
Supplementary Materials

The Ornstein-Uhlenbeck Process Perspective of Synchronous Improvement

For simplicity we consider 1-dimensional state-action space. An policy equipped with Gaussian
noise in the action space a ⇠ N (µ,�2) lead to a stochastic process in the state space. In the most
simple case, the mapping between action space and the corresponding change in state space is an
affine transformation, i.e., �st = st+1 � st = ↵at + �. Without loss of generality, we have

�st ⇠ N (✏(g � st),�
2) (10)

after normalization. The ✏ describes the correlations between actions and goal states. e.g., for random
initialized policies, the actions are unaware of goal thus ✏ = 0, and for optimal policies, the actions
are goal-oriented thus ✏ = 1. The learning process can be interpreted as maximizing ✏, where better
policies have larger ✏. Under those notations,

dst = ✏(g � st)dt+ �dWt (11)
where Wt is the Wiener Process, and the corresponding discrete time version is �st = ✏(g� st)�t+
��Wt. As Eq. (11) is exactly an Ornstein-Uhlenbeck (OU) Process, it has closed-form solutions:

st = s0e
�✏t + g(1� e�✏t) + �

Z t

0
e�✏(t�s)dWs (12)

and the expectation is
E(st)� g = (s0 � g)e�✏t (13)

Intuitively, Eq. (13) shows that as ✏ increase during learning, it will take less time to reach the goal.
More precisely, we are caring about the concept of First Hitting Time (FHT) of OU process, i.e.,
⌧ = inf{t > 0 : st = g|s0 > g} [33].

Without loss of generality, we can normalize the Eq.(11) by the transformation:

t̃ = ✏t, s̃ =

p
2✏

�
(s� g), g̃ =

p
2✏

�
(g � g) = 0, s̃0 =

p
2✏

�
(s0 � g) (14)

and we consider the FHT problem of

ds̃t = �s̃tdt̃+ 2dWt̃

⌧̃ = inf{t̃ > 0 : s̃t = 0|s̃0 > 0}
(15)

The probability density function of ⌧̃ , denoted by p0,s̃0(t̃) is

p0,s̃0(t̃) =

r
2

⇡

s̃0e�t̃

(1� e�2t̃)3/2
exp

 
s̃0

2e�2t̃

2(1� e�2t̃)

!
(16)

and the expectation is provided as [34, 35, 36]

E[⌧̃ ] =
r

⇡

2

Z 0

�s̃0

✓
1 + erf

✓
t̃p
2

◆◆
exp

✓
t̃2

2

◆
dt̃ (17)

Accordingly, the optimization of solving goal-oriented reward sparse tasks can be viewed as minimiz-
ing the FHT of OU process. From this perspective, any action that can reduce the FHT will lead to a
better policy.

Inspired by such a perspective, and to tackle the efficiency bottleneck and further improve the
performance of PCHID, we extend our method to a synchronous setting based on the evolving
concept of k-step solvability. We refer to this updated approach as Policy Evolution with Hindsight
Inverse Dynamics (PEHID). PEHID start the learning of ⇡i before the convergence of ⇡i+1 by merging
buffers {Bi}Ti=1 into one single buffer B. And when increasing the buffer with new experiences, we
will test an experience that is k-step solvable could be reproduced within k steps if we change the
goal. We retain those experiences that are not reachable as containing new valuable skills for current
policy to learn.

12



Algorithm 2 PEHID Module
Require
• a policy ⇡b(s, g)
• a reward function r(s, g) = 1 if g = m(s) else 0
• a buffer for PEHID B
• a list K = [1, 2, ...,K]

Initialize ⇡b(s, g), B
for episode = 1,M do

generate s0, g by the system
for t = 0, T � 1 do

Select an action by the behavior policy at = ⇡b(st, g)
Execute the action at and get the next state st+1

Store the transition ((st, g), at, (st+1, g)) in a temporary episode buffer
end for
for t = 0, T � 1 do

for k 2 K do
calculate additional goal according to st+k by g0 = m(st+k)
if TEST(k, st, g0) = True then

Store (st, g0, at) in B
end if

end for
end for
Sample a minibatch B from buffer B
Optimize behavior policy ⇡b(st, g0) to predict at by supervised learning

end for

Table 1: The successful rate of different methods in the FetchPush, FetchSlide and FetchPickAndPlace
environments (trained for 1.25M timesteps)

Method FetchPush FetchSlide FetchPickAndPlace

PPO 0.00 0.00 0.00
DDPG 0.08 0.03 0.05
DDPG + HER 1.00 0.30 0.60
PEHID 0.95 0.38 0.75

Empirical Results

We evaluate PEHID in the FetchPush, FetchSlide and FetchPickAndPlace tasks. To demonstrate the
high learning efficiency of PEHID, we compare the success rate of different method after 1.25M
timesteps, which is amount to 13 epochs in the work of Plappert et. al [3]. Table 1 shows our results.

13


