as fitting a weighted exponential loss where the
weights to fit (x, y) are given by exp(−y F (x)),

L(y F ′(x)) = exp
(
− y

(
F (x) + fT+1(x)

))
= exp

(
− y F (x)

)
exp

(
− y fT+1(x)

)
.

In this paper we consider as weak learners: a) decision stumps (i.e. trees of depth one) of the form
ft,i : Rd → R, ft,i(x) = wl + wr1xi≥b, where one does a coordinate-aligned split and b) decision
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trees (binary tree) of the form ft(x) = u
(t)
qt(x), where u(t)

qt(x) : V → R is a mapping from the set
of leaves V of the tree to R and qt : Rd → V is a mapping which assigns to every input the leaf
of the tree it ends up. While the approach can be generalized to general linear splits of the form,
wl+wr1〈v,x〉≥b, we concentrate on coordinate-aligned splits, wl+wr1xi≥b which are more common
in practice since they lead to competitive performance and are easier to interpret for humans.

Robust optimization for adversarial robustness Finding the minimal perturbation with respect
to some lp-distance can be formulated as the following optimization problem:

min
δ∈Rd

‖δ‖p such that yif(xi + δ) ≤ 0, xi + δ ∈ C (1)

where (xi, yi) ∈ Rd × {−1, 1} and C is a set of constraints every input has to fulfill. In this paper
we assume C = [0, 1]d and that all features are normalized to be in this range. We emphasize that
we concentrate on continuous features, for adversarial perturbations of discrete features we refer
to [53, 17, 36]. We denote by δ∗i the optimal solution of this problem for (xi, yi). Furthermore, let
∆p(ε) := {δ ∈ Rd | ‖δ‖p ≤ ε} be the set of perturbations with respect to which we aim to be robust.
Then the robust test error with respect to ∆p(ε) is defined for n data points as 1

n

∑n
i=1 1‖δ∗i ‖p≤ε

.

The optimization problem (1) is non-convex for neural networks and can only be solved exactly via
mixed-integer programming [63] which scales exponentially with the number of hidden neurons.
Since such an evaluation is prohibitively expensive in most cases, often robustness is evaluated via
heuristic attacks [47, 45, 8] which results in lower bounds on the robust test error. Provable robustness
aims at providing upper bounds on the robust test error and the optimization of these bounds during
training [28, 72, 54, 77, 75, 13, 25, 12]. For an ensemble of trees the optimization problem (1) can
also be reformulated as a mixed-integer-program [32] which does not scale to large ensembles.

The goal of improving adversarial robustness can be formulated as a robust optimization problem
with respect to the set of allowed perturbations ∆p(ε) [59, 45]:

min
θ

n∑
i=1

max
δ∈∆p(ε)

L
(
f(xi + δ; θ), yi

)
. (2)

A training process, where one tries at each update step to approximately solve the inner maximization
problem, is called adversarial training [24]. We note that the maximization problem is in general non-
concave and thus globally optimal solutions are very difficult to obtain. Our goal in the following two
sections is to get provable robustness guarantees for boosted stumps and trees by directly optimizing
(2) or an upper bound on the inner maximization problem.

3 Exact Robust Optimization for Boosted Decision Stumps

We first show how the exact robust loss maxδ∈∆p(ε) L(yi F (xi + δ; θ)) can be computed for an
ensemble F of decision stumps. While decision stumps are very simple weak learners, they have
been used in the original AdaBoost [20] and were successfully used in object detection [66] or face
detection [67] which could be done in real-time due to the simplicity of the classifier.

3.1 Exact Robust Test Error for Boosted Decision Stumps

The ensemble of decision stumps can be written as

F (x) =

T∑
t=1

ft,ct(x) =

T∑
t=1

(
w

(t)
l + w(t)

r 1xct≥bt

)
,

where ct is the coordinate for which ft makes a split. First, observe that a point x ∈ Rd with label y
is correctly classified when yF (x) > 0. In order to determine whether the point x is adversarially
robust wrt l∞-perturbations, one has to solve the following optimization problem:

G(x, y) := min
‖δ‖∞≤ε

yF (x+ δ) (3)
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If G(x, y) ≤ 0, then the point x is non-robust. If G(x, y) > 0, then the point x is robust, i.e. it is
not possible to change the class. Thus the exact minimization of (3) over the test set yields the exact
robust test error. For many state-of-the-art classifiers, this problem is NP-hard. For particular MIP
formulations for tree ensembles, see [32], or for neural networks, see [63]. Closed-form solutions are
known only for the simplest models such as linear classifiers [24].

We can solve this certification problem for the robust test error exactly and efficiently by noting
that the objective and the attack model ∆∞(ε) is separable wrt the input dimensions. Therefore,
we have to solve up to d simple one-dimensional optimization problems. We denote Sk = {s ∈
{1, . . . , T} | cs = k}, i.e. the set of stump indices that split coordinate k. Then

min
‖δ‖∞≤ε

yF (x+ δ) = min
‖δ‖∞≤ε

T∑
t=1

yft,ct(x+ δ) = min
‖δ‖∞≤ε

d∑
k=1

∑
s∈Sk

yfs,k(x+ δ) (4)

=

d∑
k=1

min
|δk|≤ε

∑
s∈Sk

yfs,k(x+ δ) =

d∑
k=1

[ ∑
s∈Sk

yw
(s)
l + min

|δk|≤ε

∑
s∈Sk

yw(s)
r 1xk+δk≥bs

]
:=

d∑
k=1

Gk(x, y)

The one-dimensional optimization problem min
|δk|≤ε

∑
s∈Sk

yw
(s)
r 1xk+δk≥bs can be solved by simply

checking all |Sk| + 1 piece-wise constant regions of the classifier for δk ∈ [−ε, ε]. The detailed
algorithm can be found in Appendix B. The overall time complexity of the exact certification is
O(T log T ) since we need to sort up to T thresholds bs in ascending order to efficiently calculate all
partial sums of the objective. Moreover, using this result, we can obtain provably minimal adversarial
examples (see Appendix B for details and Figure 11 for visualizations).

3.2 Exact Robust Loss Minimization for Boosted Decision Stumps

We note that when L is monotonically decreasing, it holds:

max
δ∈∆∞(ε)

L(y F (x+ δ)) = L
(

min
δ∈∆∞(ε)

yF (x+ δ)
)
,

and thus the certification algorithm can directly be used to compute also the robust loss. For updating
the ensemble F with a new stump f that splits a certain coordinate j, we first have to solve the inner
maximization problem over ∆∞(ε) in (2) before1 we optimize the parameters wl, wr, b of f :

max
‖δ‖∞≤ε

L
(
yiF (xi + δ) + yifj(xi + δ)

)
= L

(
min
‖δ‖∞≤ε

[ d∑
k=1

∑
s∈Sk

yifs,k(xi + δ) + yifj(xi + δ)
])

= L
(∑
k 6=j

min
|δk|≤ε

∑
s∈Sk

yifs,k(xi + δ) + min
|δj |≤ε

[ ∑
s∈Sj

yifs,j(xi + δ) + yifj(xi + δ)
])

= L
(∑
k 6=j

Gk(xi, yi) +
∑
s∈Sj

yiw
(s)
l + yiwl + min

|δj |≤ε

[ ∑
s∈Sj

yiw
(s)
r 1xij+δj≥bs + yiwr1xij+δj≥b

])
.

In order to solve the remaining optimization problem for δj we have to make a case distinction
based on the values of wr. However, first we define the minimal values of the ensemble part on
δj ∈ [−ε, b− xij) and δj ∈ [b− xij , ε] as

hl(xij , yi) := min
δj<b−xij

|δj |≤ε

∑
s∈Sj

yiw
(s)
r 1xij+δj≥bs , hr(xij , yi) := min

δj≥b−xij

|δj |≤ε

∑
s∈Sj

yiw
(s)
r 1xij+δj≥bs

These problems can be solved analogously to Gk(x, y). Then we get the case distinction:

g(xij , yi;wr) = min
|δj |≤ε

[ ∑
s∈Sj

yiw
(s)
r 1xij+δj≥bs + yiwr1xij+δj≥b

]
(5)

=

{
hr(xij , yi) + yiwr if b− xij < −ε or (|b− xij | ≤ ε and hl(xij , yi) > hr(xij , yi) + yiwr)

hl(xij , yi) if b− xij > ε or (|b− xij | ≤ ε and hl(xij , yi) ≤ hr(xij , yi) + yiwr)

The following Lemma shows that the robust loss is jointly convex in wl, wr
(
to see this set l = 2,

u = (wl, wr)
T , r(x̂) = (yi, yi1x̂ij≥b)

T , C = B∞(xi, ε) and c =
∑
k 6=j Gk(xi, yi)

)
.

1The order is very important as a min-max problem is not the same as a max-min problem.
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Lemma 1 Let L : R → R be a convex, monotonically decreasing function. Then L̃ : Rl → R
defined as L̃(u) = max

x̃∈C
L(c+ 〈r(x̃), u〉) is convex for any c ∈ R, r : Rd → Rl, and C ⊆ Rd.

Thus the loss term for each data point is jointly convex in wl, wr and consequently the sum of
the losses is convex as well. This means that for the overall robust optimization problem over the
parameters wl, wr (for a fixed b), we have to minimize the following convex function

L∗(j, b) = min
wl,wr

n∑
i=1

L
(∑
k 6=j

Gk(xi, yi) +
∑
s∈Sj

yiw
(s)
l + yiwl + g(xij , yi;wr)

)
.

We plot an example of this objective wrt the parameters wl and wr of a single decision stump in
Figure 2. In general, for an arbitrary loss L, there is no closed-form minimizer wrt wl and wr.
Thus, we can minimize such an objective using, e.g. coordinate descent. Then on every iteration of
coordinate descent the minimum wrt wl or wr can be found using bisection for any convex loss L.
For the exponential loss, we can optimize wrt wl via a closed-form minimizer when wr is fixed. The
details can be found in Appendix B.3.

2 1 0 1 2
wl

2

1

0

1

2

w
r

Exact robust loss wrt wl and wr

Figure 2: Visualization of the
min-max objective which is
convex wrt the parameters wl

and wr of a decision stump.

Finally, we have to minimize over all possible thresholds. We choose the
potential thresholds b ∈ Bj = {xij− ε−ν, xij + ε+ν | i = 1, . . . , n},
where ν can be as small as precision allows and is just introduced so
that the thresholds lie outside of ∆∞(ε). We optimize the robust loss
L∗(j, b) for all thresholds b ∈ Bj and determine the minimum. For
each contiguous set of minimizers we determine the nearest neighbors
in Bj and check the thresholds half-way to them (note that they have
at most the same robust loss but never a better one) and then take the
threshold in the middle of all the ones having equal loss. As there
are in the worst case 2n unique thresholds, the overall complexity of
one update step is O(n2 T log T ). And finally, at each update step one
typically checks all d coordinates and takes the one which yields the
smallest overall robust loss of the ensemble.

4 Robust Optimization for Boosted Decision Trees

We first provide an upper bound on the robust test error of the tree ensemble which is used further to
derive an upper bound on the robust loss that is then minimized in the update step of tree ensemble.

4.1 Upper Bound on the Robust Test Error for Boosted Decision Trees

Our goal is to solve the optimization problem (3). While the exact minimization is NP-hard for
tree ensembles [32], we can similarly to [73, 54] for neural networks derive a tractable lower bound
G̃(x, y) on G(x, y) for an ensemble of trees:

min
‖δ‖p≤ε

yF (x+ δ) = min
‖δ‖p≤ε

T∑
t=1

yu
(t)
qt(x+δ) ≥

T∑
t=1

min
‖δ‖p≤ε

yu
(t)
qt(x+δ)

:= G̃(x, y) (6)

If G̃(x, y) > 0, then the point x is provably robust. However, if G̃(x, y) ≤ 0, the point may be either
robust or non-robust. In this way, we get an upper bound on the number of non-robust points, which
yields an upper bound on the robust test error. We note that for a decision tree, min‖δ‖p≤ε yu

(t)
qt(x+δ)

can be found exactly by checking all leafs which are reachable for points in Bp(x, ε). This can be
done in O(l) time per tree, where l is the number of leaves in the tree.

4.2 Minimization of an Upper Bound on the Robust Loss for Boosted Decision Trees

The goal is to upper bound the inner maximization problem of Equation (2) based on the certificate
that we derived. Note that we aim to bound the loss of the whole ensemble F + f , and thus we do not
use any approximations of the loss such as the second-order Taylor expansion used in [23, 10]. We
use p = ∞, that is the attack model is ∆∞(ε). Let F (x) =

∑T
t=1 ft(x) =

∑T
t=1 u

(t)
qt(x) be a fixed
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ensemble of trees and f a new tree with which we update the ensemble. Then the robust optimization
problem is:

min
f

n∑
i=1

max
‖δ‖∞≤ε

L
(
yi
(
F (xi + δ) + f(xi + δ)

))
(7)

The inner maximization problem can be upper bounded for every tree separately given that L(yf(x))
is monotonically decreasing wrt yf(x), and using our certificate for the ensemble of T + 1 trees:

max
‖δ‖∞≤ε

L
(
yiF (xi + δ) + yif(xi + δ)

)
= L

(
min
‖δ‖∞≤ε

[ T∑
t=1

yift(xi + δ) + yif(xi + δ)
])

(8)

≤ L
( T∑
t=1

min
‖δ‖∞≤ε

yift(xi + δ) + min
‖δ‖∞≤ε

yif(xi + δ)
)

= L
(
G̃(xi, yi) + min

‖δ‖∞≤ε
yif(xi + δ)

)
We can efficiently calculate G̃(xi, yi) as described in the previous subsection. But note that
min‖δ‖∞≤ε yif(xi + δ) depends on the tree f . The exact tree fitting is known to be NP-complete
[39], although it is still possible to scale it to some moderate-sized problems with recent advances in
MIP-solvers and hardware as shown in [2]. We want to keep the overall procedure scalable to large
datasets, so we will stick to the standard greedy recursive algorithm for fitting the tree. On every step
of this process, we fit for some coordinate j ∈ {1, . . . , d} and for some splitting threshold b, a single
decision stump f(x) = wl + wr1xj≥b. Therefore, for a particular decision stump with threshold b
and coordinate j we have to solve the following problem:

min
wl,wr∈R

∑
i∈I

L

(
G̃(xi, yi) + yiwl + min

|δj |≤ε
yiwr1xij+δj≥b

)
(9)

where I are all the points xi + δ which can reach this leaf for some δ with ‖δ‖∞ ≤ ε.
Finally, we have to make a case distinction depending on the values of wr and b− xij :

min
|δj |≤ε

yiwr1xij+δj≥b = yiwr ·
{

1 if b− xij < −ε or (|b− xij | ≤ ε and yiwr < 0)

0 if b− xij > ε or (|b− xij | ≤ ε and yiwr ≥ 0)
(10)

where we denote the case distinction for brevity as 1(xi, yi;wr). Note that the right side of (10) is
concave as a function of wr. Thus the overall robust optimization amounts to finding the minimum of
the following objective, which is again by Lemma 1 jointly convex in wl, wr:

L∗(j, b) = min
wl,wr

∑
i:i∈I

L
(
G̃(xi, yi) + yiwl + yiwr1(xi, yi;wr)

)
(11)

Note that the case distinction 1(xi, yi;wr) can be fixed once we fix the sign of wr. This allows us to
avoid doing bisection on wr, and rather use coordinate descent directly on each interval wr ≥ 0 and
wr < 0. After finding the minimum of the objective on each interval, we then combine the results
from both intervals by taking the smallest loss out of them. The details are given in Appendix B.3.

Then we select the optimal threshold as described in Section 3.2. Finally, as in other tree building
methods such as [5, 10], we perform pruning after a tree is constructed. We start from the leafs and
prune nodes based on the upper bound on the training robust loss (8) to ensure that it decreases at
every iteration of tree boosting. This cannot be guaranteed with robust splits without pruning since
the tree construction process is greedy, and some training examples are also influenced by splits at
different branches. Thus, in order to control the upper bound on the robust loss globally over the
whole tree as in (8), and not just for the current subtree as in (9), we need a post-hoc approach that
takes into account the structure of the whole tree. Therefore, we have to use pruning. We note that
in the extreme case, pruning may leave only one decision stump at the root (although it happens
extremely rarely in practice), for which we are guaranteed to decrease the upper bound on the robust
loss. Thus every new tree in the ensemble is guaranteed to reduce the upper bound on the robust loss.
Note that this is also true if we use the shrinkage parameter [21] which we discuss in Appendix C.

Lastly, we note that the total worst case complexity is O(n2) in the number of training examples com-
pared to O(n log n) for XGBoost, which is a relatively low price given that the overall optimization
problem is significantly more complicated than the formulation used in XGBoost.
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5 Experiments

General setup We are primarily interested in two quantities: test error (TE) and robust test error
(RTE) wrt l∞-perturbations. For boosted stumps, we compute RTE as described in Section 3.1, but we
also report the upper bound on RTE (URTE) obtained using the stump-wise bound from Section 4.1
to illustrate that it is actually tight for almost all models. For boosted trees, we report RTE obtained
via the MIP formulation of [32] which we adapted to a feasibility problem (see Appendix G.2 for
more details), and also the tree-wise upper bounds described in Section 4.1. For evaluation we use
11 datasets: breast-cancer, diabetes, cod-rna, MNIST 1-5 (digit 1 vs digit 5), MNIST 2-6 (digit 2 vs
digit 6, following [32] and [9]), FMNIST shoes (sandals vs sneakers), GTS 100-rw (speed 100 vs
roadworks), GTS 30-70 (speed 30 vs speed 70), MNIST, FMNIST, and CIFAR-10. More details
about the datasets are given in Appendix F. We emphasize that we evaluate our models on image
recognition datasets mainly for the sake of comparison to other methods reported in the literature.

We consider five types of boosted stumps: normally trained stumps, adversarially trained stumps (see
Appendix G.1 for these results), robust stumps of Chen et al. [9], our robust stumps where the robust
loss is bounded stump-wise, and our robust stumps where the robust loss is calculated exactly. Next
we consider four types of boosted trees: normally trained trees, adversarially trained trees, robust
trees of Chen et al. [9], and our robust trees where the robust loss is bounded tree-wise. Both for
stumps and trees, we perform l∞ adversarial training following [32], i.e. every iteration we train on
clean training points and adversarial examples (equal proportion). We generate adversarial examples
via the cube attack – a simple attack inspired by random search [50] described in Appendix D (we
use 10 iterations and p = 0.5) and its performance is shown in Section G.3. We perform model
selection of our models and models from Chen et al. [9] based on the validation set of 20% randomly
selected points from the original training set, and we train on the rest of the training set. All models
are trained with the exponential loss. More details about the experiments are available in Appendix F
and in our repository http://github.com/max-andr/provably-robust-boosting.

Boosted decision stumps The results for boosted stumps are given in Table 1. First, we observe
that normal models are not robust for the considered l∞-perturbations. However, both variants of our
robust boosted stumps significantly improve RTE, outperforming the method of Chen et al. [9] on 7
out of the 8 datasets. Note that although our exact method optimizes the exact robust loss, we are
still not guaranteed to always outperform Chen et al. [9] since they use a different loss function, and
the quantities of interest are calculated on test data. The largest improvements compared to normal
models are obtained on breast-cancer from 98.5% RTE to 10.9% and on MNIST 2-6 from 99.9% to
9.1% RTE. The robust models perform slightly worse in terms of test error, which is in line with the
empirical observation made for adversarial training for neural networks [64]. Additionally, to the
robust test error (RTE), we also report the upper bound (URTE) to show that it is very close to RTE.
Notably, for our robust stumps trained with the upper bound on the robust loss, URTE is equal to the
RTE for all models, and it is very close to the RTE of our robust stumps trained with the exact robust
loss, while taking about 4x less time to train in average. Thus bounding the sum over weak learners
element-wise, as done in (6), seems to be tight enough to yield robust models. Finally, we provide in
Appendix G.2 a more detailed comparison to the robust boosted stumps of Chen et al. [9].

Table 1: Evaluation of robustness for boosted stumps. We show, in percentage, test error (TE), exact robust test
error (RTE), and upper bound on robust test error (URTE). Both variants of our robust stumps outperform the
method of Chen et al. [9]. We also observe that URTE is very close to RTE or even the same for many models.

Normal stumps Robust stumps Our robust stumps Our robust stumps
(standard training) Chen et al. [9] (robust loss bound) (exact robust loss)

Dataset l∞ ε TE RTE URTE TE RTE TE RTE URTE TE RTE URTE

breast-cancer 0.3 2.9 98.5 100 8.8 16.8 4.4 10.9 10.9 5.1 10.9 10.9
diabetes 0.05 24.7 54.5 56.5 23.4 30.5 28.6 33.1 33.1 27.3 31.8 31.8
cod-rna 0.025 4.7 42.8 44.9 11.6 23.2 11.2 22.4 22.4 11.2 22.6 22.6
MNIST 1-5 0.3 0.5 85.4 85.4 0.9 5.2 0.6 3.7 3.7 0.7 3.6 3.7
MNIST 2-6 0.3 1.7 99.9 99.9 2.8 13.9 3.0 9.1 9.1 3.0 9.2 9.2
FMNIST shoes 0.1 2.4 100 100 7.1 22.2 6.2 11.8 11.8 5.7 10.8 11.5
GTS 100-rw 8/255 1.1 9.9 9.9 2.0 11.8 2.8 8.9 8.9 2.0 6.7 6.7
GTS 30-70 8/255 11.3 53.7 53.7 12.7 28.2 12.7 26.9 26.9 12.9 27.6 27.6
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Table 2: Evaluation of robustness for boosted trees. We report, in percentages, test error (TE), robust test error
(RTE), and upper bound on robust test error (URTE). Our robust boosted trees lead to better RTE compared to
adversarial training and robust trees of Chen et al. [9]. We observe that especially for our models URTE are very
close to RTE, while URTE are orders of magnitude faster to compute.

Normal trees Adv. trained trees Robust trees Our robust trees
(standard training) (with cube attack) Chen et al. [9] (robust loss bound)

Dataset l∞ ε TE RTE URTE TE RTE URTE TE RTE TE RTE URTE

breast-cancer 0.3 0.7 81.0 81.8 0.0 27.0 27.0 0.7 13.1 0.7 6.6 6.6
diabetes 0.05 22.7 55.2 61.7 26.6 46.8 46.8 22.1 40.3 27.3 35.7 35.7
cod-rna 0.025 3.4 37.6 47.1 10.9 24.8 24.8 10.2 24.2 6.9 21.3 21.4
MNIST 1-5 0.3 0.1 90.7 96.0 1.3 9.0 9.5 0.3 2.9 0.2 1.3 1.4
MNIST 2-6 0.3 0.4 89.6 100 2.3 15.1 15.9 0.5 6.9 0.7 3.8 4.1
FMNIST shoes 0.1 1.7 99.8 99.9 5.5 14.1 14.2 3.1 13.2 3.6 8.0 8.1
GTS 100-rw 8/255 0.9 6.0 6.1 1.0 8.4 8.4 1.5 9.7 2.6 4.7 4.7
GTS 30-70 8/255 14.2 31.4 32.6 16.2 26.7 26.8 11.5 28.8 13.8 20.9 21.4

Boosted decision trees The results for boosted trees of depth 4 are given in Table 2. Our robust
training of boosted trees outperforms both adversarial training and the method of Chen et al. [9] in
terms of RTE on all 8 datasets. For example, on breast-cancer, the RTE of the robust trees of Chen
et al. [9] is 13.1%, while the RTE of our robust model is 6.6% and we achieve the same test error
of 0.7%. We note that TE and RTE of our robust trees are in many cases better than for our robust
stumps. This suggests that there is a benefit of using more expressive weak learners in boosting to get
more robust and accurate models. Adversarial training performs worse than our provable defense
not only in terms of URTE, but even in terms of LRTE. This is different from the neural network
literature [45, 25], where adversarial training usually provides better LRTE and significantly better
test error than methods providing provable robustness guarantees. However, our upper bound on
the robust loss is tight and tractable and thus adversarial training should not be used as it provides
only a lower bound and minimization of an upper bound makes more sense than minimization of a
lower bound. We provide a more detailed comparison to Chen et al. [9] in Appendix G.2 including
multi-class datasets (MNIST, FMNIST). We also show there that our proposed method to calculate
the certified robust error (URTE) is orders of magnitudes faster than the MIP formulation.

Comparison to provable defenses for neural networks We note that our methods are primarily
suitable for tabular data, but in the literature on robustness of neural networks there are no established
tabular datasets to compare to. Thus, we compare our robust boosted trees to the convolutional
networks of [73, 16, 75, 25, 13] on MNIST, FMNIST, and CIFAR-10. We do not compare to random-
ized smoothing since it is competitive only for small l∞-balls [57]. Since the considered datasets
are multi-class, we extend our training of robust boosted trees from the binary classification case to
multi-class using the one-vs-all approach described in Appendix E. We also use data augmentation
by shifting the images by one pixel horizontally and vertically. We fit our robust trees with depth of
up to 30 for MNIST and FMNIST, and with depth of up to 4 for CIFAR-10. Note that we restrict the
minimum number of examples in a leaf to 100. Thus a tree of depth 30 makes only a small fraction of
the possible 230 splits. We provide a comparison in Table 3. In terms of provable robustness (URTE),
our method is competitive to many provable defenses for CNNs. In particular, we outperform the
LP-relaxation approach of [73] on all three datasets both in terms of test error and upper bounds. We
also systematically outpeform the recent approach of [75] aiming at enhancing verifiability of CNNs
– we have a better URTE with the same or better test error. Only the recent work of [25] is able to
outperform our approach. Also, the CIFAR-10 model of [16] shows better URTE than our approach,
but worse test error. We would like to emphasize that even on CIFAR-10 (with a relatively large
ε = 8/255) our models are not too far away from the state-of-the-art. In addition our robust boosted
tree models require less computations at inference time.

Robustness vs accuracy tradeoff There is a lot of empirical evidence that robust training methods
for neural networks exhibit a trade-off between robustness and accuracy [73, 25, 64]. We can confirm
that the trade-off can also be observed for boosted trees: we consistently lose accuracy once we
increase ε. The only slight gain in accuracy that we observe is on FMNIST shoes dataset. More
details and plots of robustness versus accuracy can be found in Appendix G.4.
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Table 3: Comparison of our robust boosted trees to the state-of-the-art provable defenses for convolutional
neural networks reported in the literature. Our models are competitive to them in terms of upper bounds on
robust test error (URTE). By ∗ we denote results taken from [25] where they could achieve significantly better
TE and URTE with the code of [73].

Dataset l∞ ε Approach TE LRTE URTE

MNIST 0.3

Wong et al. [73]∗ 13.52% 26.16% 26.92%
Xiao et al. [75] 2.67% 7.95% 19.32%
Our robust trees, depth 30 2.68% 12.46% 12.46%
Gowal et al. [25] 1.66% 6.12% 8.05%

FMNIST 0.1 Wong and Kolter [72] 21.73% 31.63% 34.53%
Croce et al. [13] 14.50% 26.60% 30.70%
Our robust trees, depth 30 14.15% 23.17% 23.17%

CIFAR-10 8/255

Xiao et al. [75] 59.55% 73.22% 79.73%
Wong et al. [73] 71.33% – 78.22%
Our robust trees, depth 4 58.46% 74.69% 74.69%
Dvijotham et al. [16] 59.38% 67.68% 70.79%
Gowal et al. [25] 50.51% 65.23% 67.96%

Normal trees Adversarially trained trees Our robust trees
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Figure 3: The distribution of the splitting thresholds for boosted trees models trained on MNIST 2-6. We can
observe that our robust model almost always selects splits in the range between 0.3 and 0.7, which is reasonable
given l∞-perturbations within ε = 0.3. At the same time, the normal and adversarially trained models split close
to 0 or 1, which suggests that their decisions might be easily flipped by the adversary.

Interpretability For boosted stumps or trees, unlike for neural networks, we can directly inspect
the model and the classification rules it has learned. In particular, in Figure 3, we plot the distibution
of the splitting thresholds b for the three boosted trees models on MNIST 2-6 reported in Table 2.
We can observe that our robust model almost always selects splits in the range between 0.3 and 0.7,
which is reasonable given that more than 80% pixels of MNIST are either 0 or 1, and the considered
l∞-perturbations are within ε = 0.3. At the same time, the normal and adversarially trained models
split arbitrarily close to 0 or 1, which suggests that their decisions might be easily flipped if the
adversary is allowed to change them within this ε. To emphasize the importance of interpretability
and transparent decision making, we provide feature importance plots and more histograms of the
splitting thresholds in Appendix G.5 and G.6.

6 Conclusions and Outlook

Our results show that the proposed methods achieve state-of-the-art provable robustness among
boosted stumps and trees, and are also competitive to provably robust CNNs. This can be seen
as a strong indicator that particularly for large l∞-balls, current provably robust CNNs are so
over-regularized that their performance is comparable to simple decision tree ensembles that make
decisions based on individual pixel values. Thus it remains an open research question whether it is
possible to establish tight and tractable upper bounds on the robust loss for neural networks. On the
contrary, as shown in this paper, for boosted decision trees there exist simple and tight upper bounds
which can be efficiently optimized. Moreover, for boosted decision stumps one can compute and
optimize the exact robust loss. We thus think that if provable robustness is the goal then our robust
decision stumps and trees are a promising alternative as they not only come with tight robustness
guarantees but also are much easier to interpret.
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A Proof of convexity of the robust objective

Lemma 1 Let L : R→ R be a convex, monotonically decreasing function. Then L̃ : Rl → R defined
as L̃(u) = max

x̃∈C
L(c+ 〈r(x̃), u〉) is convex for any c ∈ R, r : Rd → Rl, and C ⊆ Rd.

Proof. First we use the fact that L is monotonically decreasing:

L̃(u) = max
x̃∈C

L(c+ 〈r(x̃), u〉) = L(c+ min
x̃∈C
〈r(x̃), u〉)

Now we observe that minx̃∈C 〈r(x̃), u〉 is a concave function as a pointwise minimum of a set
of concave (linear) functions (see [4] regarding this property). The convexity of L̃ follows from
the fact that it is a composition of a convex, nonincreasing function L and a concave function
c+ min

x̃∈C
〈r(x̃), u〉. �

B Detailed algorithms

B.1 The efficient exact certification for boosted stumps

Algorithm 1: The efficient exact certification for boosted stumps

Input: ensemble of stumps {fi}Ti=1, point x ∈ Rd, label y ∈ {−1, 1}, radius of l∞-ball ε
Output: is_robust ∈ {0, 1}

1 G← 0 /* initialize the variable that will be the solution of (3) */
2 for k ← 1 to d do
3 F = {f ∈ {fi}Ti=1 | cs = k} /* all stumps that split coord. k */
4 δ∗k = CalculateMinimizerGk(F , x, y, ε)
5 G← G+ F(xk + δ∗k)
6 end
7 is_robust = 1G≥0

8
9 Function CalculateMinimizerGk(F , x, y, ε)

10 F ← merge the stumps in F with the same splitting thresholds
11 B ← {xk − ε}, W ← {0}
12 for s← 1 to |F| do

/* add all thresholds and weights wr in [xk − ε, xk + ε] */
13 bs ← Fs.b, w

(s)
r ← Fs.wr

14 if xk − ε < bs ≤ xk + ε then
15 B ← B ∪ {bs}, W ←W ∪ {w(s)

r }
16 end

/* sorting thresholds in B leads to O(T log T ) complexity */
17 π = argsort(B)
18 v∗ ← 0 /* initialize the minimum cumulative difference */
19 δ∗k ← −ε /* initialize the optimal perturbation for coord. k */
20 for i← 1 to |π| do
21 v ← v + yWπi

22 if v < v∗ then
23 v∗ ← v, δ∗k ← Bπi

− xk
24 end
25 return δ∗k
26 end

B.2 Exact adversarial examples for boosted stumps

Using the result from Section 3.1, we can directly obtain provably minimal adversarial examples. By
noting that the function H(ε) := min

‖δ‖∞≤ε
yF (x+ δ) is piece-wise constant with up to T + 1 constant
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regions, it suffices to solve this minimization problem for every ε ∈ {0} ∪ {|bt − xct |+ ν sign(bt −
xct) | t = 1, . . . , T} (where ν is as small as precision allows) sorted in ascending order and stop
when ε is large enough to change the original class. In order to get the final perturbation vector δ, we
have to save the indices δ∗j that minimize yF (x+ δ) for every splitting coordinate j which are used
in the ensemble. The complexity of this procedure is O(T 2 log T ) since in the worst case we have to
solve (4) T times. For details of the procedure we refer to Algorithm 2. We provide visualizations of
these exact adversarial examples in Figure 11.

Algorithm 2: Finding exact adversarial examples for boosted stumps

Input: ensemble of stumps {fi}Ti=1, point x ∈ Rd, label y ∈ {−1, 1}
Output: exact adversarial perturbation δ ∈ Rd

1 E ← {0} ∪ {|bt − xct |+ ν sign(bt − xct) | t = 1, . . . , T}
2 E ← sort(E)
3 for i← 1 to |E| do
4 ε← Ei
5 Gε ← 0
6 δ ← 0 /* initialize the adversarial perturbation */
7 for k ← 1 to d do
8 F = {f ∈ {fi}Ti=1 | cs = k} /* all stumps that split coord. k */
9 δ∗k ← CalculateMinimizerGk(F , x, y, ε) /* from Algorithm 1 */

10 Gε ← Gε + F(xk + δ∗k)
11 end
12 if Gε < 0 then
13 break
14 end

B.3 Coordinate descent for the exponential loss

Boosted decision stumps: If we denote 1i to be equal to 1 if the first condition of (5) is true, and
0 otherwise, and also define

γi = exp
(
−
∑
k 6=j

Gk(xi, yi)−
∑
s∈Sj

yiw
(s)
l − hr(xij , yi)1i − hl(xij , yi)(1− 1i)

)
,

then the total exponential loss can be written as L(wl, wr) =
∑n
i=1 γi exp

(
− yiwl − yiwr1i

)
. We

further denote 1yi=y =

{
1 if yi = y

0 if yi 6= y
and

Σ1,1 =

n∑
i=1

1i1yi=1γi Σ1,−1 =

n∑
i=1

1i1yi=−1γi (12)

Σ0,1 =

n∑
i=1

(1− 1i)1yi=1γi Σ0,−1 =

n∑
i=1

(1− 1i)1yi=−1γi

Then the coordinate descent update for wl can be derived by setting ∂L
∂wl

to zero and solving for wl
which yields:

wl =
1

2
ln
(

exp(−wr)Σ1,1 + Σ0,1

)
− 1

2
ln
(

exp(wr)Σ1,−1 + Σ0,−1

)
Thus, the overall complexity for a particular coordinate j and fixed threshold b is O(n) times the
number of iterations of coordinate descent which is logarithmic in the desired precision (cost for
bisection).
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Boosted decision trees: By using the notation from (12), where now 1i := 1(xi, yi;wr), the
minimizers of wr and wl are given by setting ∂L

∂wr
and ∂L

∂wl
to zero:

wr =
1

2
ln(Σ1,1)− 1

2
ln(Σ1,−1)− wl

wl =
1

2
ln (exp(−wr)Σ1,1 + Σ0,1)− 1

2
ln (exp(wr)Σ1,−1 + Σ0,−1)

We iterate these updates of wr and wl until convergence. Note that coordinate descent does not create
a significant overhead to the overall algorithm, since we perform only operations on scalars Σ1,1,
Σ1,−1, Σ0,1, Σ0,−1 which do not have to be recomputed over the iterations of the coordinate descent.

B.4 Tree-wise certification of boosted decision trees

Algorithm 3: Tree-wise certification of boosted decision trees

Input: tree ensemble {ft}Tt=1, point x ∈ Rd, label y ∈ {−1, 1}
Output: is_provably_robust ∈ {0, 1}

1 G̃ = 0
2 for t← 1 to T do
3 G̃ = G̃ + ExactTreeCertification(ft, x, y)
4 end
5 is_provably_robust = 1G̃≥0

6 Function ExactTreeCertification(f, x, y)
/* start from a set that contains only the root node f */

7 nodes_to_check = {f}
8 v∗ =∞
9 while nodes 6= {} do

/* retrieve a node and delete it from the set */
10 node = nodes.pop()

/* get the splitting coordinate of the current node */
11 j = node.split_coordinate
12 if xj ≤ b+ ε then
13 if node.left is empty then
14 v∗ ← min(v∗, y · node.wl)
15 else
16 nodes_to_check ← nodes_to_check ∪ {node.left}
17 if xj ≥ b− ε then
18 if node.right is empty then
19 v∗ ← min(v∗, y · node.wl + y · node.wr)
20 else
21 nodes_to_check ← nodes_to_check ∪ {node.right}
22 end
23 return v∗
24 end
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C Monotonic descent of the upper bound on the robust loss with the
shrinkage parameter

As introduced in [23], the shrinkage parameter is applied during training as follows. Let f be a
new weak learner, then instead of adding it directly to the ensemble F := F + f , one rather adds
F := F + αf where α ∈ (0, 1]. In order to show that this scheme also always leads to monotonic
descent of the upper bound on the robust loss, we apply Lemma 1 to the case where f is a decision
tree with l leaves, i.e. f(x) = uq(x). Note that:

L̃(u) = max
x̃∈B∞(x,ε)

L(G̃(x, y) + yuq(x̃)) = max
x̃∈C

L(c+ 〈r(x̃), u〉),

where c = G̃(x, y) is the contribution of the previous weak learners (see Equation (8)), r(x) ∈
{−1, 0, 1}l represents mutually exclusive boolean conditions of the tree f multiplied by the label y,
i.e. r(x)q(x) = y and r(x)i = 0 for every i 6= q(x). Thus, the robust loss L̃(u) is convex in the leaf
weights u.

Note that L̃(0) corresponds to the loss value when all weights of the new weak learner f are set to
zero, thus it is simply the loss of the previous ensemble. Since L̃(u) is convex in its leaf weights
u ∈ Rl, the following property holds for every α ∈ (0, 1] due to convexity of L̃:

L̃(u) < L̃(0) =⇒ L̃(αu) < L̃(0)

To see this, from the definition of convexity we have:

L̃
(
αu+ (1− α)0

)
≤ αL̃(u) + (1− α)L̃(0)

L̃(αu) ≤ α
(
L̃(u)− L̃(0)

)
+ L̃(0)

L̃(αu) < L̃(0)

Moreover, since the sum of losses over training points is also convex in u, the same reasoning applies
to the sum of upper bounds on the robust losses taken over the training set. Thus, we conclude that
the usage of the shrinkage parameter α still preserves the monotonic descent in the robust objective,
therefore its usage is justified within our robust optimization framework.

D The cube attack

In the main part we described how to efficiently compute upper bounds on the robust test error. Now
we would like to also have an efficient l∞ adversarial attack on boosted trees that would allow us to
perform adversarial training. Moreover, it is also interesting to visualize adversarial examples to get a
better understanding how the model makes its decisions. Concretely, the goal is to find δ ∈ Rd that
approximately minimizes the following optimization problem:

min
‖δ‖∞≤ε

yF (x+ δ). (13)

We note that while there is a vast literature of black-box adversarial attacks evaluated on neural
networks [6, 30, 11, 26], query-efficiency of black-box l∞ attacks on boosted trees is less studied
[11, 9]. In this paper we do not aim to fully explore this direction since our goal is primarily provable
robustness, i.e. how to derive and optimize upper bounds on the robust error. Therefore, we just
introduce a simple black-box attack that empirically works well for boosted trees and is efficient
enough to be applied in adversarial training. We call it the cube attack which is based on (1+1)
evolutionary algorithm [14]. The main idea of the proposed attack is that on every iteration we try to
change some random subset of coordinates and accept the change only if it decreases the functional
margin yF (x̂) for the perturbed point x̂. On every iteration of the attack, a potential change for
every coordinate is sampled randomly from δi ∈ {−2ε, 0, 2ε}, and after adding such δ ∈ Rd to
the perturbed point x̂new := x̂ + δ we do a projection s.t. ‖x̂new‖∞ ≤ ε (and for images also
x̂new ∈ [0, 1]d) is satisfied. After this we keep x̂new if yF (x̂new) < yF (x̂), otherwise we keep the
old value x̂. The full procedure is specified in Algorithm 4.

Note that the obtained adversarial example is always situated at a corner of the feasible set (which is
a cube or the intersection of two cubes for image data, and hence the name of the attack). A similar
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idea of considering only corners of the feasible set was also used in [46] where they could design a
successful adversarial attack for neural networks. The only obvious disadvantage of this attack is that
it is restricted only to the corners of the l∞-ball. However, since the considered l∞-balls are small, it
is unlikely to have a decision region which crosses only the interior of the ball, but none of its corners.
The tight lower bounds on the robust test error that we show in our experiments suggest that this is
indeed true in practice. Moreover, for many models the lower and upper bounds on the robust test
error are exactly equal which suggests that with the proposed method we can avoid using expensive
combinatorial MIP solvers for large-scale classification tasks while still being able to accurately
estimate the robustness of the models.

Algorithm 4: The cube attack

Input: classifier F , point x ∈ Rd, label y ∈ {−1, 1}, number of iterations N , probability p to
change a coordinate (default value: p = 0.5)

Output: approximate minimizer δ ∈ Rd of (13)
1 x̂← x /* initialize the adversarial example */
2 v∗ ← yF (x) /* initialize the minimum functional margin */
3 for i← 1 to N do
4 δi ∼ Categorical ([−2ε, 0, 2ε] with probabilities [p/2, 1− p, p/2]) ∀i ∈ 1, . . . , d

5 x̂new ← Projection of x̂+ δ onto B∞(x, ε) (for images also onto [0, 1]d)
6 vnew ← yF (x̂new)

/* if the objective is improved, keep the new point x̂new */
7 if vnew < v∗ then
8 x̂← x̂new
9 v∗ ← vnew

10 end
11 δ ← x̂− x

E Extension of the method to multi-class setting

E.1 Certification for multi-class setting

We assume that for a multi-class classifier F : Rd → RK , a point x ∈ Rd is classified using
y = arg max

c=1,...,K
Fc(x). Now if y ∈ {1, . . . ,K} is the correct class, then x is correctly classified if and

only if
min
c6=y

[Fy(x)− Fc(x)] > 0.

Then the multi-class variant of the certification procedure 3 has the following form:
Gmult(x, y) = min

c6=y
min
‖δ‖p≤ε

[Fy(x+ δ)− Fc(x+ δ)] (14)

= min
c6=y

min
‖δ‖p≤ε

[
T∑
t=1

fyt(x+ δ)−
T∑
t=1

fct(x+ δ)

]
And then analogously to the binary classification case, it is not possible to change the class via a
perturbation within the lp-ball of radius ε if and only if Gmult(x, y) > 0.

The crucial observation now is that in the objective of (14), we have just an ensemble of 2T trees (T
trees for each class), which we already showed how to solve exactly for stumps using Algorithm 1,
and how to lower bound for trees using Algorithm 3 in order to get a robustness guarantee. Thus,
robustness certification for the multi-class setting can be done directly by reusing the same routines
K − 1 times, i.e. for every c ∈ {1, . . . ,K} \ y, and then taking the minimum over the K − 1 values
and comparing it to zero.

E.2 Robust training for multi-class setting

Now we discuss how to properly integrate the multi-class guarantee into training via calculating an
upper bound on the robust loss.
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One of the first popular multi-class versions of AdaBoost is AdaBoost.MH suggested in [58] which
is essentially one-vs-all classifier if labels are mutually exclusive. Although, [23] argue that the
one-vs-all scheme is suboptimal, their results show that the one-vs-all approach performs similarly to
the joint cross-entropy loss, see also [37, 38] for a more recent comparison. [55] compared a wide
range of multi-class methods and concluded that with proper tuning of the hyperparameters of the
classifiers, one-vs-all approach does not show worse results than other more involved methods. Our
experiments again confirm this observation where we found that our non-robust one-vs-all models
perform similarly to the models trained with XGBoost library. Thus, we describe below how we
perform provably robust training for the one-vs-all scheme.

Assuming that labels for class c and training point xi are yci ∈ {−1, 1}, by the one-vs-all scheme we
mean the following optimization problem:

min
F1,...,FK

n∑
i=1

K∑
c=1

L(yciFc(xi)) =

K∑
c=1

min
Fc

n∑
i=1

L(yciFc(xi))

The crucial observation is that the objective is separable over the individual classifiers F1, . . . , FK ,
and thus the K classifiers can be trained completely independently. A clear advantage of such a
scheme is that it can be trivially parallelized. However, it is not separable anymore if we consider the
robust one-vs-all scheme since the same adversarial perturbation δ is shared across K losses. But we
still can upper bound the sum of robust losses L(yciFc(xi + δ)) element-wise:

min
F1,...,FK

n∑
i=1

max
‖δ‖p≤ε

K∑
c=1

L(yciFc(xi + δ)) ≤ min
F1,...,FK

n∑
i=1

K∑
c=1

max
‖δ‖p≤ε

L(yciFc(xi + δ))

and then trainK one-vs-all classifiers independently. Note that from the implementation point of view,
for boosted trees with the exponential loss, the only difference compared to the binary classification
scheme that we described earlier is just different per-example weights γ. Thus, this scheme can be
easily implemented by reusing the same procedures described earlier. This scheme already works
quite well for robust boosted trees. However, we note that it is not clear how to perform exact robust
optimization for boosted stumps for the original robust one-vs-all objective.

F Experimental details

Datasets: All datasets used in the experiments are listed in Table 4.

Table 4: Information about the datasets used in the experiments.

Dataset # classes # features # train # test Reference

breast-cancer 2 10 546 137 [15]
diabetes 2 8 614 154 [60]
cod-rna 2 8 59535 271617 [65]
MNIST 1-5 2 784 12163 2027 [40]
MNIST 2-6 2 784 11876 1990 [40]
FMNIST shoes 2 784 12000 2000 [74]
GTS 100-rw 2 3072 4200 1380 [61]
GTS 30-70 2 3072 2940 930 [61]
MNIST 10 784 60000 10000 [40]
FMNIST 10 784 60000 10000 [74]
CIFAR-10 10 3072 50000 10000 [35]

Hyperparameters; For the breast-cancer dataset, we select the radius ε of the l∞-perturbations
based on the choice of [9]. However, for diabetes and cod-rna datasets we reduce them compared to
[9] in a way that allows robust classifiers to still achieve a test error comparable to normal models.
For image datasets (MNIST, FMNIST, GTS, CIFAR-10), we follow the established l∞ ε’s from the
neural networks literature [72, 25].

We tune the hyperparameter wmax on the validation sets of several datasets and the best value came
out to be close to 1, which we use for all experiments. For binary classification, we use the shrinkage
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parameter of 0.2 for diabetes, cod-rna, MNIST 1-5, MNIST 2-6, and FMNIST shoes, and 0.01 for
the rest of the datasets. We use at most 300 iterations for stumps, 300 iterations for trees of depth 2,
150 iterations for depth 4, and 75 iterations for trees of depth 8. For trees, we perform splits only
when there are more than 10 examples at a leaf for binary classification datasets, and if more than
200 examples for multi-class datasets.

Restricting the maximum weight: In the process of fitting a decision stump (also as an intermedi-
ate step for building a tree), we have to take care of cases when all points at some side of the threshold
b have the same label. This leads to wl or wr that attain their optimal values at ±∞ depending
on the labels. In order to resolve this, in our implementation we set the maximum weight wmax,
and we project all obtained leaf values wl and wl + wr onto the range [−wmax, wmax]. We found
empiricially that constraining the maximum values of tree leafs in this way leads to a noticeable
beneficial regularization effect which is similar in spirit to the usage of the shrinkage parameter
introduced in [22].

G Additional experiments

G.1 Adversarial training for boosted stumps

We show the results of adversarial training for boosted stumps in in Table 5, where adversarial
examples were generated using the cube attack with 10 iterations and p = 0.5. We observed that we
could achieve non-trivial robustness (RTE) with adversarially trained models only when we used a
small shrinkage parameter. Thus, we set it to 0.1 for all boosted stump models.

The results show that similarly to boosted trees, both robust training of Chen et al. [9] and our
proposed methods outperform adversarial training by a large margin. This shows that either one has
to find a better way to perform adversarial training for boosted stumps and trees, or that it may not be
a suitable technique for classifiers which are built in a stagewise fashion.

G.2 Comparison to the robust training of Chen et al. [9]

We compare our provably robust boosted stumps and trees to Chen et al. [9] in the same setting as
ours: we fit boosted stumps and boosted trees of depth 4 with 80% of the training data and use the
rest as the validation set for model selection. For the models of Chen et al. [9] we use exact RTE via
MIP of [32] for model selection both for stumps and trees, whereas for our models we use exact RTE
for stumps, and our fast URTE for trees. For [9] we use a coarser grid for selecting the number of
iterations since RTE, in particular for trees, is more expensive to evaluate. We use up to 300 iterations
and shrinkage parameter of 1 for boosted stumps both for us and [9]. For boosted trees of [9] we use
the number of iterations and the shrinkage parameters for every dataset separately as specified in the
code of [9], and for our models as described in the previous section.

Boosted stumps: We present the results in Table 6. We can see that our robust trees lead to better
RTE on 7 out of 8 datasets while having comparable test error. Moreover, our efficient way of

Table 5: The results of adversarially trained boosted stumps, where adversarial examples were generated using
the cube attack. The results for other training methods are presented in Table 1. We conclude that our proposed
robust stumps outperform adversarial training by a large margin.

Adversarially trained stumps
Dataset l∞ ε TE RTE URTE

breast-cancer 0.3 0.7 15.3 15.3
diabetes 0.05 27.3 33.1 33.1
cod-rna 0.025 22.8 26.1 26.1
MNIST 1-5 0.3 3.2 8.3 9.1
MNIST 2-6 0.3 9.7 22.5 24.6
FMNIST shoes 0.1 8.3 16.3 17.0
GTS 100-rw 8/255 2.2 7.7 7.9
GTS 30-70 8/255 19.1 28.8 31.0
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Table 6: Comparison of our boosted stumps to Chen et al. [9]. The model selection of the number of iterations
#iter was done based on RTE. Time MIP and Time ours correspond to the time needed to calculate RTE of our
models using a general-purpose MIP solver and our fast exact certification procedure described in Section 4.1.
All numbers are obtained using full test sets.

Stumps of Chen et al. [9] Our robust stumps (exact robust loss)
Dataset l∞ ε TE RTE #iter TE RTE #iter Time MIP Time ours Speedup

breast-cancer 0.3 8.8 16.8 1 5.1 10.9 2 0.1s 0.2ms 529x
diabetes 0.05 23.4 30.5 3 27.3 31.8 1 0.1s 0.3ms 393x
cod-rna 0.025 11.6 23.2 4 11.2 22.6 16 6.5m 69ms 5655x
MNIST 1-5 0.3 0.9 5.2 40 0.7 3.6 274 37.7s 0.14s 267x
MNIST 2-6 0.3 2.8 13.9 40 3.0 9.2 83 14.5s 48ms 302x
FMNIST shoes 0.1 7.1 22.2 10 5.7 10.8 174 23.9s 91ms 260x
GTS 100-rw 8/255 2.0 11.8 40 2.0 6.7 109 8.1s 0.10s 80x
GTS 30-70 8/255 12.7 28.2 40 12.9 27.6 227 20.9s 0.47s 45x

Table 7: Comparison of our boosted trees to Chen et al. [9]. The model selection of the number of iterations #iter
was done based on RTE for the models of [9] and URTE for our models. Time MIP and Time ours correspond to
the time needed to calculate RTE of our models using a MIP solver and URTE as described in Section 4.2. All
numbers are obtained using full test sets.

Trees of Chen et al. [9] Our robust trees (robust loss bound)
Dataset l∞ ε TE RTE #iter TE RTE URTE #iter Time MIP Time ours Speedup

breast-cancer 0.3 0.7 13.1 8 0.7 6.6 6.6 46 5.8s 12ms 502x
diabetes 0.05 22.1 40.3 5 27.3 35.7 35.7 9 1.1s 3ms 343x
cod-rna 0.025 10.2 24.2 20 6.9 21.3 21.4 36 31.9m 3.5s 550x
MNIST 1-5 0.3 0.3 2.9 1000 0.2 1.3 1.4 126 3.7m 0.14s 1581x
MNIST 2-6 0.3 0.5 6.9 1000 0.7 3.8 4.1 88 2.6m 0.10s 1500x
FMNIST shoes 0.1 3.1 13.2 20 3.6 8.0 8.1 128 3.6m 0.14s 1522x
GTS 100-rw 8/255 1.5 9.7 20 2.6 4.7 4.7 105 1.4m 57ms 1417x
GTS 30-70 8/255 11.5 28.8 20 13.8 20.9 21.4 148 2.4m 0.10s 1463x
MNIST 0.3 2.0 31.2 200 2.7 12.5 15.8 37 5.5 days 4.6s 135893x
FMNIST 0.1 14.4 65.1 200 14.2 23.2 25.9 52 3.3 days 4.2s 82209x

calculating the RTE described in Section 3.1 is orders of magnitude faster than using an off-the-shelf
MIP-solver [27]. We note that the most robust models of [9] are usually obtained at the first 40
iterations, while our models need more iterations to obtain the minimum validation RTE. We attribute
this to the differences in robust training and also to the fact that we use a different loss function and
constrain wmax. We observe that the latter usually increases the number of iterations needed until
convergence.

Boosted trees: First, we note that in order to make the MIP formulation of [32] more scalable
for tree ensembles, we change it to the feasibility problem regarding whether there exists an l∞-
perturbation that is able to change the class instead of searching for the minimal adversarial perturba-
tion wrt the l∞-norm. This brings us in average two orders of magnitude speed-up for calculating
RTE on the considered datasets. However, even with this speed-up, it still takes up to 5.5 days to
calculate RTE for the largest models that we evaluated.

We present the comparison for boosted trees in Table 7. The main observation is that we outperform
[9] on all considered datasets in terms of the RTE, often by a large margin. Our better RTE comes at
the price of slightly worse test error on several datasets which we attribute to the empirically observed
trade-off between accuracy and robustness: methods achieving better robustness tend to have worse
test error. We note that our URTE are very close to RTE, and the time needed to calculate URTE is
orders of magnitude faster than RTE calculated with MIP.

In Table 7 we also provide a comparison for boosted trees on multi-class datasets (MNIST and
FMNIST). We trained our models using the one-vs-all approach and set the depth of individual trees
to be up to 30. For [9] we take the models provided by the authors that have depth 8. We can see that
our robust trees outperform their method by a large margin: 12.5% instead of 31.2% RTE on MNIST.
On FMNIST, the gap is even larger: 23.2% versus 65.1% RTE while our test error is even slightly

20



better. We note that partially the reason for such a large gap might be in the fact that the boosted
trees of [9] may also benefit from a larger depth. However, our comparison for binary classification
datasets suggests that even when the settings are the same for both methods, our robust training
consistently leads to more robust models than [9].

G.3 Robust boosted trees of different depth

The results for boosted trees are given in Table 8 for trees of different depth. We show lower bounds
on robust test error (LRTE) obtained via the cube attack to show that it leads to tight LRTE which
are close to the exact RTE values. This justifies its usage in adversarial training. For LRTE we
used the attack with 20 iterations and p = 0.5. We run the attack every iteration of training, and
initialize every next perturbation δ with the perturbation obtained at the previous iteration. We
perform l∞ adversarial training similarly to [32], i.e. every iteration we train on clean training
points and adversarial examples (equal proportion), which are generated via the cube attack using 10
iterations and p = 0.5.

We observe that robust training for boosted trees is very efficient in improving robustness of the
models for all depth values. In particular, our robust models outperform adversarially trained models,
often with a large margin. For example, on MNIST 1-5, RTE of the adversarially trained model of
depth 8 is 10.5%, while RTE of our robust model of the same depth is 1.2%. We observe that for
our robust trees, URTE is very close to LRTE or even the same in some cases which can allow us to
assess exact RTE even without using any combinatorial solvers. Finally, we note that our trees of
depth 4 outperform our trees of depth 2 on all datasets in terms of RTE. However, our models of depth
8 show a better RTE than depth 4 only on several datasets including MNIST 1-5 and MNIST 2-6.
For MNIST and FMNIST we observed improvements in RTE by increasing the depth up to 30. This
suggests that in order to achieve the optimal RTE, one has to carefully select an appropriate depth of
the trees which depends on a particular dataset.

G.4 Robustness and accuracy

There is a lot of empirical evidence that robust training methods for neural networks exhibit a trade-off
between robustness and accuracy [73, 25, 64]. Now we investigate whether the same trade-off also
exists for our robust boosted trees. For this we take three datasets (diabetes, cod-rna, and FMNIST
shoes) and plot the dependency of the test error on l∞ ε used for our robust training. The results
are presented in Figure 4 for trees of depth 4 and 8. We can confirm that the trade-off can also be
observed for boosted trees: we consistently lose accuracy once we increase ε. The only slight gain in
accuracy that we observe is on FMNIST shoes dataset.

G.5 Feature importance

It is important to note that boosted trees that split directly on pixel values are not the most suitable
models for computer vision tasks. Even though on some datasets like GTS 100-rw, they are able to
achieve less than 1% test error, they lack important invariances such as invariance to translations,
different view points, etc. What we would like to emphasize in this section is the advantage of
boosted trees in terms of transparent decision making. In particular, we can clearly see which pixels
are directly used for the decisions. One of the ways to assign feature importance to boosted decision
trees with coordinate-aligned splits is to count the number of times a particular feature was used
in some splits. Such visualization are shown in Figures 5, 6, 7. First of all, we can note that for
all datasets our robust training changes the frequencies of features that are used. For example, on
the breast cancer dataset, the robust model tends to use features like texture, concave points, area,
radius, and compactness much less often compared to the normal and adversarially trained models.
On MNIST 1-5 and MNIST 2-6 we see that the robust model relies more often at the pixels which
are closer to the border. On GTS 100-rw and GTS 30-70 all the models rely mainly just on a few
discriminative pixels (see Figure 13 for examples of the images). It is particularly interesting that
on GTS 100-rw the models can achieve almost perfect classification error while ignoring almost the
whole image. This shows that even a good performance on some test set does not yet mean that the
model has truly learned important features – just shifting the GTS images by several pixel would
completely ruin the performance of the presented boosted tree models. Thus we again emphasize the
importance of interpretability for detecting such failure modes.
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Table 8: Evaluation of robustness for boosted trees of different depth. We show, in percentage, test error (TE),
lower bound on robust test error (LRTE) via the cube attack, robust test error (RTE) via MIP of [32], upper
bound on robust test error (URTE), and the number of iterations selected using the validation set (#iter). Our
robust boosted trees significantly improve RTE, more than adversarially trained boosted trees. We also observe
that URTE is close to RTE for many models.

Normal trees Adversarially trained trees Our robust trees
(standard training) (with cube attack) (robust loss bound)

Dataset l∞ ε TE LRTE RTE URTE #iter TE LRTE RTE URTE #iter TE LRTE RTE URTE #iter

depth=2

breast-cancer 0.3 1.5 81.0 81.0 82.5 47 0.7 29.2 29.2 29.2 3 2.2 10.2 10.2 10.2 12
diabetes 0.05 22.7 43.5 44.8 45.5 20 25.3 38.3 38.3 38.3 3 28.6 36.4 36.4 36.4 20
cod-rna 0.025 3.9 35.6 37.0 39.2 298 11.5 22.9 22.9 22.9 2 7.2 21.6 21.6 21.6 229
MNIST 1-5 0.3 0.1 57.5 88.5 99.0 192 1.9 8.6 8.8 9.1 7 0.5 1.8 1.8 1.8 140
MNIST 2-6 0.3 0.7 95.5 100 100 276 4.7 17.5 17.5 17.5 8 1.2 4.8 4.8 5.0 291
FMNIST shoes 0.1 1.6 95.6 100 100 268 6.6 13.3 13.5 13.8 15 4.4 8.5 8.6 8.6 137
GTS 100-rw 8/255 5.1 13.4 13.4 13.4 234 12.6 18.7 19.0 19.0 69 3.8 7.8 7.8 7.8 299
GTS 30-70 8/255 17.0 29.4 29.4 29.7 300 22.3 27.5 28.8 28.8 153 15.9 23.4 23.4 23.6 292

depth=4

breast-cancer 0.3 0.7 81.0 81.0 81.8 78 0.0 19.7 27.0 27.0 3 0.7 6.6 6.6 6.6 46
diabetes 0.05 22.7 51.3 55.2 61.7 18 26.6 45.5 46.8 46.8 1 27.3 35.7 35.7 35.7 9
cod-rna 0.025 3.4 37.6 41.6 47.1 150 10.9 24.6 24.8 24.8 2 6.9 21.3 21.3 21.4 36
MNIST 1-5 0.3 0.1 59.1 90.7 96.0 72 1.3 7.1 9.0 9.5 5 0.2 1.3 1.3 1.4 126
MNIST 2-6 0.3 0.4 89.6 89.6 100 79 2.3 15.1 15.1 15.9 6 0.7 3.8 3.8 4.1 88
FMNIST shoes 0.1 1.7 84.0 99.8 99.9 117 5.5 13.2 14.1 14.2 12 3.6 7.7 8.0 8.1 128
GTS 100-rw 8/255 0.9 5.8 6.0 6.1 148 1.0 5.7 8.4 8.4 40 2.6 4.7 4.7 4.7 105
GTS 30-70 8/255 14.2 31.1 31.4 32.6 148 16.2 24.7 26.7 26.8 26 13.8 20.9 20.9 21.4 148

depth=8

breast-cancer 0.3 0.7 83.9 84.7 84.7 54 0.7 13.1 19.7 19.7 3 0.7 8.8 8.8 8.8 1
diabetes 0.05 22.1 68.8 83.1 91.6 27 29.9 73.4 77.9 77.9 1 27.3 35.7 35.7 35.7 2
cod-rna 0.025 3.2 38.9 49.0 61.3 72 5.6 28.9 30.8 31.8 2 6.6 21.0 21.1 21.1 5
MNIST 1-5 0.3 0.4 86.6 92.6 94.5 28 1.0 7.2 10.5 11.4 5 0.2 1.0 1.2 1.4 60
MNIST 2-6 0.3 0.4 78.1 95.1 99.9 61 0.8 9.3 11.7 12.1 7 0.4 2.7 3.0 3.3 72
FMNIST shoes 0.1 1.8 80.2 99.9 100 64 4.5 14.5 16.5 16.6 7 3.3 7.4 8.3 8.3 12
GTS 100-rw 8/255 8.7 19.6 19.7 20.8 38 0.9 6.1 13.3 13.5 32 6.0 10.5 10.6 11.3 25
GTS 30-70 8/255 15.4 39.6 40.0 40.9 39 14.3 23.2 25.5 25.8 21 11.9 21.0 21.1 22.0 63

Our robust boosted trees of depth 4
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Figure 4: Robustness vs test error trade-off of our robust boosted trees. We can observe that robustness often
comes with a loss in test error depending on the particular value of ε. However, for FMNIST shoes, there exists
a range of ε when robust training helps to slightly improve test error.
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Breast cancer: normal trees Breast cancer: adv. trained trees Breast cancer: our robust trees
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Figure 5: Feature importance of different boosted tree models on breast-cancer dataset based on the number of
splits made at a particular pixel.

MNIST 1-5: normal trees MNIST 1-5: adv. trained trees MNIST 1-5: our robust trees

MNIST 2-6: normal trees MNIST 2-6: adv. trained trees MNIST 2-6: our robust trees

Figure 6: Feature importance of different boosted tree models on MNIST 1-5 and MNIST 2-6 based on the
number of splits made at a particular pixel.

G.6 Distribution of splitting thresholds

In Figures 8, 9, 10, we plot the distibutions of the splitting thresholds b for the three boosted tree
models of depth 4 on breast-cancer, MNIST 1-5, MNIST 2-6, GTS 100-rw, and GTS 30-70 datasets
reported in Table 2. We can observe that our robust models on breast-cancer tend to select splits
away from 0 and 1. On MNIST 1-5 and MNIST 2-6 the distributions for the normal and robust
models are completely different – almost all splits for the normal model are very close to 0 and 1,
while the splits for the robust model are mostly in the range between 0.3 and 0.7. This is reasonable
given that more than 80% pixels of MNIST are either 0 or 1, and the considered l∞-perturbations
are within ε = 0.3. And since the normal model splits arbitrarily close to 0 or 1, this suggests that
its decisions might be easily flipped if the adversary is allowed to change them within ε. We also
note that adversarially trained models have a distribution of the splitting thresholds that resembles
the distribution for our models, however there are still quite many non-robust splits around 0 and 1.
This again emphasizes the importance of solving the robust optimization problem properly. On GTS
100-rw and GTS 30-70 we can see that the distribution of thresholds for the robust model differs from
the normal and adversarially trained models. It is interesting to note that there are no splits too close
to one.
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GTS 100-rw: normal trees GTS 100-rw: adv. trained trees GTS 100-rw: our robust trees

GTS 30-70: normal trees GTS 30-70: adv. trained trees GTS 30-70: our robust trees

Figure 7: Feature importance of different boosted tree models on GTS 100-rw and GTS 30-70 based on the
number of splits made at a particular pixel.

Breast-cancer: normal trees Breast-cancer: adv. trained trees Breast-cancer: our robust trees
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Figure 8: The distribution of the splitting thresholds for boosted tree models trained on breast-cancer dataset.
We can observe that the choice of splitting thresholds is different for the robust model, in particular it does not
have splits larger than at 1 - ε (ε = 0.3).
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MNIST 1-5: normal trees MNIST 1-5: adv. trained trees MNIST 1-5: our robust trees
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MNIST 2-6: normal trees MNIST 2-6: adv. trained trees MNIST 2-6: our robust trees
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Figure 9: The distribution of the splitting thresholds for boosted tree models trained on MNIST 1-5 and MNIST
2-6. We can observe that the robust model almost always select splits in the range between 0.3 and 0.7, which is
reasonable according to l∞-perturbations within ε = 0.3. At the same time, the normal model splits arbitrarily
close to 0 or 1, which suggests that its decisions might be easily flipped by the adversary.

GTS 100-rw: normal trees GTS 100-rw: adv. trained trees GTS 100-rw: our robust trees
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GTS 30-70: normal trees GTS 30-70: adv. trained trees GTS 30-70: our robust trees
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Figure 10: The distribution of the splitting thresholds for boosted tree models trained on GTS 100-rw and GTS
30-70. We can observe that the robust model often selects splits in the range between 8/255 (≈ 0.031) and 1 -
8/255 (≈ 0.969), which is reasonable according to l∞-perturbations within ε = 8/255.
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G.7 Adversarial examples for boosted stumps and trees

Exact adversarial examples for boosted stumps: In Section 3.1, we described how we can
efficiently obtain provably minimal (exact) adversarial examples for boosted stumps. We show them
for MNIST 1-5 and MNIST 2-6 datasets in Figure 11. We show the size of l∞-perturbation needed
to flip the class in the title of each image. First, we can observe that l∞-perturbations are sparse
which is due to the fact that we modify only the pixels that influence particular decision stumps
that contribute to minimization of (4). The main observation is that the perturbations for normal
models are extremely small, while for robust models they are much larger in terms of the l∞-norm.
In particular, they have usually ‖δ‖∞ slightly larger than 0.3 which makes sense since the ε that we
used during training was equal to 0.3. Moreover, for robust models, the perturbations are situated at
the locations where one can expect pixels of the opposite classes.

Adversarial examples for boosted trees: Adversarial examples for different boosted tree models
are obtained via the binary search applied on top of the cube attack. We show the resulting images
in Figure 12 for MNIST 1-5 and MNIST 2-6, and in Figure 13 for GTS 100-rw and GTS 30-70.
We note that qualitatively the adversarial examples for boosted trees are very similar to the exact
adversarial examples for boosted stumps. Except that for a few images the perturbation is larger in
l∞-norm and affects more pixels. This might be an artifact of how the cube attack works, although
for visualization purposes we remove the perturbations from the features that do not affect any splits.
For GTS 100-rw and GTS 30-70, we see that the changes that flip the class are often quite small even
for our robust models which is due to the fact that we used a small ε during training (8/255) which is
much lower than the ε for MNIST 1-5 or MNIST 2-6. We can see noticeable changes mostly for the
images that have a natural contrast level. For low-contrast images the changes are harder to spot, but
they are still present at the locations shown on the heatmaps from Figure 7.

Overall, we can conclude that for boosted stumps and trees the presented adversarial examples do not
show perceptual interpolations between classes like robust neural networks [64], but this we cannot
expect from such simple classifiers. What is more important in the context of stumps and trees is
rather the idea of instance-based explanations that can help to get more insights into how the model
makes its decisions.
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Normal Our robust stumps Our robust stumps Normal Our robust stumps Our robust stumps
stumps (robust loss bound) (exact robust loss) stumps (robust loss bound) (exact robust loss)

|| || =0.002 || || =0.302 || || =0.302

|| || =0.002 || || =0.302 || || =0.302

|| || =0.169 || || =0.341 || || =0.382

|| || =0.002 || || =0.302 || || =0.302

|| || =0.063 || || =0.300 || || =0.300

|| || =0.002 || || =0.302 || || =0.302

|| || =0.002 || || =0.302 || || =0.302

|| || =0.002 || || =0.302 || || =0.302

|| || =0.008 || || =0.308 || || =0.308

|| || =0.002 || || =0.304 || || =0.304

Figure 11: Exact adversarial examples for boosted stumps trained on MNIST 1-5 and MNIST 2-6 datasets.
We show the size of l∞-perturbation needed to flip the class in the title of each image. We can observe that
perturbations for normal models are extremely small or even imperceptible, while for robust models they are
much larger in l∞-norm and situated at the locations where one can expect pixels of the opposite classes.
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Normal Adv. trained Our robust Normal Adv. trained Our robust
trees trees trees trees trees trees

|| || =0.375 || || =0.305 || || =0.490

|| || =0.008 || || =0.305 || || =0.303

|| || =0.375 || || =0.309 || || =0.496

|| || =0.504 || || =0.500 || || =0.539

|| || =0.004 || || =0.305 || || =0.303

|| || =0.004 || || =0.305 || || =0.303

|| || =0.004 || || =0.375 || || =0.303

|| || =0.008 || || =0.305 || || =0.303

|| || =0.020 || || =0.297 || || =0.303

|| || =0.020 || || =0.500 || || =0.303

|| || =0.061 || || =0.500 || || =0.314

|| || =0.020 || || =0.500 || || =0.305

|| || =0.020 || || =0.500 || || =0.303

|| || =0.037 || || =0.375 || || =0.303

|| || =0.012 || || =0.312 || || =0.303

|| || =0.059 || || =0.305 || || =0.305

Figure 12: Adversarial examples for boosted trees trained on MNIST 1-5 and MNIST 2-6 datasets. We show
the size of l∞-perturbation needed to flip the class in the title of each image. We can observe that perturbations
for normal models are extremely small or even imperceptible, while for robust models they are much larger in
l∞-norm and situated at the locations where one can expect pixels of the opposite classes.
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Normal Adv. trained Our robust Normal Adv. trained Our robust
trees trees trees trees trees trees

|| || =0.533 || || =0.500 || || =0.484

|| || =0.250 || || =0.219 || || =0.227

|| || =0.078 || || =0.063 || || =0.094

|| || =0.102 || || =0.094 || || =0.125

|| || =0.125 || || =0.043 || || =0.250

|| || =0.094 || || =0.084 || || =0.062

|| || =0.125 || || =0.082 || || =0.094

|| || =0.125 || || =0.047 || || =0.125

|| || =0.047 || || =0.076 || || =0.125

|| || =0.250 || || =0.252 || || =0.270

|| || =0.084 || || =0.047 || || =0.078

|| || =0.125 || || =0.094 || || =0.062

|| || =0.227 || || =0.141 || || =0.191

|| || =0.324 || || =0.281 || || =0.326

|| || =0.250 || || =0.109 || || =0.250

|| || =0.070 || || =0.117 || || =0.094

Figure 13: Adversarial examples for boosted trees trained on GTS 30-70 and GTS 100-rw datasets. We show
the size of l∞-perturbation needed to flip the class in the title of each image. We see that the changes are often
quite small even for our robust models which is due to the fact that we used a small ε during training (8/255)
which is much lower than the ε for MNIST 1-5 or MNIST 2-6.
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