
Implicit Generation and Modeling with Energy-Based
Models

Yilun Du ∗
MIT CSAIL

Igor Mordatch
Google Brain

A Appendix

A.1 Additional Qualitative Evaluation

Figure 1: MCMC samples from conditional CIFAR-10 energy function

We present qualitative images from conditional generation on CIFAR10 in Figure 1 and from
conditional generation of ImageNet128x128 in Figure 2.

We provide further images of cross class conversions using a conditional EBM model in Figure 3.
Our model is able to convert images from different classes into reasonable looking images of the
target class while sometimes preserving attributes of the original class.

∗Work done at OpenAI

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.



Figure 2: MCMC samples from conditional ImageNet128x128 models

Deer

Bird

Frog

Ship

Car

Airplane

Ship

Truck

Frog

Truck

Ship

Deer

Figure 3: Illustration of more cross class conversion applying MCMC on a conditional EBM. We condition
on a particular class but is initialized with an image from a another class(left). We are able to preserve certain
aspects of the image while altering others

We analyze nearest neighbors of images we generate in L2 distance Figure 4 and in Resnet-50
embedding space in Figure 5.

A.2 Test Time Sampling Process

We provide illustration of image generation from conditional and unconditional EBM models starting
from random noise in Figure 6 with small amounts of random noise added. Dependent on the image
generated there is slight drift from some start image to a final generated image. We typically observe
that as sampling continues, much of the background is lost and a single central object remains.

We find that if small amounts of random noise are added, all sampling procedures generate a large
initial set of diverse, reduced sample quality images before converging into a small set of high
probability/quality image modes that are modes of images in CIFAR10. However, we find that if

2



(a) Nearest neighbor images in CIFAR10 for condi-
tional energy models (leftmost generated, seperate
class per row).

(b) Nearest neighbor images in CIFAR10 for un-
conditional energy model (leftmost generated)

Figure 4: Nearest neighbor images L2 distance for images generated from implicit sampling.

sufficient noise is added during sampling, we are able to slowly cycle between different images with
larger diversity between images (indicating successful distribution sampling) but with reduced sample
quality.

Due to this tradeoff, we use a replay buffer to sample images at test time, with slightly high noise
then used during training time. For conditional energy models, to increase sample diversity, during
initial image generation, we flip labels of images early on in sampling.

A.3 Likelihood Evaluation And Ablations

To evaluate the likelihood of EBMs, we use AIS [Neal, 2001] and RAISE to obtain a lower bound of
partition function [Burda et al., 2015]. We found that our energy landspaces were smooth and gave
sensible likelihood estimates across a range of temperatures and so chose the appropriate temperature
that maximized the likelihood of the model. When using these methods to estimate the partition
function on CIFAR-10 or ImageNet, we found that it was too slow to get any meaningfull partition
function estimates. Specifically, we ran AIS for over 300,000 chains (which took over 2 days of time)
and still a very large gap between lower and upper partition function estimates.

While it was difficult to apply on CIFAR-10, we were able to get lower differences between upper and
lower partition functions estimates on continuous MNIST. We rescaled MNIST and to be between
0 and 1 and added 1/256 random noise following [Uria et al., 2013]. Table 7 provides a table of
log likelihoods on continuous MNIST across Flow, GAN, and VAE models as well as well as a
comparison towards using PCD as opposed to a replay buffer to train on continuous MNIST. We
find that the replay buffer is essential to good generation and likelihood, with the ablation of training
with PCD instead of replay buffer getting significantly worse likelihood. We further find that EBMs
appear to compare favorably to other likelihood models.

3



(a) Nearest neighbor images in CIFAR10 for condi-
tional energy models (leftmost generated, seperate
class per row).

(b) Nearest neighbor images in CIFAR10 for un-
conditional energy model (leftmost generated)

Figure 5: Nearest neighbor images ResNet-50 distance for images generated from implicit sampling.

(a) Illustration of implicit sampling on conditional EBM
of CIFAR-10

(b) Illustration of implicit sampling on an unconditional
model on CIFAR-10

Figure 6: Generation of images from random noise.

A.4 Hyper-parameter Sensitivity
Models Parameters Training Time Sampling Time

EBM 5M 48 3 Hour (Variable)
PixelCNN++ 160M 1300 72 Hour
Glow 115M 1300 0.5 Hour
SNGAN 5M 9 0.02 Hour

Figure 8: Comparison of parameters, training time
(GPU hours), and sampling time (for 50000 images) on
CIFAR-10. For EBM, sampling time depends on steps
of sampling. We used 3 hours of sampling to generate
quantitative metrics, but sampling can be much faster
(around 0.2 hour) with reduced diversity.

Empirically, we found that EBM training under
our technique was relatively insensitive to the
hyper-parameters. For example, Table 9 shows
log likelihoods on continuous MNIST across
several different order of magnitudes of L2 reg-
ularization and step size magnitude. We find
consistent likelihood and good qualitative gener-
ation across different variations of L2 coefficient
and step size magnitude and observed similar
results in CIFAR-10 and Imagenet. Training is

4



Model Lower Bound Upper Bound

EBM + PCD 380.9 482
GAN 50 [Wu et al., 2016] 618.4 636.1
VAE 50 [Wu et al., 2016] 985.0 997.1
NICE [Dinh et al., 2014] 1980.0 1980.0
EBM + Replay Buffer 1925.0 2218.3

Figure 7: Log likelihood in Nats on Continuous MNIST. EBMs are evaluated by running AIS for 10000 chains

Hyper-parameter Value Lower Bound Upper Bound

L2 Coefficient
0.01 1519 2370
0.1 1925 2218
1.0 1498 2044

Step Size
10.0 1498 2044

100.0 1765 2309
1000.0 1740 2009

Figure 9: Log likelihood in Nats on Continuous MNIST under different settings of the L2 penalty coefficient
and Langevin Step Size evaluated after running AIS and RAISE for 10000 chains. Lower and upper bound in
likelihood remain relatively constant across several different order of magnitude of variation

insensitive to replay buffer size (as long as size
is greater than around 10000 samples).

A.5 Comparison With Other Likelihood Models

We compare EBMs to other generative models in Figure 8 on CIFAR-10. EBMs are faster to train
than other likelihood models, with fewer parameters, but are more expensive than GAN based models
(due to Langevin dynamics sampling), and slower to sample. Training time for PixelCNN++ and
Glow are from reported values in their papers, while sampling time and parameters were obtained
from released code repositories. We have added the table to the appendix of the paper and added
discussion on these trade-offs and intractability of likelihood evaluation in the main paper.

A.6 Image Saturation

When EBMs are run for a large number of sampling steps, images appear in increased saturation.
This phenomenon can be exampled by the fact that many steps of sampling typically converge to
high likelihood modes. Somewhat unintuitively, as seen also by out of distribution performance of
likelihood models, such high likelihood modes on likelihood models trained on real datasets are often
very texture based and heavily saturated. We provide illustration of this phenomenon on Glow in
Figure 10.

High Temperature
GLOW Samples

Low Temperature
GLOW Samples

Figure 10: Low Temperature (High likelihood mode) vs High Temperature (Low Likelihood mode) in Glow
Model

A.7 Details on Continual Learning Training

To train EBM models on the continual learning scenario of Split MNIST, we train an EBM following
Algorithm 1 in the main body of the paper. Initially, negative sampling is done with labels of the
digits 0 and 1. Afterwards, negative sampling is done with labels of the digits 2 and 3 and so forth.

5



+Female
+Black Hair

+Female
-Black Hair

-Female
+Black Hair

-Female
-Black Hair

+Attractive
+Black Hair

+Attractive
-Black Hair

-Attractive
+Black Hair

-Attractive
-Black Hair

+Old
+Black Hair

+Old
-Black Hair

-Old
+Black Hair

-Old
-Black Hair

Figure 11: Illustration of test time generation of various combinations of two independently trained EBMs
conditioned on latents on gender, hair color, attractiveness, and age on CelebA.

Simultaneously, we train EBMs on ground truth image label annotations. We maintain a replay buffer
of negative samples to enable effective training of the EBM.

A.8 KL Term

In cases of very highly peaked data, we can further regularize E such that q matches p by minimizing
KL divergence between the two distributions:

LKL(θ) = KLqθp = Ex̃∼qθ
[
Ē(x̃)

]
+H [qθ] (1)

Where Ē is treated as a constant target function that does not depend on θ. Optimizing the above
loss requires differentiating through the Langevin dynamics sampling procedure of (??), which is
possible since the procedure is differentiable. Intuitively, we train energy function such that a limited
number of gradient-based sampling steps takes samples to regions of low energy. We only use the
above term when fine-tuning combinations of energy functions in zero shot combination and thus
ignore the entropy term.

The computation of the entropy termH [qθ] can resolved by approaches [Liu et al., 2017] propose an
optimization procedure where this term is minimized by construction, but rely on a kernel function
κ(x,x′), which requires domain-specific design. Otherwise, the entropy can also be resolved by
adding a IAF [Kingma et al., 2016] to map to underlying Gaussian through which entropy can be
evaluated.

A.9 Additional Compositionality Results

We show additional compositionality results on the CelebA dataset. We trained seperate conditional
EBMs on the latents attractiveness, hair color, age, and gender. We show different combinations of
two conditional models in Figure 11.

A.10 Model

We use the residual model in Figure 12a for conditional CIFAR-10 images generation and the residual
model in Figure 12b for unconditional CIFAR10 and Imagenet images. We found unconditional
models need additional capacity. Our conditional and unconditional architectures are similar to
architectures in [Miyato et al., 2018].

We found definite gains with additional residual blocks and wider number of filters per block.
Following [Zhang et al., 2019, Kingma and Dhariwal, 2018], we initialize the second convolution of
residual block to zero and a scalar multiplier and bias at each layer. We apply spectral normalization
on all weights. When using spectral normalization, zero weight initialized convolution filters were
instead initialized from random normals with standard deviations of 1−10 (with spectrum normalized
to be below 1). We use conditional bias and gains in each residual layer for a conditional model. We
found it important when down-sampling to do average pooling as opposed to strided convolutions.
We use leaky ReLUs throughout the architecture.

We use the architecture in Figure 2 for generation of conditional ImageNet32x32 images.

A.11 Training Details and Hyperparameters

For CIFAR-10 experiments, we use 60 steps of Langevin dynamics to generate negative samples. We
use a replay buffer of size of 10000 image. We scale images to be between 0 and 1. We clip gradients
to have individual value magnitude of less than 0.01 and use a step size of 10 for each gradient step of
Langevin dynamics. The L2 loss coefficient is set to 1. We use random noise with standard deviation

6



3x3 conv2d, 128

ResBlock down 128

ResBlock 128

ResBlock down 256

ResBlock 256

ResBlock down 256

ResBlock 256

Global Sum Pooling

dense→ 1

(a) Conditional CIFAR-10
Model

3x3 conv2d, 128

ResBlock down 128

ResBlock 128

ResBlock 128

ResBlock down 256

ResBlock 256

ResBlock 256

ResBlock down 256

ResBlock 256

ResBlock 256

Global Sum Pooling

dense→ 1

(b) Unconditional CIFAR-
10 Model

3x3 conv2d, 128

ResBlock down 256

ResBlock 256

ResBlock down 512

ResBlock 512

ResBlock down 1024

ResBlock 1024

Global Sum Pooling

dense→ 1

(c) Conditional Ima-
geNet32x32 Model

3x3 conv2d, 64

ResBlock down 64

ResBlock down 128

ResBlock down 256

ResBlock down 512

ResBlock down 1024

ResBlock 1024

Global Sum Pooling

dense→ 1

(d) Conditional Ima-
geNet128x128 Model

λ = 0.005. CIFAR-10 models are trained on 1 GPU for 2 days. We use the Adam Optimizer with
β1 = 0.0 and β2 = 0.999 with a training learning rate of 10−4. We use a batch size during training
of 128 positive and negative samples. For both experiments, we clip all training gradients that are
more than 3 standard deviations from the 2nd order Adam parameters. We use spectral normalization
on networks. For ImageNet32x32 images, we an analogous setup with models are trained for 5 days
using 32 GPUs. For ImageNet 128x128, we use a step size 100 and train for 7 days using 32 GPUs.

For robotic simulation experiments we used 10 steps of Langevin dynamics to generate negative
samples, but otherwise use identical settings as for image experiments.

A.12 Tips And Failures

We provide a list of tips, observations and failures that we observe when trying to train energy based
models. We found evidence that suggest the following observations, though in no way are we certain
that these observations are correct.

We found the following tips useful for training.

• We found that EBM training is most sensitive to MCMC transition step sizes (though there
is around 2 to 3 order of magnitude that MCMC transition steps can vary).

• We found that that using either ReLU, LeakyReLU, or Swish activation in EBMs lead to
good performance. The Swish activation in particular adds a noticeable boost to training
stability.

• When using residual networks, we found that performance can be improved by using 2D
average pooling as opposed to transposed convolutions

• We found that group, layer, batch, pixel or other types of normalization appeared to signif-
icantly hurt sampling, likely due to making MCMC steps dependent on surrounding data
points.

• During a typical training run, we keep training until the sampler is unable to generate
effective samples (when energies of proposal samples are much larger than energies of data
points from the training data-set). Therefore, to extend training, the number of sampling
steps to generate a negative sample can be increased.

• We find a direct relationship between depth / width and sample quality. More model depth
or width can easily increase generation quality.

• When tuning noise when using Langevin dynamics, we found that very low levels of noise
led to poor results. High levels of noise allowed large amounts of mode exploration initially
but quickly led to early collapse of training due to failure of the sampler (failure to explore

7



Figure 13: Relative energy of points sampled from q(x) compared to CIFAR-10 train data points. We find that
q(x) exhibits a similar distribution to pd(x) and thus is similar to p(x).

modes). We recommend keeping noise fixed at 0.005 and tune the step size per problem
(though we found step sizes of around 10-100 work well).

We also tried the approaches below with the relatively little success.

• We found that training ensembles of energy functions (sampling and evaluating on ensem-
bles) to help a bit, but was not worth the added complexity.

• We found it difficult to apply vanilla HMC to EBM training as optimal step sizes and
leapfrog simulation numbers differed greatly during training, though applying adaptive
HMC would be an interesting extension.

• We didn’t find much success with adding a gradient penalty term as it seems to hurt model
capacity.

• We tried training a separate network to help parameterize MCMC sampling but found that
this made training unstable. However, we did find that using some part of the original model
to parameterize MCMC (such as using the magnitude to energy to control step size) to help
performance.

A.13 Relative Energy Visualization

In Figure 13, we show the energy distribution from q(x) and from pd(x). We see that both distributions
match each other relatively closely, providing evidence that q(x) is close to p(x)

8



References
Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov. Accurate and conservative estimates of mrf log-likelihood

using reverse annealing. In Artificial Intelligence and Statistics, pages 102–110, 2015.

Laurent Dinh, David Krueger, and Yoshua Bengio. Nice: Non-linear independent components estimation. arXiv
preprint arXiv:1410.8516, 2014.

Diederik P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolutions. arXiv
preprint arXiv:1807.03039, 2018.

Durk P Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, and Max Welling. Improved
variational inference with inverse autoregressive flow. In Advances in neural information processing systems,
pages 4743–4751, 2016.

Yang Liu, Prajit Ramachandran, Qiang Liu, and Jian Peng. Stein variational policy gradient. arXiv preprint
arXiv:1704.02399, 2017.

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization for generative
adversarial networks. arXiv preprint arXiv:1802.05957, 2018.

Radford M Neal. Annealed importance sampling. Stat. Comput., 11(2):125–139, 2001.

Benigno Uria, Iain Murray, and Hugo Larochelle. Rnade: The real-valued neural autoregressive density-estimator.
In Advances in Neural Information Processing Systems, pages 2175–2183, 2013.

Yuhuai Wu, Yuri Burda, Ruslan Salakhutdinov, and Roger Grosse. On the quantitative analysis of decoder-based
generative models. arXiv preprint arXiv:1611.04273, 2016.

Hongyi Zhang, Yann N. Dauphin, and Tengyu Ma. Residual learning without normalization via better initializa-
tion. In International Conference on Learning Representations, 2019. URL https://openreview.net/
forum?id=H1gsz30cKX.

9


