
Appendix

A Ridge Regression Solver RidgeReg

In the reduction from PCP to PCR stated in Section 2, a blackbox solver RidgeReg(A,λ,s) is needed
as the case of Frostig et al. [7], Allen-Zhu and Li [8]. We formally define it as follows.

Definition 5 (Ridge Regression Solver). Given s∈Rd, and exact solution x∗=(A>A+µI)−1s, an
algorithm RidgeReg(A,µ,s) is an ε-approximate ridge regression blackbox solver if for all ε>0, it
returns a solution x̃ satisfying ‖x̃−x∗‖≤ε‖s‖.
Theorem 9 (Blackbox Solver for Ridge Regression). There is a blackbox solver for ridge regression
with runtime Õ(nnz(A)+

√
nnz(A)d·sr(A)κµ).

An algorithm achieving the aboveboard theoretical guarantee can be found in Shalev-Shwartz and
Zhang [22], Frostig et al. [14], Lin et al. [15].

We remark that when depending on structural properties of A (denoting the maximum row sparsity
of A as s(A) such that s(A)≤d), the running time for ridge regression can be further improved into
Õ((n+

√
n·sr(A)κµ)·s(A)) through direct acceleration Katyusha [23] or accelerated coordinate

descent methods [24]. Using a leverage-score sampling idea [25], one can obtain an even more
fine-grained running time Õ((n+

√
d·sr(A)κµ)·s(A)) that improves the previous in most settings.

Because these algorithms have running time highly depend on structure of A, we didn’t use them for
computing runtime when treating ridge regression solver as a blackbox.

B Proofs for Results in Section 2

Proof of Lemma 1. Note that A>A = VΛV> where Λ = diag(λ1,···,λd) and each column of V
is νi,i∈ [d]. We can write v =

∑
i∈[d]αiνi , and therefore Pλv =

∑
i∈[k]αiνi. This also implies

f(A>A−λI)=Vf(Λ−λI)V> where f(Λ−λI)
def
= diag(f(λ1−λ),···,f(λd−λ)).

Now we define k1,k2 ∈ [n] to divide the eigenvalues λi and corresponding νi into three settings,
(1) λi ≥ λ(1 + γ) for all i ≤ k1, (2) λi ∈ (λ(1 − γ), λ(1 + γ)) for all k1 < i ≤ k2, and (3)
λi≤λ(1−γ) for all i > k2. Since by assumption 0<λ<λ1 ∈ [1/2,1] and γ ∈ (0,1), it holds that
λi−λ∈ [λγ,1] when i≤k1). Similarly, λi−λ∈ [−1,−λγ] when i<k2 and λi−λ∈(−λγ,λγ) when
k1<i≤k2. Consequently, |f(λi−λ)−sgn(λi−λ)|≤2ε,∀λi /∈(λ(1−γ),λ(1+γ)) and we have that
|f(λi−λ)−sgn(λi−λ)|≤2,∀λi∈(λ(1−γ),λ(1+γ)).

Noticing ṽ= 1
2V(f(Λ−λI)+I)V>v, and thus we have

ṽ−v=
1

2
V(f(Λ−λI)+I)V>v−VV>v=

1

2
V(f(Λ−λI)−I)V>v

The result then follows by the following, which shows that all conditions in (1) are satisfied

‖P(1+γ)λ(ṽ−v)‖≤‖εV[α1,···,αk1 ,0,···,0]>‖≤ε‖v‖,
‖(I−P(1−γ)λ)ṽ)‖≤‖εV[0,···,0,αk2+1,···,αd]>‖≤ε‖v‖,

‖(P(1+γ)−P(1−γ)λ)(ṽ−v)‖≤‖V[···,0,αk1+1,···,αk2 ,0,···]>‖=‖(P(1+γ)−P(1−γ)λ)v‖.

B.1 Analytic Expression of Zolotarev Rational

Here, we give a more detailed discussion of the explicit expression of Zolotarev rational function rγk
stated in (5). The analytic formula of rγk is as follows [10]:

rγk(x)=Cx

k∏
i=1

x2+c2i
x2+c2i−1

Here, all the constants depend on the explicit range |x| ∈ [γ,1] we want to approximate uniformly.
C is computed through solving 1−rγk(γ) =−(1−rγk(1)) , and coefficients {ci}2ki=1 are computed

12



through Jacobi elliptic coefficients, all as follows:

coefficients


C

def
= 2

(γ
∏
i∈[k]

γ2+c2i
γ2+c2i−1

)+(
∏
i∈[k]

1+c2i
1+c2i−1

)
,

ci
def
= γ2

sn2( iK
′

2k+1 ;γ
′)

cn2( iK
′

2k+1 ;γ
′)
,∀i∈{1,2,···,2k}.

numerical constants



γ′
def
=
√

1−γ2,
K ′

def
=
∫ π/2
0

dθ√
1−γ′2sin2θ

,

u
def
= F (φ;γ′)

def
=
∫ φ
0

dθ√
1−γ′2sin2θ

,

sn(u;γ′)
def
= sin(F−1(u;γ′)); cn(u;γ′)

def
= cos(F−1(u;γ′)).

B.2 Properties of Zolotarev Rational

To prove Theorem 5, we first state the following classic result about the approximation error of rγk in
Lemma 4.
Lemma 4 (Approximation Error). The approximation error of rγk satisfies:

max
|x|∈[γ,1]

|sgn(x)−rγk(x)|=Ckρ
−2k+1 for some Ck∈

[
2

1+ρ−(2k+1)
,

2

1−ρ−(2k+1)

]
⊆ [2,

2

1−ρ−1
] .

where ρdef
= exp(πK(µ′)

4K(µ) )>1,K(µ)
def
=
∫ 1

0
dt√

(1−t2)(1−µ2t2)
, µdef

=
1−√γ
1+
√
γ ,µ
′ def=
√

1−µ2.

This lemma is simply a restatement of equation (32) in Gonchar [26]. We refer interested readers to
detailed derivation and proof there.

It is also crucial to our derivation of Theorem 5 and Lemma 2 that we bound the coefficients in rγk
and ρ in Lemma 4. The following lemma provides the key bounds we use for this purpose.
Lemma 5 (Bounding Coefficients). The coefficients defined above have the following order / bounds
(all constant are independent of λ,γ,k and any other problem parameters):
(1) There exists constant 0<β1<∞, such that K(µ)≤β1(log(1/γ)+1),
(2) Coefficients ci are nondecreasing in i, ∀i∈ [2k]. Also, there exists some constants β2>0,β3<∞,
such that c1≥β2 γ

2

k2 , c2k≤β3k2,∀i∈ [2k].

Proof of Lemma 5. (1) The elliptic integral has taylor series [27] as follows:

K(µ)
def
=

∫ 1

0

dt√
(1−t2)(1−µ2t2)

=
π

2

∞∑
n=0

(
(2n)!

22n(n!)2

)2

µ2n

Using the Stirling formula n!≈
√

2πn(n/e)n, ∃ constants C1,C2<∞ such that,

K(µ)=
π

2

∞∑
n=0

(
(2n)!

22n(n!)2

)2

µ2n≤C1

∞∑
n=1

µ2n

n

≤C2

∫ ∞
1

µ2t

t
dt

(i)

≤C2

∫ ∞
√
γ

e−t

t
dt

(ii)
= C2E1(

√
γ)

where we use (i) µ2≤ (1−√γ)2≤1−√γ≤ exp(−√γ), and (ii) change of variable t←√γt and
definition of exponential integral that E1(z)

def
=
∫∞
z

e−t

t dt

By the convergence series of exponential integral [28], this can be written for z>0 as

E1(z)=C3−log(z)−
∞∑
k=1

(−z)k

k ·k!

where C3 finite is the Euler-Mascheroni constant. Using this, we have

K(µ)≤C2E1(
√
γ). log(1/γ), as γ→0,

13



where . is hiding constant C multiplicatively and this yields (1).

(2) By definition of elliptic integral we have,

K ′
def
=

∫ π/2

0

dθ√
1−γ′2sin2θ

and ci
def
= γ2

sn2( iK′

2k+1 ;γ′)

cn2( iK′

2k+1 ;γ′)
for all i∈ [2k].

Notice by equivalent definition for each i∈ [2k] we have,

sn( iK′

2k+1 ;γ′)

cn( iK′

2k+1 ;γ′)
=tanφ where

iK ′

2k+1
=

∫ φ

0

dθ√
1−γ′2sin2θ

.

Consequently, we know ci is monotonously decreasing in i as φ itself is monotonously decreasing.

Also, since γ′2 = 1−γ2, we have
√

1−γ′2sin2θ=
√

cos2θ+γ2sin2θ which→ 1 when θ→ 0 and
→γ when θ→π/2. From that we know

1

2k+1

∫ π/2

0

dθ√
1−γ′2sin2θ

≤
∫ φ

0

dθ√
1−γ′2sin2θ

≤ 2k

2k+1

∫ π/2

0

dθ√
1−γ′2sin2θ

,

and thus
1

2k+1
· π
2
≤φ≤ π

2
− γK ′

2k+1
, where by definition γK ′∈(0,π/2).

Using monotonicity for tan(φ) on φ∈ [0,π/2], tan(φ)≥φ and sin(φ)≥φ/2 for all φ∈(0,π/2), we
know ∃β2,β3∈(0,∞) such that

sn2( K′

2k+1 ;γ′)

cn2( K′

2k+1 ;γ′)
≥β′2/(2k+1)2≥β2/k2

sn2( 2kK′

2k+1 ;γ′)

cn2( 2kK′

2k+1 ;γ′)
≤β′3

(
2k+1

γK ′

)2

≤ β3k
2

γ2
.

By definition of K ′ we know K ′≥Θ(1), yielding that c1≥β2γ2/k2 and c2k≤β3k2.

Now we use these results to prove Lemma 2 and Theorem 5.

Proof of Lemma 2. This is a restatement of (2) in Lemma 5.

Proof of Theorem 5. We apply Lemma 4 and simply need to show that Ckρ−2k+1 ≤ 2ε. Since
µ′∈ [0,1] we have K(µ′)≥

∫ 1

0
(1−t2)−1/2dt=π/2. Therefore, by (1) in Lemma 5 we have that for

some constant β>0 we have ρ≥exp(β/(log(1/γ)+1)) and Lemma 4 then yields that

Ckρ
−2k+1≤ 2

ρ2k+1−1
≤ 2

exp(β(2k+1))/(log(1/γ)+1))−1
.

The result follows as k≥Ω(log(1/ε)log(1/γ)).

C Proofs for Results in Section 3

Proof of Lemma 3. First we show that M is invertible. Otherwise, if z 6=0 lies in the nullspace of
M then z>(M>+M)z=0. By definition of M we also have z>(M>+M)z≥2µ‖z‖2>0, given
µ>0. This leads to a contradiction.

Consequently, letting v̂
def
= [0;v/µ2] we have that z∗=M−1v̂ and therefore(

I − 1
µ (A>A−cI)

0 I

)
z∗=

(
I−1 0

0
[
I+ 1

µ2 (A>A−cI)2
]−1)( I 0

− 1
µ (A>A−cI) I

)
v̂

=

(
0[

I+ 1
µ2 (A>A−cI)2

]−1
v/µ2

)
.

14



Taking the second half of the equations and write z∗=[x∗;y∗] gives

y∗=
[
(A>A−cI)2+µ2I

]−1
v.

This is to say optimal solution y satisfies
(
(A>A−cI)2+µ2I

)
y=v.

As a result, if we have a solver that with high probability ≥ 1− δ in time T (ε′, δ) gives an ε′-
approximate solution z̃=[x̃,ỹ] of system Mz= v̂ measured in L2 norm, i.e. ‖x̃−x∗‖22+‖ỹ−y∗‖22≤
ε′2, then as long as ε′2≤ε2‖v‖2, we’ll get

‖ỹ−y∗‖2≤ε2‖v‖2,

giving an ε-approximation solution of squared ridge regression
(
(A>A−cI)2+µ2I

)
y=v in time

T (ε‖v‖,δ) with probability 1−δ.

C.1 Proofs for Results in Section 3.1

Using the idea of variance-reduced sampling [12]: At step t, we sample it ∈ [n with probability
pit =Lit/(

∑
i∈[n]Li) independently and conduct update

zt+1 :=zt−
η

pit

(
Mitzt−Mitz0+pit(Mz0−v̂)

)
. (11)

For the above update, when variance is bounded in a desirable way, we can show the following
expected convergence guarantee starting at a given initial point z0:
Lemma 6 (Progress per epoch). When the following variance bound on sampling holds∑

i∈[n]

1

pi
‖Mizt−Miz0+pi ·(Mz0−v̂)‖2≤2S2

[
‖zt−z∗‖2+‖z0−z∗‖2

]
,

the sampling method (11) with a fixed step-size η gives, after T iterations, gets

E

∥∥∥∥∥ 1

T

T−1∑
t=0

zt−z∗

∥∥∥∥∥
2

≤
1
2T +η2S2

ηµ−η2S2
‖z0−z∗‖2.

Proof. For a single step at t as in (11), denote the index we drew as it∈ [n],

‖zt+1−z∗‖2 =‖zt−z∗‖2−2
η

pit
〈Mitzt−Mitz0+pit(Mz0−v̂),zt−z∗〉

+
η2

p2it
‖Mitzt−Mitz0+pit(Mz0−v̂))‖2.

Taking expectation w.r.t it we sample we get,

Eit‖zt+1−z∗‖2 =‖zt−z∗‖2−2η〈Mzt−v̂,zt−z∗〉+η2
∑
i∈[n]

1

pi
‖Mizt−Miz0+pi(Mz0−v̂)‖2.

(12)
We bound the second and third terms on RHS respectively. For the second term we use the fact that
(M+M>)/2�µI by assumption and get

−〈Mzt−v̂,zt−z∗〉=−〈M(zt−z∗),zt−z∗〉≤−µ‖zt−z∗‖2. (13)

For the third term using condition of bounded variance∑
i∈[n]

1

pi
‖Mizt−Miz0+pi ·(Mz0−v̂)‖2≤2S2

[
‖zt−z∗‖2+‖z0−z∗‖2

]
. (14)

Combining (12), (13) and (14) we get,

Eit‖zt+1−z∗‖2 =‖zt−z∗‖2−2ηµ‖zt−z∗‖2+2η2S2[‖zt−z∗‖2+‖z0−z∗‖2]

15



and equivalently,

(2ηµ−2η2S2)‖zt−z∗‖2≤‖zt−z∗‖2−Eit‖zt+1−z∗‖2+2η2S2‖z0−z∗‖2.

Taking expectation of it−1,···,i0 respectively, averaging over t= 0,1,···,T−1 thus telescoping the
first terms on RHS, and then rearranging terms, we get

E

∥∥∥∥∥ 1

T

T−1∑
t=0

zt−z∗

∥∥∥∥∥
2

≤E

[
1

T

T−1∑
t=0

‖zt−z∗‖2
]
≤

1
2T +η2S2

ηµ−η2S2
‖z0−z∗‖2.

In the general setting, the variance bound S satisfies the following.
Lemma 7 (Variance bound for general case). When ‖Mi‖≤Li,∀i∈ [n], the variance bound (11)
holds with S=

∑
i∈[n]Li, i.e.

∑
i∈[n]

1

pi
‖Mizt−Miz0+pi ·(Mz0−v̂)‖2≤2

(∑
i∈[n]

Li

)2[
‖zt−z∗‖2+‖zt−z∗‖2

]
.

Proof. Note that∑
i∈[n]

1

pi
‖Mizt−Miz0+pi ·(Mz0−v̂)‖2

(i)
=
∑
i∈[n]

(
1

pi
‖(Mizt−Miz

∗)+(Miz
∗−Miz0)+pi ·(Mz0−Mz∗)‖2

)
(ii)

≤
∑
i∈[n]

(
2

pi
‖Mi(zt−z∗)‖2+2pi‖

1

pi
Mi(z

∗−z0)+M(z0−z∗)‖2
)

(iii)

≤
∑
i∈[n]

(
2

pi
‖Mi(zt−z∗)‖2+

2

pi
‖Mi(z

∗−z0)‖2
)

≤2(
∑
i∈[n]

Li)
2[‖zt−z∗‖2+‖z0−z∗‖2],

where we use (i) Mz∗ = v̂ by linear system condition, (ii) ‖z + z′‖2 ≤ 2‖z‖2 + 2‖z′‖2, and (iii)
E‖z−Ez‖2≤E‖z‖2.

As a result, we can now prove the guarantee of AsySVRG(M,v̂,z0,ε,δ) as shown in Theorem 6 .

Proof of Theorem 6. Note we choose η = µ/(4S2) and T = 8S2/µ2 as specified in Algorithm 2.
Using Lemma 6 we get

E

∥∥∥∥∥ 1

T

T−1∑
t=0

zt−z∗

∥∥∥∥∥
2

≤ 2

3
‖z0−z∗‖2.

For the rest of the proof, we hide constants and write η= Θ(µ/S2) and T = Θ(S2/µ2) to make a
constant factor progress.

Leveraging this bound we can construct the asymmetric SVRG solver by using the above variance-
reduced sampling Richardson iterative process repeatedly. After T =Θ(S2/µ2) iterations, we update
z
(q)
0 = 1

T

∑T−1
t=0 z

(q−1)
t and repeat the process, initalized from this average point. Consequently, after

Q=log3/2(‖z0−z∗‖2/ε)=O(log(‖z0−z∗‖/ε))

epochs, in expectation this algorithms returns a solution z
(Q+1)
0 =[

∑T−1
t=0 z

(Q)
t ]/T satisfying

E‖z(Q+1)
0 −z∗‖2≤ε.

16



For runtime analysis, notice within each epoch the computational cost is one full computation of
Mz as nnz(M) and T computations of Miz upper bounded by T for each. As a result, letting
S=

∑
i∈[n]Li the runtime in total to achieve ‖z−z∗‖≤ε is

O

((
nnz(M)+T ·S

2

µ2

)
log

(
‖z0−z∗‖

ε

))
.

Replacing now ε by εδ and through Markov inequality argument that

P(‖z(Q+1)
0 −z∗‖2≥ε)≤ E[‖z(Q+1)

0 −z∗‖2]

ε
≤δ,

we transfer this algorithm to output the desired solution in ε-approximation with probability 1−δ.

Now we turn to discuss the acceleration runtime. Inspired by approximate proximal point [14] or
Catalyst [15], and using exactly the same acceleration technique used in Palaniappan and Bach [13],
when nnz(M)≤T (

∑
i∈[n]Li)

2/µ2, we can further improve this running time through the procedure
as specified in Algorithm 3.

Algorithm 3: AsySVRG−accelerated(M,v̂,z0,ε,δ)

Input: M, v̂, z0, ε desired accuracy, δ probability parameter
Parameter: τ , I=Õ((τ+µ)/µ)
Output: zI+1 as the final iterate from the outerloop

1 Initialize z(1)←z0 for i←1 to I do
2 z(i+1)←

AsySVRG(τI+M,τz(i)+v̂,z(i),( µ/2
µ+2τ )2

∥∥z(i)−(τI+M)−1(τz(i)+v̂)
∥∥2,δ/(I+1))

To prove the accelerated rate, we first describe the progress per outerloop (from z(i) to z(i+1))
in Algorithm 3. For the ease of analysis, we first introduce two properties of M as given in (8).

Lemma 8 (Properties of M). Let M∈Ra×a satisfy 1
2 (M>+M)�µI, then the following properties

hold true:

1. ‖(I+M)−1‖≤
√

1
1+2µ .

2. ‖(τM−1+I)−1‖≤1, ∀τ≥0.

Proof. For the first property, note that

(I+M)>(I+M)=I+(M+M>)+M>M�(1+2µ)I (15)

and therefore

‖(I+M)−1‖2 =λmax([(I+M)−1]>I(I+M)−1)≤ 1

1+2µ
.

where we used that I�(1+2µ)−1(I+M)>(I+M) by (15).

For the second property, when τ=0 it obviously holds, so it suffices to prove for τ >0. By condition
we have

M>([M−1]>+M−1)M=M+M>�2µI

multiplying on the left by [M−1]> and the right M−1 yields that

[M−1]>+M−1�2µ[M−1]>M−1�0

Now given M/τ satisfying τM−1 + [τM−1]> � 0 and using property 1 for τM−1 gives the
result.

17



Lemma 9 (Progress per Outerloop). Let M be as in (8). Further, suppose for some z(0),z(1),v̂∈Ra,
τ≥µ, ε≥0, and z∗τ

def
= (τI+M)−1(τz(0)+v̂) satisfy

‖z(1)−z∗τ‖≤ε‖z(0)−z∗τ‖.

Then for z∗
def
= M−1v̂ we have

‖z(1)−M−1v̂‖≤
(

1

1+µ/(2τ)
+ε

)
‖z(0)−M−1v̂‖

Proof. From the definition of z∗τ we have

z∗τ−M−1v̂=(τI+M)−1(τz(0)+v̂−(τI+M)M−1v̂)=τ(τI+M)−1(z0−M−1v̂) .

Since τ(τI+M)−1 =(I+τ−1M) and 1
2 ([τ−1M]+[τ−1M]>)�(µ/τ)I by the assumptions on M

we have that ‖τ(τI+M)−1‖2≤(1+2µ/τ)−1/2 by first property in Lemma 8 and therefore

‖z∗τ−M−1v̂‖≤

√
1

1+2µ/τ
‖z(0)−M−1v̂‖≤ 1

1+µ/(2τ)
‖z(0)−M−1v̂‖ , (16)

where the last inequality follows from the fact
√

1
1+2µ/τ ≤

1
1+µ/(2τ) for all µ≤τ . Further we have

that

z(0)−z∗τ =(τI+M)−1((τI+M)z0−τz0−MM−1v̂)=(τM−1+I)−1(z(0)−M−1v̂) .

by the second property of Lemma 8 we have that ‖(τM−1+I)−1‖2≤1 and

‖z(0)−(τI+M)−1(τz0+v̂)‖≤‖z(0)−M−1v̂‖ . (17)

As ‖z(1)−M−1v̂‖≤‖z(1)−z∗τ‖+‖z∗τ+M−1v̂‖ the result follows by (16) and (17).

Proof of Theorem 7. The acceleration runtime can be achieved through a standard outer acceleration
procedure:

Denote the whole optimizer z∗ satisfying Mz∗ = v̂, S =
∑
i∈[n]Li as usual. When nnz(M) ≤

T ·S2/µ2, we choose τ=S
√
T /nnz(M)≥µ.

Using a similar derivation as in Theorem 6 we know after T =Õ(·(nnz(M)+T (S+τ)2/(µ+τ)2)),
we have z(i+1) satisfying with probability at least 1−δ/(I+1)

‖z(i+1)−(τI+M)−1(τz(i)+v̂)‖2≤
(

µ/2

µ+2τ

)2

‖z(i)−(τI+M)−1(τz(i)+v̂)‖2.

Starting the induction from i=0 and using Lemma 9 (since we have τ ≥µ) recursively, it implies
with probability at least 1−(i+1)/(I+1)·δ,

‖z(i+1)−z∗‖≤
(

1

1+µ/2τ
+

µ/2

µ+2τ

)
‖z(i)−z∗‖,

‖z(i+1)−z∗‖≤
(

1

1+µ/2τ
+

µ/2

µ+2τ

)i+1

‖z(0)−z∗‖.

Note as we choose I=Õ((τ+µ)/µ) we have with probability 1−δ after I outerloops,

‖z(I+1)−z∗‖≤ε,

which takes a total runtime of

Õ

((µ+τ

µ

)(
nnz(M)+T (S+τ)2

(µ+τ)2
))

=Õ

(√
nnz(M)T

∑
i∈[n]Li

µ

)
.

18



C.2 Proofs of Results in Section 3.2

To solve the particular asymmetric system we consider the step

zt+1 =zt−
η

pi

(
Mizt−Miz0+pi(Mz0−v̂)

)
where Mi

def
=

 ‖ai‖2
‖A‖2F

I − 1
µ (aia

>
i −c

‖ai‖2
‖A‖2F

I)

1
µ (aia

>
i −c

‖ai‖2
‖A‖2F

)I ‖ai‖2
‖A‖2F

I

, pi∝‖ai‖2, ∀i∈ [n].
(18)

Through a more fine-grained analysis, AsySVRG(M,v̂,z0,ε,δ) with particular choices of η, T , Mi,
and {pi}i∈[n], can have a better runtime guarantee and be accelerated using a similar idea as in the
general case discussed in previous subsection. This is stated formally using the following variance
bound in Theorem 8.

Lemma 10 (Variance bound for specific form). For problem (10), the variance incurred in (18) is
bounded by S=O(‖A‖F

√
λ1/µ), i.e. there exists constant 0<C<∞ that

∑
i∈[n]

1

pi
‖Mizt−Miz0+pi ·(Mz0−v̂)‖2≤

C‖A‖2Fλ1
µ2

[
‖zt−z∗‖2+‖zt−z∗‖2

]
.

Proof. For arbitrary ∆∈R2d, set pi=‖ai‖2/‖A‖2F, we have∑
i∈[n]

1

pi
‖Mi∆‖2

=∆>
(∑
i∈[n]

1

pi
M>

i Mi

)
∆

(i)
= ∆>

∑
i∈[n]

1

pi

(
p2i I+ 1

µ2 (aia
>
i −picI)2 0

0 1
µ2 (aia

>
i −picI)2+p2i I

)∆

(ii)
= ∆>

(
I+ 1

µ2 (‖A‖2FA>A−2cA>A+c2I) 0

0 I+ 1
µ2 (‖A‖2FA>A−2cA>A+c2I)

)
∆

(iii)

≤ (1+
‖A‖2Fλ1
µ2

)‖∆‖2≤ C‖A‖
2
Fλ1

µ2
‖∆‖2,

where we use (i) the specific form of Mi as in (18), (ii) specific choice of pi=‖ai‖2/‖A‖2F, (iii) the
assumption that A>A�λ1I and c∈ [0,λ1].

Note then similar to proof of Lemma 7, we have∑
i∈[n]

1

pi
‖Mi(zt−z0)+pi(Mz0−v)‖2≤

∑
i∈[n]

(
2

pi
‖Mi(zt−z∗)‖2+

2

pi
‖Mi(z

∗−z0)‖2
)

≤ 2C‖A‖2Fλ1
µ2

(‖zt−z∗‖2+‖z0−z∗‖2).

Proof of Theorem 8. Using Lemma 10, the conditions of Lemma 6 are satisfied with S =√
C‖A‖F

√
λ1/µ. Consequently we have

E

∥∥∥∥∥ 1

T

T−1∑
t=0

zt−z∗

∥∥∥∥∥
2

≤E

[
1

T

T−1∑
t=0

‖zt−z∗‖2
]
≤

1
2T +η2C‖A‖2Fλ1/µ2

η−η2C‖A‖2Fλ1/µ2
‖z0−z∗‖2. (19)

19



For the non-acceleration case: Note we choose η=µ2/(C‖A‖2Fλ1), and T =C‖A‖2Fλ1/µ2 as in
Eq. (19) yields

E

∥∥∥∥∥ 1

T

T−1∑
t=0

zt−z∗

∥∥∥∥∥
2

≤ 2

3
‖z0−z∗‖2.

Hereinafter, we hide constants and write η=Θ(µ2/(‖A‖2Fλ1)) and T =O(‖A‖2Fλ1/µ2) to make a
constant factor progress.

Then similarly as in Algorithm 2 and Theorem 6, we argue after Q=O(log(‖z0−z∗‖/ε) batches, in
expectation we’ll return a solution z

(Q+1)
0 =[

∑T−1
t=0 z

(Q)
t ]/T

E‖z(Q+1)
0 −z∗‖2≤ε.

For runtime analysis, notice within each batch the computational cost is one full computation of
Mz and O(T ) computations of Miz, which together is O(nnz(A)+d·‖A‖2Fλ1/µ2). So the total
runtime to achieve ‖z(Q+1)−z∗‖≤ε with probability 1−δ is

O
(
(nnz(A)+d·‖A‖2Fλ1/µ2)log(‖z0−z∗‖/εδ)

)
=Õ(nnz(A)+d·sr(A)λ21/µ

2).

For the acceleration case: The standard technique of outer acceleration used in Theorem 7 is applied
to get a better runtime under this case, and is used to prove Theorem 3.

C.3 Squared System Solver Using SVRG

For the squared ridge regression solver, we first give its simple pseudocode using Lemma 3 and
AsySVRG for completeness.

Algorithm 4: RidgeSquare(A,c,µ2,v,ε,δ)

Input: A data matrix, c∈ [0,λ1], µ>0, v, x0 initial, ε accuracy, δ probability
Output: x̃ ε-approximate solution as in Definition 3.

1 Initialize z0.

2 Set M=

(
I − 1

µ (A>A−cI)
1
µ (A>A−cI) I

)
and v̂=

(
0,v/µ2

)>
.

3 Call [x,y]←AsySVRG(M,v̂,z0,ε‖v‖,δ).
4 Return x̃←y

This is essentially a corollary of Theorem 8.

Proof of Theorem 3. Set

M=

(
I − 1

µ (A>A−cI)
1
µ (A>A−cI) I

)
and v̂=

(
0,v/µ2

)>
, c∈ [0,λ1].

We know an ε-approximate squared ridge regression solver would suffice to call

[x,y]←AsySVRG(M,v̂,z0,ε‖v‖,δ).
once and set its output as y through Lemma 3. This together with Theorem 8 gives us the total
runtime of Õ

(
nnz(A)+d·sr(A)λ21/µ

2
)

unaccelerated and Õ
(√

nnz(A)d·sr(A)λ1/µ
)

accelerated

(when nnz(A)≤d·sr(A)λ21/µ
2). In short, we have the guaranteed running time within

Õ
(

nnz(A)+
√

nnz(A)d·sr(A)λ1/µ
)
.

Theorem 4 also implies immediately a solver for non-PSD system in form: (A>A− cI)x = v,
c ∈ [0,λ1] with same runtime guarantee whenever all eigenvalues λi − c of (A>A− cI) satisfy
|λi−c|≥µ> 0,∀i. This is done by considering solving (A>A−cI)2x = (A>A−cI)v. We state
this formally in the following corollary for completeness, which is equivalent as showing Corollary 1.

20



Corollary 2. Given c ∈ [0,λ1], and a non-PSD system (A>A− cI)x = v and an initial point
x0, for arbitrary c ∈ R satisfying (A>A− cI)2 � µ2I, µ > 0, there is an algorithm that uses
AsySVRG(M,v̂,z0,Θ(ε‖v‖),δ) to return with probablity 1−δ a solution x̃ such that ‖x̃−(A>A−
cI)−1v‖ ≤ ε‖v‖, within runtime Õ

(
nnz(A)+d · sr(A)λ21/µ

)
. The runtime can be accelerated to

Õ
(
λ1
√

nnz(A)d·sr(A)/µ
)

when nnz(A)≤d·sr(A)λ21/µ
2.

Proof. It suffices to show that we can solve (A>A−cI)2x=(A>A−cI)v to high accuracy within
the desired runtime for any given v.

By Theorem 3, whenever (A>A−cI)2�µ2I, we can solve
(
(A>A−cI)2+µ2I

)
x=(A>A−cI)v

to ε-approximate accuracy within runtime Õ(nnz(A)+
√

nnz(A)d·sr(A)λ1/µ).

Now we can consider preconditioning (A>A− cI)2 using (A>A− cI)2 +µ2I by noticing that
(A>A−cI)2+µ2I≈1/2 (A>A−cI)2 under the condition.

As a result, it suffices to apply Richardson update

x(t+1)←x(t)−η
[
(A>A−cI)2+µ2I

]−1(
(A>A−cI)2x(t)−(A>A−cI)v

)
,

with η=1/2. Since it satisfies 1
2I�

[
(A>A−cI)2+µ2I

]−1
(A>A−cI)2�I, it achieves ε accuracy

‖x(T )−(A>A−cI)−2v‖≤ε‖v‖ in

O

(
log

(
‖x0−(A>A−cI)−1v‖

ε‖v‖

))
=Õ(1)

iterations, with each iteration cost Õ
(
nnz(A)+d·sr(A)λ21/µ

2
)

using the unaccelerated subroutine,
and Õ

(√
d·sr(A)λ1/µ

)
using the accelerated subroutine when nnz(A) ≤ d · sr(A)λ21/µ

2. This
leads to a total unaccelerated runtime of Õ

(
nnz(A) + d · sr(A)λ21/µ

)
, and accelerated runtime

Õ
(
λ1
√

nnz(A)d·sr(A)/µ
)

when nnz(A)≤d·sr(A)λ21/µ
2.

In the end of this section, we remark that all proofs and results are stated without the condition λ1≤1
to give a clearer sense of the runtime dependence in general setting. When applied to our specific
case of solving squared systems, due to renormalization we have λ1∈ [1/2,1] and λ←λ/λ1 =1/κ
which lead to running times formally stated in Theorems 1 to 3 and proved in Appendix D.

C.4 Direct Methods Runtime

We first state the results and corresponding proofs of using direct methods stated in the beginning
of Section 3. Consider the squared system

(
(A>A−cI)2+µ2I

)
x=v for given A∈Rn×d,v∈Rd,

µ>0 and c∈ [0,λ1].

The following theorem gives a bound of the running time of solving this system using accelerated
gradient descent [29, 30].
Theorem 10 (Direct AGD Runtime). Consider iteration

xt+1 =xt−γ
[(

(A>A−cI)2+µ2I
)
xt−v

]
+β(xt−xt−1).

Choosing γ= 4
λ1+2µ ,β= λ1

λ1+2µ under above condition, the total running time to get an ε-approximate

solution is Õ(nnz(A)λ1/µ).

Now we turn to analyzing SVRG directly applied to the squared system as follows(
(A>A−cI)2+µ2I

)
x=v. (20)

We take the step

xt+1 =xt−
η

pij

(
Mijxt−Mijx0+pij(Mx0−v)

)
where Mij

def
= aia

>
i aja

>
j −2c

‖aj‖2

‖A‖2F
aia
>
i +(c2+µ2)

‖aj‖2‖ai‖2

‖A‖4F
I

and pij∝‖ai‖2‖aj‖2, ∀i,j∈ [n].

(21)

Such update gives the following variance bound.

21



Lemma 11 (Variance bound for solving squared system directly). For problem (20), the variance
incurred in (21) is bounded by S=O((λ21‖A‖4F+(λ21+µ2)2)/µ2), i.e. there exists 0<C<∞ that∑
i,j∈[n]

1

pij
‖Mijxt−Mijx0+pij(Mx0−v)‖2≤ C(λ21‖A‖4F+(λ21+µ2)2)

µ2
[‖xt−x∗‖2+‖x0−x∗‖2],

where C<∞ is a numerical constant and ‖A‖2F≤d2.

Proof. Notice that ∇ψij = [aia
>
i aja

>
j −2c

‖aj‖2
‖A‖2F

aia
>
i +(c2 +µ2)

‖aj‖2‖ai‖2
‖A‖4F

I]x− ‖aj‖
2‖ai‖2
‖A‖4F

v, by
bounding directly and summing up all terms i,j∈ [n], we get∑

i,j∈[n]

1

pij
‖Mijx−Mijx

∗‖2

=(x−x∗)>

 ∑
i,j∈[n]

1

pij
M>

ijMij

(x−x∗)

=
∑
i,j∈[n]

‖A‖4F
‖ai‖2‖aj‖2

‖
(

aia
>
i aja

>
j −2c

‖aj‖2

‖A‖2F
aia
>
i +
‖ai‖2‖aj‖2

‖A‖4F
(c2+µ2)I

)
(x−x∗)‖2

=(x−x∗)>
( ∑
i,j∈[n]

(‖A‖4F
‖aj‖2

aja
>
j aia

>
i aja

>
j +4c2‖aj‖2aia>i +(c2+µ2)2

‖ai‖2‖aj‖2

‖A‖4F
I

−2c‖A‖2F(aja
>
j aia

>
i +aia

>
i aja

>
j )+(c2+µ2)(aja

>
j aia

>
i +aia

>
i aja

>
j )

−4c(c2+µ2)
‖aj‖2

‖A‖2F
aia
>
i

))
(x−x∗)

=(x−x∗)>
(
‖A‖4F(A>A)(A>A)+4c2‖A‖2F(A>A)+(c2+µ2)2I

−4c2(A>A)(A>A)+2(c2+µ2)(A>A)(A>A)−4c(c2+µ2)(A>A)
)
(x−x∗)

(i)

≤(x−x∗)>
(
‖A‖4Fλ21I+4c2λ1‖A‖2FI+(c2+µ2)2I+2(c2+µ2)λ21

)
(x−x∗)

≤C
(
λ21‖A‖4F+4c2λ1‖A‖2F+(c2+µ2)(c2+µ2+2λ21)

)
‖x−x∗‖2

(ii)

≤C
(
λ21‖A‖4F+(λ21+µ2)2

)
‖x−x∗‖2,

where we use A>A�λ1I and c∈ [0,λ1] in (i) by condition, and (ii) holds for some constant 0<C<
∞. Then we conclude from the fact that ‖x+x′‖2≤2‖x‖2+2‖x′‖2 and E‖x−Ex‖2≤E‖x‖2 that∑
i,j∈[n]

1

pij
‖Mijxt−Mijx0+pij(Mx0−v)‖2≤ C(λ21‖A‖4F+(λ21+µ2)2)

µ2
[‖xt−x∗‖2+‖x0−x∗‖2].

Theorem 11 (Direct SVRG Runtime). For problem (20), the SVRG algorithm applied with (21)
returns with probability ≥1−δ an ε-approximate solution in Õ(nnz(A)+d·sr(A)2λ41/µ

4) time. An
accelerated variant of it improves the runtime to Õ(nnz(A)+nnz(A)3/4d1/4sr(A)1/2λ1/µ).

The proof is a direct combination of Lemma 6 with the proving technique for Theorem 8. We omit it
here as the procedure and argument are basically the same.

From that we can get a direct SVRG solver of squared system
(
(A>A−cI)2+µ2I

)
x=v that outputs

ε-approximate solution with high probability with running time Õ(nnz(A)+d·sr(A)2λ41/µ
4).

Because of the high complexity of above methods (either not nearly-linear in AGD or squaring
problem dimension, i.e. having sr(A)2λ41/µ

4 as condition number in SVRG), a new insight is
required to better solve such systems. The technique we develop for this purpose is to ’decouple’ the
squared matrix at the cost of asymmetry, formally introduced by the following reduction.

22



D Proofs for Main Results

In this section, we prove our main theorems for new algorithms on PCP and PCR problems stated in
Section 1.3. As a byproduct of the results, we can also use some variant of the Zolotarev rational to
approximate the square-root function, and thus build efficient square-root-matrix-and-vector solver
(see Theorem 4 and Algorithm 7).

To begin with, we introduce a helper lemma useful for analyzing the approximation property of the
theorem.

Lemma 12 (Accumulative Error from Products). If there are procedures Ci(v),i∈ [k] that carries
out a product computation Ci · v in ε accuracy, i.e. ∀i ∈ [k],‖Ci(v)−Civ‖ ≤ ε‖v‖, and that
‖Ci‖≤M,∀i∈ [k] for some M≥1. When ε≤M/2k, we have

‖Ck(Ck−1(···C1(v)))−
k∏
i=1

Civ‖≤2εkMk−1‖v‖.

Proof. By induction, for k=1, this is true since ‖C1(v)−C1v‖≤ ε‖v‖. Suppose this is true for i,

i.e. ‖Ci(Ci−1(···C1(v)))−
i∏

j=1

Cjv‖≤2εiM i−1‖v‖, then for i+1, we have

‖Ci+1(Ci(···C1(v)))−
i+1∏
j=1

Cjv‖≤‖Ci+1(Ci(···C1(v)))−Ci+1Ci(···C1(v))‖

+‖Ci+1(Ci(···C1(v))−
i∏

j=1

Cjv)‖

≤ε‖Ci(···C1(v))‖+‖Ci+1‖‖Ci(···C1(v))−
i∏

j=1

Cjv‖

≤ε(M i‖v‖+2εiM i−1‖v‖)+2εiM i‖v‖

≤εM i(2i+1+
2εi

M
)‖v‖

≤2ε(i+1)M i‖v‖,

where the last inequality uses the condition 2εi≤2εk≤M .

D.1 PCP Solver

Given a squared ridge regression solver RidgeSquare(A,λ,c2i−1,v,ε,δ) (see Section 3), using the
reduction in Section 2 we can get an ε-approximate PCP algorithm ISPCP(A,v,λ,γ,ε,δ) shown in
Algorithm 5 and its theoretical guarantee in Theorem 1.

Algorithm 5: ISPCP(A,v,λ,γ,ε,δ)

Input: A data matrix, v projecting vector, λ threshold, γ eigengap, ε accuracy, δ probability.
Parameter: degree k (Theorem 5), coefficients {ci}2ki=1,C (Eq. (5)), accuracy ε1 (specified

below)
Output: A vector ṽ that solves PCP ε-approximately.

1 ṽ←v
2 for i←1 to k do
3 ṽ←(A>A−λI)2ṽ+c2iṽ
4 ṽ←RidgeSquare(A,λ,c2i−1,ṽ,ε1,δ/k)

5 ṽ←C(A>A−λI)ṽ, ṽ← 1
2 (v+ṽ).

Proof of Theorem 1.

23



Choice of parameters: We choose the following values for parameters in Algorithm 5:

k=Ω(log(1/ε)log(1/λγ))

M=β3k
4/β2γ

2λ2

ε1 =
ε

8β3k3Mk−1 .

The other coefficients {ci}2ki=1,C are as defined in Eq. (5). Further we use constants β2,β3 as stated
in Lemma 5.

Approximation: Given λ>0,γ∈(0,1), from Theorem 5 and the definition of k and rλγk (x) we get
that max|x|∈[λγ,1]|sgn(x)−rλγk (x)|≤2ε.

Using Lemma 1, we know for such rλγk , ṽ= 1
2 (rλγk (A>A−λI)+I)v satisfies the conditions in (1),

i.e.

1.‖P(1+γ)λ(ṽ−v)‖≤ε/2‖v‖;
2.‖(I−P(1−γ)λ)ṽ‖≤ε/2‖v‖;
3.‖(P(1+γ)−P(1−γ)λ)(ṽ−v)‖≤‖(P(1+γ)−P(1−γ)λ)v‖.

Now if we have an approximate solution ṽ′ satisfying ‖ṽ′ − ṽ‖ ≤ ε/2‖v‖, we check the three
conditions respectively. For the first condition we have

‖P(1+γ)λ(ṽ′−v)‖≤‖P(1+γ)λ(ṽ′−ṽ)‖+‖P(1+γ)λ(ṽ−v)‖
≤‖ṽ′−ṽ‖+ε/2‖v‖
≤ε/2‖v‖+ε/2‖v‖
≤ε‖v‖,

while the third inequality uses the fact that P(1+γ)λ is a projection matrix.

For the second condition, we have

‖(I−P(1−γ)λ)ṽ′‖≤‖(I−P(1−γ)λ)(ṽ′−ṽ)‖+‖(I−P(1−γ)λ)ṽ‖
≤‖ṽ′−ṽ‖+ε/2‖v‖
≤ε/2‖v‖+ε/2‖v‖
≤ε‖v‖,

where for the second inequality we use the fact that I−P(1−γ)λ is also a projection matrix when
P(1−γ)λ is a projection matrix.

For the last condition, we have

‖(P(1+γ)−P(1−γ)λ)(ṽ′−v)‖≤‖(P(1+γ)−P(1−γ)λ)(ṽ′−ṽ)‖+‖(P(1+γ)−P(1−γ)λ)(ṽ−v)‖
≤‖ṽ′−ṽ‖+‖(P(1+γ)−P(1−γ)λ)v‖
≤‖(P(1+γ)−P(1−γ)λ)v‖+ε‖v‖,

where for the second inequality we use the fact that P(1+γ)−P(1−γ)λ is a projection matrix.

Consequently, it suffices to have such ṽ′ that ‖ṽ′−ṽ‖≤ε/2‖v‖ when ṽ= 1
2 (rλγk (A>A−λI)+I)v,

note that

rλγk ((A>A−λI))v=C(A>A−λI)

k∏
i=1

(A>A−λI)2+c2iI

(A>A−λI)2+c2i−1I
v.

Suppose we have a procedure Ci(v),i∈ [k] that can apply Civ for arbitrary v to ε′-multiplicative
accuracy with probability ≥1−δ/k, where here

Ci=
(A>A−λI)2+c2iI

(A>A−λI)2+c2i−1I
.

24



Also we assume matrix vector product is accurate without loss of generality.3 Note that∥∥∥∥ (A>A−λI)2+c2iI

(A>A−λI)2+c2i−1I

∥∥∥∥≤M,∀i∈ [k],

with M = β3k
4/β2γ

2λ2. Here we use constants β2,β3 as stated in Lemma 5. Now we can use
Lemma 12 with the corresponding M to show that

Using a union bound, with probability ≥1−δ it holds that

‖Ck(Ck−1(···C1(v)))−
k∏
i=1

Civ‖≤2ε′kMk−1‖v‖,

whenever ε′≤M/(2k).

Now we choose

ε̃1 =min(
M

2k
,

ε

8kMk−1 ), ε1 =min(
M

2k
,

ε

8kMk−1 )/(β3k
2)=

ε

8β3k3Mk−1 ,

consider the following procedure as in Algorithm 5,

v←RidgeSquare
(
A,λ,c2i−1,(A

>A−λI)2v+c2iv,ε1,δ/k
)
;∀i∈ [k].

v←C(A>A−λI)v.

The above choice of ε1 guarantees RidgeSquare
(
A,λ,c2i−1,(A

>A−λI)2v+c2iv,ε1,δ/k
)

for all
i∈ [k] can be abstracted as Ci(v) with ε̃1-accuracy and corresponding success probability. Using a
union bound or successful events and also the fact that ‖C(A>A−λI)‖≤2, we can argue that with
probability ≥1−δ, the output ṽ′ of ISPCP(A,v,λ,γ,ε,δ) satisfy

‖ṽ′−ṽ‖≤4ε̃1kM
k−1‖v‖≤ε/2‖v‖.

As a result, the output of the algorithm satisfies conditions (1) as desired.

Runtime: The numerical constants C,{ci}2ki=1 are precomputed. So the runtime will then be a total
runtime of computing matrix vector products for 2k+1 times, calling k=O(log(1/ε)log(1/λγ))
times RidgeSquare

(
A,λ,c2i−1,(A

>A−λI)2v+c2iv,ε1,δ/k
)

for i∈ [k]. We bound the two terms
respectively.

Computing matrix vector products takes time O(knnz(A))=Õ(nnz(A)) since k=Õ(1).

Using Theorem 3, since log(1/ε1)=O(log(1/ε)+logk+klog(M))=O(log(1/ε)+k)= Õ(1), the
total runtime for solving squared systems is Õ(k(nnz(A)+d ·sr(A)/(γ2λ2))). Further, it can be
accelerated to Õ(k

√
nnz(A)d·sr(A)/(λγ)) when nnz(A)≤d·sr(A)/(γ2λ2).

Combining these bounds it gives a running time of Algorithm 5 of

Õ(nnz(A)+d·sr(A)
1

γ2λ2
).

When nnz(A)≤d·sr(A)/(γ2λ2), it can be accelerated to Õ(
√

nnz(A)d·sr(A)/(λγ)).

Since we assume λ1∈ [1/2,1] here, κ=1/λ. We can write it as

Õ
(

nnz(A)+
√

nnz(A)·d·sr(A)κ/γ
)

by noticing the preprocessing for A is just setting λ←Θ(λ/λ1).

3If in the finite-precision world, we assume arithmetic operations are carried out with Ω(log(n/ε)) bits of
precision, the result is still true by standard argument with a slightly different constant factor for the bounding
coefficient.

25



D.2 PCR Solver

Previous work as shown that solving PCR can be reduced to solving PCP together with ridge
regression solver. This reduction was first proposed in Frostig et al. [7] and used in subsequent
work [8]. The idea is to first compute v∗=Pλ(A>b) using PCP and then apply (A>A)†v∗ stably
by some polynomial approximation. More specifically, it is achieved through the following procedure.

s0←APCP(A>b)

s1←RidgeReg(A,λ,s0), ∀m=1,2,···,k−1;

sm+1←s1+λ·RidgeReg(A,λ,sm).

(22)

Here RidgeReg is a Ridge Regression Solver defined in Definition 5 and ISPCP is the ε-approximate
PCP algorithm specified in Algorithm 5. Such a reduction enjoys the following guarantee:
Lemma 13 (Reduction: from PCR to PCP). For fixed λ, ε∈(0,1) and γ∈(0,2/3], and A with singu-
lar values no more than 1, given an O(ε/k2)-approximate ridge regression solver RidgeReg(A,λ,·)
and an O(γε/k2)-approximate PCP solver APCP(·). Running the procedure for k= Θ(log(1/εγ))
iterations and outputting the final sk gives an ε-approximate PCR algorithm.

For completeness, we give the following Algorithm 6 for ε-approximate PCP solver and give the
proof for its theoretical guarantee as stated in Theorem 2.

Algorithm 6: ISPCR(A,b,λ,γ,ε,δ)

Input: A∈Rn×d properly rescaled, b∈Rd regressand, λ>0 eigenvalue threshold, γ∈(0,2/3]
unitless eigengap, ε desired accuracy, δ probability parameter.

Output: A vector x∈Rn that solves PCR ε-approximately.
1 Set k←Θ(log(1/εγ)), ε1←O( γεk2 ),ε2←O( ε

k2 )

2 x←ISPCP(A,A>b,λ,γ,ε1,δ/4)
3 x0←RidgeReg(A,λ,x,ε2,δ/4)
4 for i←1 to k−1 do
5 Compute x=λ·RidgeReg(A,λ,x,ε2,δ/2(k−1))+x0

Proof of Theorem 2.

Approximation: It follows directly from Lemma 13.

Runtime: The total running time consists of one call of ISPCP and k = Θ(log(1/εγ)) calls of
RidgeReg, with particular parameters specified in Algorithm 6 this leads to a runtime

Õ(nnz(A)+d·sr(A)
1

γ2λ2
)+k ·Õ(nnz(A)+d·sr(A)

1

λ
)=Õ(nnz(A)+d·sr(A)

1

γ2λ2
)),

and an accelerated runtime
Õ(

1

γλ

√
nnz(A)d·sr(A))

when nnz(A)≤d·sr(A)/(γλ)2, which proves the result by noticing κ=1/λ for rescaled A.

D.3 Square-root Computation

Here we prove Theorem 4. The approach is very similar for developing the PCP solver as in Ap-
pendix D.1. We first introduce a rational function that when applied to any given PSD matrix M well
approximates the square-root of itself for matrix µI�M�I. Note this will immediately generalize
to the case when µI�M�λI by first getting a constant approximation λ̃ of λ in O(nnz(M)) time
and then preprocessing M←M/λ̃.
Lemma 14. Given any µI�M� I and ε ∈ (0,1), there is a rational function r(x) with degree
k=O(log(1/ε)log(1/µ)) satisfying

‖(r(M)−M1/2)v‖≤ε‖M1/2v‖,∀v∈Rn.

26



In short, such a rational function can be denoted as r̂µk (x) and expressed as:

r̂µk (x)=Cx
∏
i∈[k]

x+c2i
x+c2i−1

with ci
def
= µ

sn2( iK′

2k+1 ;
√
µ′)

cn2( iK′

2k+1 ;
√
µ′)

,i∈ [2k]. (23)

coefficients


C

def
= 2

(
√
µ
∏
i∈[k]

µ+c2i
µ+c2i−1

)+(
∏
i∈[k]

1+c2i
1+c2i−1

)
,

ci
def
= µ

sn2( iK
′

2k+1 ;
√
µ′)

cn2( iK
′

2k+1 ;
√
µ′)
,∀i∈{1,2,···,2k}.

numerical constants



√
µ′

def
=
√

1−µ,
K ′

def
=
∫ π/2
0

dθ√
1−µ′sin2θ

,

u
def
= F (φ;

√
µ′)

def
=
∫ φ
0

dθ√
1−µ′sin2θ

,

sn(u;
√
µ′)

def
= sin(F−1(u;

√
µ′)); cn(u;

√
µ′)

def
= cos(F−1(u;

√
µ′)).

It is easy to check that r̂µk (x) can be related to the rational function defined in Section 2 through
formula r̂µk (x2) =x ·r

√
µ

k (x), where rγk(x) is defined as in (5) By Theorem 5, with the same order
of k ≥Ω(log(1/ε)log(1/µ)). A formal proof also utilizes such relationship between the rational
functions.

Proof. Consider a modified rational function of Zolotarev rational as follows:

r̂µk (x)=Cx

k∏
i=1

x+c2i
x+c2i−1

with ci
def
= µ

sn2( iK′

2k+1 ;
√
µ′)

cn2( iK′

2k+1 ;
√
µ′)

,i∈ [2k], (24)

with coefficients C as the corresponding C in r
√
µ

k (x),
√
µ′

def
=
√

1−µ and K ′ def=
∫ π/2
0

dθ√
1−µ′sin2θ

,

sn(u;
√
µ′)

def
= sin(F−1(u;

√
µ′)), cn(u;

√
µ′)

def
= cos(F−1(u;

√
µ′)) with definition u=F (φ;

√
µ′)

def
=∫ φ

0
dθ√

1−µ′sin2θ
.

Note this rational actually satisfies the condition that r̂µk (x2)=x·r
√
µ

k (x). By Theorem 5, it holds
that when k≥Ω(log(1/ε)log(1/µ))

|x·r
√
µ

k (x)−x·sgn(x)|≤ε|x|,∀|x|∈ [
√
µ,1]. (25)

Now if we write M = VΛV> where Λ = diag(λ1,···,λn) satisfying 1≥λ1≥ ···,λn≥µ and that

each column of V is νi,i∈ [n]. We can write v=
n∑
i=1

αiνi, and thus get M1/2v=
n∑
i=1

αi
√
λiνi.

Now we consider what we can get from substituting x in r̂µk (x) with M. By applying Eq. (25) and
substituting x2 with M, we get

‖r̂µk (M)v−
√

Mv‖≤ε‖M1/2v‖,∀v∈Rn.

Now we give the following pseudocode in Algorithm 7 for SquareRoot(M,v,ε,δ), which with
probability 1− δ outputs a solution x satisfying ‖x−M1/2v‖ ≤ ε‖M1/2v‖. In the pseudocode,

27



we use LinearSolver(M, c,x, ε, δ) to denote any solver that with probability 1− δ gives as ε-
approximate solution x̃ of x∗=(M+cI)−1v satisfying ‖x̃−x∗‖≤ε‖v‖.

Algorithm 7: SquareRoot(M,v,ε,δ)

Input: M∈Rn×n data matrix, v∈Rn vector, ε accuracy, δ probability.
Parameter: Smallest eigenvalue µ, largest eigenvalue λ, degree k (Lemma 14), coefficients

{ci}2ki=1,C (Eq. (24)), accuracy ε1 (specified below)
Output: A vector x satisfying ‖x−M1/2v‖≤ε‖M1/2v‖.

1 x←v
2 for i←1 to k do
3 x←Mx+c2ix
4 x←LinearSolver(M,c2i−1,x,ε1,δ/k)

5 x←C ·Mx.

Proof of Theorem 4.

Without loss of generality, we can assume λ=1, otherwise one can consider M/λ instead.

Choice of parameters: We choose the following values for parameters in Algorithm 7:

k=Ω(log(1/ε)log(1/µ))

M=β3k
4/β2µ

ε1 =
ε

8β3k3Mk−1 .

Other coefficients {ci}2ki=1,C are as defined in Eq. (5). Here we use constants β2,β3 as stated in
Lemma 5.

Approximation: Given ε>0,µ>0, from Lemma 14 we set k≥Ω(log(1/ε)log(1/µ)) thus r̂µk (x)

as defined in Eq. (24) satisfies ‖M1/2v− rµk (M)v‖ ≤ ε/2‖M1/2v‖. Now it suffices to get a x

satisfying ‖x−rµk (M)v‖≤ε/2‖M1/2v‖.
Suppose we have a procedure Ci(v),i∈ [k] that can apply Civ for arbitrary v to ε′-multiplicative
accuracy with probability ≥1−δ/k, where here

Ci=
M+c2iI

M+c2i−1I
.

Also we assume matrix vector product is accurate without loss of generality.4 Note that∥∥∥∥ M+c2iI

M+c2i−1I

∥∥∥∥≤M,∀i∈ [k],

with M=β3k
4/β2µ. Here we use constants β2,β3 as stated in Lemma 5. Now we can use Lemma 12

with the corresponding M to show that: Using a union bound, with probability ≥1−δ it holds that

‖Ck(Ck−1(···C1(v)))−
k∏
i=1

Civ‖≤2ε′kMk−1‖v‖,

whenever ε′≤ M
2k .

Now we choose

ε̃1 =min(
M

2k
,

√
µε

8kMk−1 ), ε1 =min(
M

2k
,

√
µε

8kMk−1 )/(β3k
2)=

ε
√
µ

8β3k3Mk−1 ,

4If in the finite-precision world, we assume arithmetic operations are carried out with Ω(log(n/ε)) bits of
precision, the result is still true by standard argument with a slightly different constant factor for the bounding
coefficient.

28



consider the following procedure as in Algorithm 5,

x←LinearSolver(M,c2i−1,x,ε1,δ/k);∀i∈ [k].

x←C ·Mx.

The above choice of ε1 guarantees procedures LinearSolver(M,c2i−1,x,ε1,δ/k) for all i∈ [k] can
be abstracted as Ci(v) with ε̃1-accuracy and corresponding success probability. Using a union bound
of successful events and the fact that ‖C ·M‖≤2, we can argue that with probability 1−δ, the output
x of SquareRoot(M,v,ε,δ) satisfy

‖x−rµk (M)x‖≤4ε̃1kM
k−1‖v‖≤ 4ε̃1kM

k−1
√
µ

‖M1/2v‖≤ε/2‖M1/2v‖,

By Definition 4, using the above choice of parameters we conclude this justifies the correctness
argument in the theorem.

Runtime: Given the The numerical constants C, {ci}2ki=1 are precomputed. So the runtime
will then be a total runtime of computing matrix vector products for k + 1 times, calling
k = O(log(1/ε) log(1/µ)) times LinearSolver (M,c2i−1,x,ε1,δ/k) for i ∈ [k]. We bound the
two terms respectively.

Computing matrix vector products takes time Õ(nnz(M)) since k=Õ(1).

Running time of LinearSolver(M,c2i−1,x,ε1,δ/k) depends on the particular solver we use. Based
on the assumption and the fact that c2i−1∈ [Ω̃(µ),Õ(1)],∀i∈ [k], we can upper bound each solve by
Õ(T ).

Adding it together gives running time of Algorithm 7 in

Õ(nnz(M)+T ).

Replacing M with M/λ, µ above with µ/λ and λ with 1 due to preprocessing gives the final
statement.

E More on Experiments

In this section we give a more detailed description and theoretical justification for rlanczos and
slanczos. Also we show its relationship and difference with our proposed algorithm ISPCP.

E.1 Details for rlanczos

Lanczos method is well known for being efficient and stable [17]. As verified in theory and practice,
running Lanczos algorithm on (A>A+λI)−1(A>A−λI) almost always beats the optimal universal
approximation of sgn(x) by stably applying polynomial / chebyshev. This is because Lanczos can
search for the best polynomial to approximate sgn(x) based on the distribution of A>A’s eigenvalues.

Based on that, we also combined the well-studied rational Lanczos algorithm [21] with the known
Zolotarev rational expression, to search in the rational function space r2k+1(x) ∈ P2k+1/q2k(x)
where q2k(x) has exactly expression as in the denominator of rγk(x). Theoretically, this should
always beat directly applying Zolotarev rational by allowing more freedom to cater to the distribution
of eigenvalues of A>A.

The two methods rational and rlanczos are quite close in practice. (see Figs. 2 and 3) In general for
low accuracy regime, rlanczos slightly improve on rational ISPCP. But ISPCP is more stable and
can get to more accurate solutions. This also shows the strength of ISPCP proposed in the paper.

E.2 Details for slanczos

For slanczos, the idea is to incorporate the squared system primitive with lanczos method on polyno-
mial directly, i.e. searching for function in form

f

(
(x−λ)(x+λ)

(x−λ)2+γ(x+λ)2

)

29



and replace x←A>A.

Note here we introduce shift-and-rescaling (A>A+λI)−1(A>A−λI) so that all eigenvalues of
A>A satisfying λi ∈ [0,λ(1−γ)∪ (λ(1 +γ),∞) are mapped to range [−1,−γ/2]∪ [γ/2,1]. So
for now let’s consider |x|∈ [γ/2,1]. One observation is that there is this squared primitive in form
x/(x2+γ) can map |x|∈ [γ/2,1] to [Θ(1),Θ(1/

√
γ)].

Lemma 15. Take r(x) = x/(x2 +γ). Then r̃(x) = 2
√
γr(x) maps x∈ [γ/2,1] to (2

√
γ/3,1) and

x∈ [−1,−γ/2] to (−1,−2
√
γ/3).

Proof. We only consider x∈ [γ/2,1] and a exactly symmetric argument works for the other side.
Now consider 1/r(x) = x+γ/x, we have when x∈ [γ/2,1], 1/r(x)∈ [2

√
γ,2+γ], thus showing

r(x)∈ [1/(2+γ),1/(2
√
γ)]⊆ (1/3,1/2

√
γ). Multiplying by coefficient we have r̃(x)∈ (2

√
γ/3,1)

whenever x∈ [γ/2,1], which completes the proof.

Remark 1. For such a rational primitive r̃(x) since we know there is optimal O(log(1/ε)/
√
γ)-

degree chebyshev polynomial f(x) that maps [
√
γ,1] to [1− ε,1] and [−1,−√γ] to [−1,−1 + ε],

thus we are able to run only Õ(1/
√
γ) suboracles of ridge regression of solving ((A>A−λI)2+

γ(A>A+λI))x=v.

Formally combining this with the squared system solver we develop in Theorem 3 leads to the
following theoretical guarantee:
Theorem 12 (Runtime for slanczos). slanczos can be converted into an ε-approximate PCP / PCR
solver with runtime guarantee

Õ
(

nnz(A)/
√
γ+
√

nnz(A)d·sr(A)κ/γ
)
.

This guarantee implies the method slanczos would work better than both polynomial, chebyshev
in [7, 8], and rational methods including ISPCP and rlanczos (see Appendix E.1) for certain regimes
of parameters.

As the runtime of slanczos is not almost linear, we don’t state it formally in the main part of paper.
Also, as nnz(A)/d·sr(A)2κ2 or simply n/d gets larger, it gets worse compared with the two purely
rational methods. This also is verified by our experiments shown in Fig. 3 - when we fix d,γ and
increase the magnitude of n, rational and rlanczos start outperforming slanczos.

30


	Ridge Regression Solver RidgeReg
	Proofs for Results in sec:PCP
	Analytic Expression of Zolotarev Rational
	Properties of Zolotarev Rational

	Proofs for Results in sec:SVRG
	Proofs for Results in ssec:SVRG-gen
	Proofs of Results in ssec:SVRG-spec
	Squared System Solver Using SVRG
	Direct Methods Runtime

	Proofs for Main Results
	PCP Solver
	PCR Solver
	Square-root Computation

	More on Experiments
	Details for rlanczos
	Details for slanczos


