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Abstract

We consider the k-armed stochastic contextual bandit problem with d dimensional
features, when both & and d can be large. To the best of our knowledge, all existing
algorithms for this problem have regret bounds that scale as polynomials of degree
at least two, in k£ and d. The main contribution of this paper is to introduce and
theoretically analyse a new algorithm (REAL-Bandit) with a regret that scales
by 72(k + d) when r is the rank of the & x d matrix of unknown parameters.
REAL-Bandit relies on ideas from low-rank matrix estimation literature and a new
row-enhancement subroutine that yields sharper bounds for estimating each row
of the parameter matrix that may be of independent interest. We also show via
simulations that REAL-Bandit algorithm outperforms existing algorithms that do
not leverage the low-rank structure of the problem.

1 Introduction

Running online experiments has recently become a popular approach in data-centric enterprises.
However, running an experiment involves an opportunity cost or regret (e.g., exposing some users to
potentially inferior experiences). To reduce this opportunity cost, a growing number of companies
leverage multi-armed bandit (MAB) experiments [38, 39, 19] that were initially motivated by the
cost of experimentation in clinical trials [41, 27]. Another common feature of online experiments is
personalization; users have heterogenous preferences that means the optimal decisions depend on
user or product characteristics (also known as context). MAB approach for personalizing decisions
is therefore called contextual MAB (or contextual bandit) [29]. For example, [30] used contextual
bandits to propose a personalized news article recommender system.

There is a large body of literature on algorithms with theoretical guarantees for contextual bandits
with linear reward functions. An admittedly incomplete list is [5, 13, 2, 12, 14, 4, 34, 37, 42, 25, 6],
and we defer to [7] for additional references. While these papers study the problem under a variety of
different assumptions, they can be divided into two groups: (A) when context vectors are arbitrary
and can be potentially selected by an adversary, and (B) when context vectors are i.i.d. samples from
a fixed (but unknown) probability distribution. Our focus in this paper is the latter group (first studied
by [14]). As the number of decisions 7" (time horizon) grows, the regret bounds for the algorithms in
group (A) grow with /7. But the algorithms in group (B) take advantage of the i.i.d. assumption
and have a significantly lower (logarithmic) dependence in 7.

Two other important parameters are the number of arms %, and the dimension of context vectors d.
For example, when d grows, the regret bound of [14] grows as d which can dominate the dependence
on T. [6] tackled this difficulty by imposing sparseness assumption and replaced d® with s (up to
logarithmic factors) where s is sparsity of the parameter vectors for the reward functions. On the
other hand, a careful inspection of the bounds in [14, 6] reveals that their regret bounds could grow
by k2 (in the worst case) that can be very large in applications such as assortment optimization [21].
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On the other hand, the lower bounds found in [13] and [14] imply that if there is no structural
assumption, the lowest possible regret would grow at least by kd. The aim of this paper is to reduce
this dependence under a low-rank assumption on the k£ x d matrix of parameters of the reward
functions. Specifically, each of the k reward functions is represented by a d-vector of coefficients
(one coefficient per covariate) that is a row of the parameter matrix. This can also be interpreted as
imposing a similarity between the reward functions of the k different arms, like in the multi-task
learning literature [10]. We propose a new algorithm (called REAL-Bandit) and prove that its regret
grows by 72(k + d) where r is rank of the parameter matrix.

Contributions. Our main technical contributions in design and analysis of REAL-Bandit are as
follows. (1) Stronger row-wise guarantees: To prove regret guarantees for REAL-Bandit, we need
bounds for estimating every single row of the matrix. However, existing matrix estimation results
provide a bound on the estimation error of the whole matrix, which would be a crude upper bound for
the estimation error of each single row. Therefore, REAL-Bandit includes a subroutine (called Row
Enhancement) that refines the estimates in order to establish stronger row-wise guarantees that may
be of independent interest (see §3 for details). Very recently, [11] provided bounds for the matrix
completion problem that are also sharp at the row or entry level, however, their results are only for
the matrix completion case and do not apply to our setting. (2) Implementation: Our theoretical
analysis does not require that each matrix estimation phase in REAL-Bandit is solved to completion.
In other words, REAL-Bandit does not need finding a global minimum of the relevant estimator’s
optimization (penalized maximum likelihood) problem. REAL-Bandit only needs a solution with
cost below a certain threshold which can be used to significantly speed up implementation of REAL-
Bandit. (3) Estimator independence: Over the last decade, several types of estimators have been
introduced for recovering low-rank matrices from noisy observations, with varying assumptions
and theoretical guarantees. Two of the most common approaches are based on convex optimization
[8,9, 31, 15, 35, 36, 26, 24], or non-convex optimization [40, 22, 23]. Unlike [14, 6] that work with
a fixed estimator, REAL-Bandit is designed to be estimator agnostic and works with any matrix
estimation algorithm with theoretical guarantees (see §3 for details).

Other related literature. A class of decision-making problems with a large number of arms are
assortment optimization problems; when a small subset from a potentially large set of items should
be selected. Among the rich literature on this topic, [21, 3] are more related to our paper since
they consider a dynamic allocation of assortments via multi-armed bandit ideas. [21] (like us) uses
low-rank matrix estimation methods for the learning part. However, the problems and models they
study are very different. Specifically, they assume that a decision-maker shows a subset of products to
a user. Then the user selection is modeled via a multi-nomial logit (MNL) [32] where the parameters
of the MNL model form a low-rank matrix with rows representing customer types and columns
representing products.

Two other relevant papers are [42, 25] since they too tackle bandit problems with many actions. They
introduce algorithms with regrets that scale with spectral dimension of the Laplacian of a graph that
has arms as its vertices. These papers are in group (A) of the aforementioned class of bandit papers
that are inherently different. Specifically, they assume actions have known feature vectors (with low
spectral dimension) that, together with a single unknown parameter vector, define the linear reward
functions. There is a reduction from this setting to our problem, only when the action set is allowed
to change (see [1]) which is not the case in [42, 25]. Another recent paper in this category is [28].
The main difference between all of these papers and ours, as discussed above, is that we consider
i.i.d. context vectors which allows regret bounds that scale logarithmically in 7" instead of scaling
with +/T". Finally, recent paper of [20] studies a bandit problem where each action is a pair of arms
and the reward function is a bilinear function of the feature vectors of each arm, and has a low-rank
parameter matrix.

Organization. We introduce additional notation in §2. Then the REAL-estimator and REAL-Bandit
algorithm are introduced in §3, followed by simulations in §4. In §5 we present our assumptions,
statement of the main theorem, as well as its proof. Proofs of lemmas and additional details are
deferred to the extended version of the paper [17].



2 Setting and notation

Let B* be a k x d matrix with real-valued entries. We further assume that B* is of rank r with
r < min(k,d). Attime t = 1,2, ---, a context vector X; € R? is drawn from a fixed probability
distribution P, independently from X for s < ¢. Then, by choosing arm 1 < k < k, the reward
yr = (B}, Xy) + €4, is generated, where B,:T is the k-th row of the matrix B*, and ¢, ; are
independent o2-sub-Gaussian random variables. In addition, (U, V') refers to the inner product of
vectors U and V, and U T refers to the transpose of U. Throughout, we use bold capital letters for
matrices, and use notation [n] for the set {1,2,...,n}, when n is an integer. For any two matrices
Y, and Y, with d columns, by Y; C Y5, we mean that all rows of Y are also rows of Y,. Also,
for any subset U of RY, the notation P, refers to the conditional distribution P(-|/) of the contexts.

A policy m, is a sequential decision-making algorithm that, at each time ¢, chooses the arm 7; € [k]
given previous observations and the revealed context X;. We will evaluate the performance of a policy
by its cumulative regret, defined as Ry = Zthl 74, where 7, = E[max, e (Xe, BE) — (X¢, BE,)]
where expectation is with respect to the randomness of X4, €; and potential randomness introduced
by the policy 7. Our goal is to find policies with low Rrp.

In order to avoid dealing with unnecessary subscripts, for each context vector X; € R?, we define
X7 to be a k x d matrix with all elements equal to zero, except for the m;-th row which is equal to
XtT . Using this notation, we have that

Yt = <B*7X;,T> + €ty (1)

where the inner product for matrices is defined as (U, V) := tr(UV ). Note that &, is actually
€x, ¢, but since all noise values are i.i.d., we will drop the dependence on 7.

For a given subset Z = {ty,...,t,} of [T], consider the set of corresponding context matrices
{X7 | i € I}. We define an associated sampling operator X7 : R¥*¢ — R"™ to be defined as follows.

For any matrix B € R¥*?, X7(B) is a vector of length n where its i-th entry (i € [n]) is given by
[(XZ(B)]; := (B, XF,). Therefore, the vector form of (1) is

Y =X7(B")+ E,

where I is the n-vector of all noise values ¢, . .., €¢, . In the remaining, we use the simpler notation
X(-) instead of X7(-) when Z and = are implicitly clear.

We also use different norms in our algorithm and analysis in this paper. ||-||, refers to the regular ¢2
norm of a vector. The nuclear norm (or trace-norm) of a matrix is denoted by |-||,, and ||-|| » and
||-|| o, refer to the Frobenius and the infinity norm of a matrix. Also, for a given distribution P over
RF¥*4, we can define the following norm || B||, := E[(B, Z)?] for all B € R**¢ where Z is drawn
from P. Finally, ||T||_ , is the maximum of ||T' ||, for x € [k] (recall that T'] is r-th row of T). In
fact, one of our assumptions that will be stated explicitly later is that the matrix B* belongs to the
following set:
S={BeR™[|B|_, <t}

for a positive constat b*. Also, for a k by d matrix B of rank r with singular value decomposition
B = UDV, we define the row-incoherence parameter as

ko IBll s
B)=/-- 2
n(B) » D,

2

3 Algorithm

In this section, we describe the Row-Enhanced and Low-Rank Bandit (REAL-Bandit) algorithm.
The algorithm combines ideas from existing literature [14, 6] and a new row-enhancement procedure
to obtain sharper convergence rate when k is very large. REAL-Bandit algorithm has two disjoint
phases for exploration and exploitation, similar to [14, 6]. In the exploration phase, all arms are given
an equal chance to be explored to enable the algorithm to obtain an estimate of their corresponding
parameters. These forced-sampling estimates are not sufficiently accurate to pick the best arm with
high probability, however, they are accurate enough to rule out all of the arms that are substantially



inferior to the optimal arm. At each time ¢, these estimates are used as a proxy of the actual arm
parameters to form a set of candidate arms. In order to choose one of these candidates, we need more
accurate estimates and so, the algorithm uses the all-sampling estimates that are obtained from all the
observations made thus far to pick the best arm.

However, unlike [14, 6], that estimate each of the arm parameters {B;},{E[k] separately, our forced-
sampling and all-sampling estimates utilize the low-rank assumption on matrix B* and estimate all
parameters simultaneously (like in the multi-task learning literature).

The Estimators. REAL-Bandit is designed to work with any matrix estimation method that has
theoretical guarantees. Two such estimators (developed in the matrix completion literature) are: (1)
estimators based on convex optimization and (2) estimators based on non-convex optimization. Before
we present these two classes of estimators, we assume that a set of time periods J = {t1,...,t,}
and their associate observations (X7, %, ), .., (XF ,:,), and a positive constant A are available.

We use notations B(.7) or B(.7) for estimators of B*, that use observations from time periods in 7.
When J is clear, we use simpler notations B and B.

(1) Convex optimization. In this approach, introduced by [8], the approximation to B* is the minimizer
of the following convex program:

minimize n~!|)Y — X(B)||> + A|B], . 3)
In fact, as [16] shows, one just needs a feasible solution B= ]_3(] , A) that satisfies:
_ — 12 — _
nHY = xB)[7 + AIB], < a7 Y - X(BY)” + AIB.. )

This brings additional flexibility to choose the optimizer and has computational advantages.

(2) Non-convex optimization. Another approach is to explicitly impose the low-rank constraint by
writing B as UV T where U € R**" and V € R?*". The optimization problem would be:
. _ 2
minimizey v 7' ||[Y — X(UV)||” + A([U|% + [ V][5)/2. (5)

One challenge is that this is not a convex program, but it has been shown that under certain conditions,
alternating minimization can be an effective algorithm [18]. It can also be shown (e.g., see [22, 31])
that minimizing the above loss function is equivalent to solving the following optimization problem:

minimize n~'||Y — X(B)|* + A|BJ, (6)

subject to rank(B) < r.
If B is a solution to (6), since B* is also a feasible solution, (4) must hold.

REAL-estimator. The existing theory of matrix estimation provides error bounds for HB - B* H .
[9, 26, 33, 24, 16]. However, these results do not characterize how this error is distributed across
different rows. On the other hand, in order to get a regret bound, we need to control HBK — B} H2 for

all k € [k], and the trivial inequality || B,, — Bf||, < [|B — B*||,,
V'k factor. To remedy this, we introduce REAL-estimator that uses a set of almost independent
observations to improve the row-wise error bound.

would introduce an unnecessary

As before, let J = {t1,...,t,} be a set of n time periods with t; < ty < --- < t,,. We split J to
Ji = {t1,...,tn}and Jp := {tn4i,...,t,}. Forany K C [k], let J¥ be the subset of J such
that an arm in K is pulled, i.e. 7, € K. Moreover, for £ € {1,2} and K C [k], let 7 := T* N T.
For k € [k], when L = {k}, we use superscript « rather than {«x} for simplicity. Next, for any
low-rank matrix estimator B, Algorithm 1 performs the row-enhancement procedure. We call the

output of this algorithm REAL-estimator and denote it by B(7). The difficulty of analyzing this
estimator arises from the fact that the observations are generated in an adaptive fashion, and thus, the
results that require independence assumption are not applicable in our case. However, in the analysis
we will show that these observations can be approximated by i.i.d. samples, and as a result theoretical
guarantees can be obtained. In the following, we will state the assumptions formally, and then, we
will verify that they continue to hold throughout the analysis.

Before we define the notion of approximately independent, we need a few more notations. For
k € [k], X* is a matrix constructed by the set of context vectors of observations for arm «, stacked
as rows of this matrix. We define XJ for ¢ € {1,2} and 7, similarly. Recall that, for matrices Y
and Y5 with d columns, Y; T Y5> means that all rows of Y are also rows of Y.



Algorithm 1 Row-enhancement procedure

Input: Low-rank matrix estimator B e R 7 = {t1,...,tn}, and observations
(X%Tl ) ytl)’/‘\' L] (X%Tn ) ytn)'

1: Initialize, B € RF*4,
2: Split J into J; = {t1,... 7t%} and Jp := {t%H, cestn},
3: Compute SVD B(77) = UDVT,

4: Let V. be the matrix containing first  columns of V,
5:fork =1,2,--- ,kdo

6: Letd, = argmingcp- Ztiejf; (yr, — (V,.0, Xti>)2,
7. Setrow r of B to (V,.9,)7.

8: end for

9: Return B.

Definition 3.1 (Approximately independence). Let J be a given set of n time periods and P, Py,
and Py be three distributions. Then, for x € [k], we say that J" is a (ny, ny)-approximately
independent set of observations if there exists random matrices X7; and X7, such that

1. X7, € X" and X* C X7,
2. All rows of X7 are independent samples of P,
3. All rows of X, are independent samples from either P or Py,

4. X7y and X3, have nys and ny rows respectively.

This definition requires the observations for a row « to lie between two sets of i.i.d. samples. This
notion becomes extremely useful whenever one can prove that ny, and ny are of the same order.

Next, we specify the conditions that P, Py, and Py need to meet so that we can prove error bounds.
Definition 3.2. We say that a distribution P(-) on R? is (Ymin , Ymax » 0x )-diverse if

“Ymin S >\min (2) S )\max (2) S Ymax »

1
where 3 = E [X X T] ,and X2 X is ag(-sub-Gaussian (i.e., for any deterministic unit vector u € R4,

. 1. .
the real-valued random variable u' 72 X is 0% -sub-Gaussian).

We will treat o x as a constant. Note that, for instance, when X follows a multivariate Gaussian
distribution, then ox = 1.

In our proofs, we will show that whenever J can be split into two almost independent halves, then
row-enhancement procedure gives us sharper per-row guarantees than the raw matrix estimator B.

The REAL-Bandit algorithm. Here, we describe REAL-Bandit algorithm presented in Algorithm
2. As mentioned earlier, this algorithm has disjoint exploration and exploitation phases which are
specified by a force-sampling rule f : N — [k] U {@}. At time ¢, the force-sampling rule decides
between forcing the arm f; € [k] to be pulled or exploiting the past data, indicated by f; = @. By F,
we denote the time periods that an arm was forced to be pulled, i.e. 7; := {7 <t : f, € [k]}. For
simplicity, we also use A; := [t] to refer to the all time periods up to time ¢. The force-sampling rule
that we use is a randomized function that picks an arm « € [k] with probability

i ift < 2plog(p),

k) =14 " . 1S 9] (0) (7
HEplogtmry it > 2plog(p),

and f; = @ otherwise. We will specify the hyper-parameter p in §5. As we will see in our analysis,

this force-sampling rule ensures that F;* grows as O(logt) for all k € [k]. One can alternatively use

any force-sampling rule that has this rate of exploration.

Remark 1. The algorithm proposed in [14, 6] are similar to the REAL-Bandit. They, however, use
a deterministic force-sampling rule (that can be used here as well). However, our randomized rule
brings practical advantages in exchange for a slightly more complex theoretical analysis.



Now, let Bf and B4 be two low-rank matrix estimators (obtained from obs/e\rvations/\of the force-
sampling rounds and the all-sampling rounds respectively) and denote by B and B# their cor-
responding REAL-estimators, introduced above. These estimators serve different purposes in our
algorithm. We will show that the forced-samples estimator B¥ satisfies HE B H2 < O(1) with
probability at least 1 — O(1/t) for all arms k € [k]. The key idea is that O(logt) i.i.d. samples are
enough to get such a guarantee. These estimates are then only used to rule out some arms that are
very far from the optimal arm. The threshold for eliminating sub-optimal arms is determined by a
hyper-parameter h that is given to the algorithm. This parameter can be thought of as the average
gap of the problem.

The remaining arms are candidates of being the optimal arm. Then, the all-samples estimator B4
comes into play. This estimator is used to pick the best arm among these candidate arms. We will show
that B enjoys the sharper bound || B — By||, < O(1/V1t) for all optimal arms k € Koy C [K]
with probability at least 1 — O(1/t) where Koy is defined formally in Assumption 3 of §5. This
sharper rate improves the accuracy of the decisions made by the algorithm significantly.

Algorithm 2 REAL-Bandit algorithm

Input: Force-sampling rule f, gap h.
1: fort =1,2,--- do
2:  Observe X; ~ P,
if f; # 0 then
T fi
else R R
€= {n €M (X BE (Fir)) > max (X, B (Fio)) = § - |1X], }

AN A

7: Ty <— arg maxK6C<Xt, g?(At_1)>
8: endif
9: end for

4 Simulations

We compared the REAL-Bandit algorithm with four other algorithms: OLS-Bandit of [14], but we
use the improved version from [6] that filters sub-optimal arms, LASSO-Bandit of [6], OFUL of [2]
which is based on the Upper Confidence Bound (UCB) idea, and Thompson sampling (the version
from [37]). Taking & = 201, d = 200, and r = 3, we generated matrix B* as UV where rows of
U € R?%173 and V € R2%9%3 are drawn independently and uniformly from the unit sphere in R3.
Noise variance is 1 and features are i.i.d. N'(0, ;). We gave Thompson sampling the true prior mean
and variance of the arm parameters, and the true noise variance. Similarly, OFUL had access to the
true noise variance. Other parameters of OLS-Bandit, LASSO-Bandit, and OFUL are selected as in
[6]. We generated 10 data sets and executed all algorithms for a time horizon of length 7" = 40, 000.
Figure 1 shows average cumulative regret (with 1 SE error bars) for all algorithms across these
10 runs.. The results of this simulation support our theoretical analysis, that REAL-Bandit takes
advantage of the low-rank structure of the problem parameters and significantly outperforms other
benchmarks that do not leverage the structure.

5 Analysis

This section is dedicated to the analysis of REAL-Bandit. We will first state the assumptions
underlying the analysis and then state the main theorem of this section. A discussion of some of these
assumptions can be found in [6].

Assumption 1 (Parameter set). Assume the rank of B* is r, ||B*||  , < b*, and p* := p(B*) where
() is defined in (2).

Assumption 2 (Margin condition). For any a > 0, there is a constant ¢y > 0 such that E[N,] < kcoa,
where the random variable N, is defined by N, := >F_ 1 ((X, B} — Br) <a-b* - ||X||,) where
k* = k*(X) is the optimal arm, given context vector X .
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Figure 1: Cumulative regret of REAL-Bandit versus LASSO-Bandit, OFUL, OLS-Bandit, and
Thompson sampling for (k, d,r) = (201, 200, 3).

Assumption 3 (Arm optimality). Let K¢ and Ky, be a partitioning of [k]. Then, for some i > 0,
the following conditions hold:

1) For any sub-optimal arm k € Ky, (X, B}) < max,/ (X, BY,) — h - || X||, for any context X,
2) For each arm k € KC,py, where P(X € Uj,) > ﬁ, where U, is defined by

Uy, = {X eRY|(X,B}) > max(X, B,) + h- ||X2} ’

3) For each arm x € Ky, there exists constant ¢* > 0 such that max,cx,,, P(X € Vi) < |,C‘1* "
opt
where the set V), is defined as

V, = {X € R (X, By) > max(X, Bi) ~ h- ||X||2} :

Assumption 4 (Diversity). For all k € Kopt, P, Py, and Py, are (Ymin , Ymax » 0 x )-diverse.

Assumption 5 (Low-rank estimators). Assume the following tail bounds hold for B and B4:
1) Let J be a set of n time periods such that for each arm x € [k], the matrix X* of the context
vectors associated to the arm & has i.i.d. rows sampled from P. Then,

_ N c10%n
P(IB7(7) - B> 0) <o (00 )

holds when IO&M >co(l+ 5%)7"(15 +d),d:=, /% . \/g #, and ¢y, co are positive constants.

2) Let J be a set of n observations, such that for all K € Koy, J* is a set of (%7 2ng*)-
approximately independent observations. Then, we get

]P’<||H B4(J) - B[, > lﬁ%Vb*] _\/cgr(k+d)1og(n)> 1
opt P2 < n7

V d’)/min np*
provided that (n/logn) > cor(k + d) for some constant c3 > 0, and IL,; : R¥*4 — R¥*4 denotes
the linear function that sets the rows corresponding to the sub-optimal arms to zero and keeps the rest

unchanged.

Now, we are prepared to state our main theoretical result.



Theorem 1. If Assumptions 1-5 hold, then the cumulative regret of Algorithm 2 is bounded above by

cor?(k + d) log(T)?
b*p*

? <C [ch*u + (%wa +d) log(T)] +C [

9

where C' > 0 is a constant, the forced-sampling parameter p is set to 2c2(1 + 6~ 2)r(k + d), and

2 * 2 *2

2 Ymax 94 das\/b

O = eyp? - 1 ( =), oni= swp B[ X, | X = [X],V].
'Yminp Ymin HVH2:1

Before describing the proof of Theorem 1, we state four key lemmas that will be used in the proof.
Due to space limitations, we defer proofs of the lemmas to the extended version of the paper [17].

Lemma 1. The force-sampling sets created by the force-sampling rule (7) satisfy the following
inequalities, for all t > 2plog(p), provided that p > 24,

]P’(]-"t > 6p10gt> <t ! and P(|F| < [p/2]logt) < t73.

Lemma 2. Let T be a (deterministic) subset of the forced-sampling observations and by I, C T, we
denote the observations corresponding to arm k € k). Then, the following inequality holds,

Ze| 1 7]
P < — |7l < - .
(|I| Sop |H) sew =g
Lemma 3. For all t > 10cy(1 + 67 2)r(k + d)log(kd) and x € [k], with probability at least
1 — 10t73, the following inequality holds

1B~ Bill, < na.

Lemma 4. For allt > 10car(k + d) log(kd) and k € KCop, with probability at least 1 — 1007 (k +
d)t~1, we have

||§A_B*H <10 C'r2(k + d) log(¢)
® rllz = kp*t '

Proof of Theorem 1. Following the lines of the proof of Theorem 1 in [6], we define G(+) as

G(F) =4 if | B (Fi_1) — Bf||la < & forall & € [K],
Y710 otherwise.

Define ¢4 := 10c2(1 + 6~ 2)r(k + d) log(kd). Then, we split the regret of the algorithm into the
following three cases and bound each case separately:

(a) Initialization (i.e., when ¢ < ¢4) and forced-sampling rounds.

(b) When t > ¢4 and G(F;—1) = 0.

(c) When t > ¢4 and G(F;—1) = 1, but a suboptimal arm is chosen due to inaccurate all-sampling
estimates.

Let Rg? ), Rgf’ ), and R(TC ) denote the regret incurred in the above cases, respectively. Clearly, we have
that Ry = R + RY + R

Before proving upper bounds, note that, for each suboptimal choice, the regret incurred at each step
is at most (X, By — BY,) for some &, x’ which in turn is bounded above by

(X, BE = BL)| < [ X|l2 - [|1BE = B lla < 26" - [[ X2

This fact can be used to obtain regret bounds by bounding the number of times that each suboptimal
arm is pulled. Clearly, for part (a), this number is less than or equal to ¢4 + | Fr|. Using Lemma 1,

E[Rg“} < W aaElea + |Fr|] < 26%zn (ca + 6plog T) .



Next, it follows from the definition of G(F;_1) and Lemma 3 that the number of times that
G(Fi—1) = 0 is controlled by

T T T
E| Y [1-G(Fi 1 Z P(G(Fim1)=0)< > 102 < > 10671 < 10log(T).
t=cq+1 t=cq4+1 t=cq+1 t=cq+1

Now, since Rgf’) < 2b*]E{ZtT:C4+1 (1 Xell2 - [1 — G(]—'t,l)]}, we have

T
RY <2'z,E| Y (1- G(]-‘tl))] < 20b*z, log(T) .
t=ca+1

Finally, we need to find an upper bound for Rgﬁ ). 1t follows from a slightly modified version of
Lemma EC.18 in [6] that, whenever G(F;—1) = 1, the set C contains the optimal arm and no
suboptimal arm. In particular, if the best arm is k*, we get the following inequality for all K € C

0 < (X, B:. — BY) < h-[| X2 (8)

Therefore, whenever G(F;_1) = 1, for any « € C, we have X € V,; and if X € U, then C = {x}.
Now, we are ready to use Lemma 4 to bound the probability of pulling an incorrect arm. Letting

~ Ci
EA = {aﬁ € Kopt : ||BA(A;) — BE|l2 > 4/ :},

1 12 (k+d) log(T .
where c5 := 00C"r (k t Y log( ) Now, using Lemma 4, we have for all ¢ > ¢4,

D
p(ef) < AT ©)

Now, recall k* denotes the optimal arm and the arm 7, is the pulled arm. For (random variable)
€ [k], define D, := {(Xy, B}. — B}) > 2,/% - || X;||2}. It follows from the definition of r, that

re=E[(X;, By. = B)] <E[(X, By, = By )l (Dr, UES)] + E[(Xe, By = By )T (D7, NEX)]
<E[(X., By — B3 )1 ({(X0, BA) > (X, BA)} 0 (D, UER))]
+E[(X,, Bl — B; )I(D;, N £[)]
< 2z, {m@({@g, BA) > (X, B} (Dr, uEl)) + ﬁ[@(l);t N 5;46)} . (10)
Note that (X;, B2 ) > (X;, B/ ) in combination with the definition of D, implies that

0> (X B2 B )+ (X8, —BA) + 2\ﬁ 1 2

And this entails that at least one of the following inequalities hold:

Cs
2.
11X

[c
> 75 I X2 -

Since C does not contain any suboptimal arm, we have that {<X t B > > <X ‘) >} N D, C &L
This fact, combined with (9) means for all ¢ > ¢4, the following holds

P({(x.BA) > (X, BA) 0 (D, UED)) < w

Finally, by using the margin condition, we get that

1 Xell2 - || Bx-

2 2 ‘<Xt’B,:* *E?*> >

1 Xl - 1B, = Byl = (X, B, - Bz,)

P(D5, NEM) <P(DS) SE|N, o] < heopry /-
. b* t

Therefore, using (10), we have

T

100 - 7(k +d) - b* + k Ak

RY < 3 2%{ 00 r(k + 2 + 0005} < 2, - [1oo.r(k+d).b*+§fc5} log(T) .
t=cq+1

O
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