
Convergence of Adversarial Training in
Overparametrized Neural Networks (Appendix)

A Proof of the Convergence Result for Deep Nets in Section 4

We first present some useful notations and lemmas for this part. Denote the diagonal matrix D(h) =

D(h) (W,x) as D(h) = diag
(
I(x(h) ≥ 0)

)
for h ∈ [H], where I is the entry-wise indicator function.

Sometimes we also denote D(0) = I which is the identity matrix. Therefore, the neural network has
the following formula

f (W,x) = a>D(H)W(H) · · ·D(1)W(1)x(0)

and the gradient w.r.t. W(h) is

f ′(h) (W,x) =
(
x(h−1)a>D(H)W(H) · · ·D(h)

)>
, h ∈ [H]. (1)

First, we will restate some basic results at initialization.
Lemma A.1. If m ≥ d, with probability 1−O(H)e−Ω(m) at initialization, we have ‖A‖2 = O(1),∥∥W(h)

∥∥
2

= O(1),∀h ∈ [H], and ‖a‖2 = O(
√
m).

Proof. This is a well-known result of the l2-norm of Gaussian random matrices (Corollary 5.35 in
[8]), which states that for a matrix M ∈ Ra×b with i.i.d. standard Gaussian entries, with probability
1−2e−t

2/2 we have ‖M‖2 ≤
√
a+
√
b+ t. Combined with the scaling of A,W(h), and a, we easily

know that each of ‖A‖2 = O(1),
∥∥W(h)

∥∥
2

= O(1), and ‖a‖2 = O(
√
m) holds with probability

1− e−Ω(m), and we obtain our result by taking the union event.

Lemma A.2. For any fixed input x ∈ S , with probability 1−O(H)e−Ω(m/H) over the randomness

of initialization, we have for every h ∈ {0, . . . ,H},
∥∥∥x(h)

∥∥∥
2
∈ [2/3, 4/3] and

∥∥x(h)
∥∥

2
∈ [2/3, 4/3]

at initialization.

Proof. This is a restatement of Lemma 7.1 in [1] taking the number of data n = 1.

Lemma A.3. If m = Ω (H logH), for any fixed input x ∈ S, with probability 1 − e−Ω(m/H), at
initialization we have for every h ∈ [H],∥∥∥a>D(H)W(H) · · ·D(h)W(h)

∥∥∥
2

= O(
√
mH).

Proof. Note that
∥∥a>D(H)W(H) · · ·D(h)W(h)

∥∥
2
≤
∥∥a>∥∥

2

∥∥D(H)
∥∥

2

∥∥W(H) · · ·D(h)W(h)
∥∥

2

and
∥∥D(H)

∥∥
2
≤ 1. This lemma then becomes a direct consequence of Lemma A.1 and Lemma 7.3(a)

in [1] with number of data n = 1.

Our general idea is that within the local region (where R = Ω(1))

B(R) = {W :
∥∥∥W(h) −W

(h)
0

∥∥∥
F
≤ R√

m
,∀h ∈ [H]}
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the gradient f ′(h)(W) remains stable over W when x is fixed, and the perturbation of f ′(h)(W)
is small compared to the scale of f ′(h)(W0). This property has been studied in [1] extensively.
However, in the non-adversarial setting, they only need to prove this property at finitely many data
points {xi}ni=1. In our adversarial training setting, though, we also need to prove that it holds for
any x′i ∈ B(xi). Specifically, in this section we would like to prove that it holds for any x ∈ S.
Our method is based on viewing the perturbation of x as an equivalent perturbation of the parameter
W(1), and then we will be able to make use of the results in [1]. This is elaborated in the following
lemma:

Lemma A.4. Given any fixed input x ∈ S. If R = O(
√
m), with probability 1− O(H)e−Ω(m/H)

over random initialization, for any x′ ∈ S satisfying ‖x− x′‖2 ≤ δ, and any W ∈ B(R), there
exists W̃ ∈ B(R +O(

√
mδ)) such that W(h) = W̃(h) for h = 2, · · · , H , and for all h ∈ [H] we

have

x′(h)(W) = x(h)(W̃), x′(h)(W) = x(h)(W̃), D(h)(x′,W) = D(h)(x,W̃).

In other words, the network with a perturbation from x to x′ is same as the network with a perturbation
from W to W̃ since layer x(1) and up.

Proof. By Lemma A.1, with probability 1 − O(H)e−Ω(m), ‖A‖2 = O(1) and
∥∥∥W(1)

0

∥∥∥
2

= O(1).

Thus
∥∥W(1)

∥∥
2
≤
∥∥∥W(1)

0

∥∥∥
2

+ R√
m

= O(1). By Lemma A.2, with probability 1−O(H)e−Ω(m/H),∥∥x(0)
∥∥

2
∈ [2/3, 4/3]. Let

W̃(1) = W(1) +
W(1)

(
x′(0) − x(0)

)
(x(0))>∥∥x(0)

∥∥2

2

.

W̃(1) obviously satisfies W̃(1)x(0) = W(1)x′(0). Then setting W̃(2), . . . ,W̃(H) equal to
W(2), . . . ,W(H) will make all the following hidden layer vectors and D(h) equal. It is also easy to
verify that ∥∥∥W̃(1) −W(1)

∥∥∥
F
≤
∥∥W(1)

∥∥
2
‖A‖2 ‖x− x′‖2∥∥x(0)

∥∥
2

= O(δ),

so we know that W̃ ∈ B(R+O(
√
mδ)).

By Lemma A.4, we can directly apply many results in [1] which are only intended for the fixed data
originally, to our scenario where the input can be perturbed, as long as we take the parameter radius
as R√

m
+O(δ) in their propositions1. This can give us the following important lemma:

Lemma A.5 (Bound for the Perturbation of Gradient). Given any fixed input x ∈ S. If
m ≥ max(d,Ω(H logH)), R√

m
+ δ ≤ c

H6(logm)3 for some sufficiently small constant c, then

with probability at least 1−O(H)e−Ω(m(R/
√
m+δ)2/3H) over random initialization, we have for any

W ∈ B(R) and any x′ ∈ S with ‖x− x′‖2 ≤ δ,∥∥∥f ′(h) (W,x′)− f ′(h) (W0,x)
∥∥∥
F

= O

(
(
R√
m

+ δ)1/3H2
√
m logm

)
and ∥∥∥f ′(h) (W,x′)

∥∥∥
F

= O(
√
mH).

1Note that in [1] the corresponding region B(R) is defined by the 2-norm instead of the F -norm: B2(R) :=

{W :
∥∥∥W(h) −W

(h)
0

∥∥∥
2
≤ R√

m
,∀h ∈ [H]}. Since obviously B2(R) ⊂ B(R), we can still apply their results

to our case directly.
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Proof. By Lemma 8.2(b)(c) of [1], using the method of Lemma A.4 stated above, when R√
m

+ δ ≤
c

H9/2(logm)3
, with probability 1− e−Ω(m(R/

√
m+δ)2/3H), for any W ∈ B(R) and any x′ ∈ S with

‖x− x′‖2 ≤ δ, we have for h ∈ [H], 2∥∥∥D(h)(W,x′)−D(h)(W0,x)
∥∥∥

0
= O

(
m(

R√
m

+ δ)2/3H

)
. (2)

and ∥∥∥x′(h)(W)− x(h)(W0)
∥∥∥

2
= O

(
(
R√
m

+ δ)H5/2
√

logm

)
, (3)

where (3) is also easily verified to hold for h = 0. Next, according to Lemma 8.7 of [1]3, when the
bound (2) satisfiesO(m( R√

m
+δ)2/3H) ≤ m

H3 logm , with probability 1−e−Ω((R/
√
m+δ)2/3Hm logm),

we have for any W ∈ B(R) and any x′ ∈ S with ‖x− x′‖2 ≤ δ, ∀h ∈ [H],∥∥∥a>D(H)(W,x′)W(H) · · ·D(h)(W,x′)W(h) − a>D(H)(W0,x)W
(H)
0 · · ·D(h)(W0,x)W

(h)
0

∥∥∥
2

= O

(
(
R√
m

+ δ)1/3H2
√
m logm

)
(4)

Note that with our condition R√
m

+ δ ≤ c
H6(logm)3 , the previous requirements are all satisfied. Also,

combining (3) with Lemma A.2, we know for h = 0, · · · , H ,∥∥∥x′(h)(W)
∥∥∥

2
≤ O(1) +O

(
(
R√
m

+ δ)H5/2
√

logm

)
= O(1) (5)

Combining Equation (3), (4), (5), and Lemma A.3, we obtain∥∥∥f ′(h) (W,x′)− f ′(h) (W0,x)
∥∥∥
F

≤
∥∥∥a>D(H)(W,x′)W(H) · · ·D(h)(W,x′)W(h) − a>D(H)(W0,x)W

(H)
0 · · ·D(h)(W0,x)W

(h)
0

∥∥∥
2

·
∥∥∥x′(h−1)(W)

∥∥∥
2

+
∥∥∥a>D(H)(W0,x)W

(H)
0 · · ·D(h)(W0,x)W

(h)
0

∥∥∥
2

∥∥∥x′(h−1)(W)− x(h−1)(W0)
∥∥∥

2

=O

(
(
R√
m

+ δ)1/3H2
√
m logm

)
+O(

√
mH) ·O

(
(
R√
m

+ δ)H5/2
√

logm

)
=O

(
(
R√
m

+ δ)1/3H2
√
m logm

)
.

In addition, also by (5) and Lemma A.3,∥∥∥f ′(h)(W0,x)
∥∥∥
F
≤
∥∥∥a>D(H)(W0,x)W

(H)
0 · · ·D(h)(W0,x)W

(h)
0

∥∥∥
2

∥∥∥x(h−1)(W0)
∥∥∥

2

= O(
√
mH).

Therefore,∥∥∥f ′(h)(W,x′)
∥∥∥
F

= O(
√
mH) +O

(
(
R√
m

+ δ)1/3H2
√
m logm

)
= O(

√
mH).

With Lemma A.5, we are ready to state an important bound that implies the loss function is close to
being convex within the neighborhood B(R) for any x ∈ S . We use the ε-net to turn the result from
a fixed x to all x ∈ S,

2Here the zero norm ‖·‖0 denotes the number of non-zero entries of a matrix or a vector.
3We only use the setting when the network output is a scalar.
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Lemma A.6. If m = Ω
(
d3/2 log3/2(

√
m/R)

RH3/2

)
and R = O

( √
m

H6(logm)3

)
, then with probability at

least 1−O(H)e−Ω((mR)2/3H) over random initialization, we have for any W1,W2 ∈ B(R), any
x ∈ S and any y ∈ R,

l (f(W2,x), y) ≥ l (f(W1,x), y) + 〈∇Wl(f(W1,x), y),W2 −W1〉

− ‖W2 −W1‖F O((mR)1/3H5/2
√

logm).

Proof. A δ-net of S is a group of points {xi}Ni=1 in S that satisfies: for any x ∈ S , there exists some
xi that satisfies ‖x− xi‖2 ≤ δ. From classic covering number results we know that we can construct
such a δ-net with the number of total points N = (O(1/δ))d, where d is the input dimension. As
long as R√

m
+ δ ≤ c

H6(logm)3 for some sufficiently small constant c, we can derive that for any

i ∈ [N ], with probability 1 − O(H)e−Ω(m(R/
√
m+δ)2/3H), for any W1,W2 ∈ B(R), any x′i ∈ S

with ‖xi − x′i‖2 ≤ δ, and any y ∈ R,

l (f(W2,x
′
i), y)− l (f(W1,x

′
i), y)− 〈∇Wl(f(W1,x

′
i), y),W2 −W1〉

≥ ∂

∂f
l (f(W1,x

′
i), y) [f(W2,x

′
i)− f(W1,x

′
i)− 〈∇Wf(W1,x

′
i),W2 −W1〉]

=
∂

∂f
l (f(W1,x

′
i), y) 〈

∫ 1

0

(∇Wf(tW2 + (1− t)W1,x
′
i)−∇Wf(W1,x

′
i)) dt,W2 −W1〉

≥ − ‖W2 −W1‖F O((
R√
m

+ δ)1/3H5/2
√
m logm),

where the first inequality uses the convexity of l w.r.t f and the last inequality is due to the boundedness
of |∂l/∂f | is bounded, Lemma A.5, and ∇Wf = (f ′(1), . . . , f ′(H)). We take δ = R√

m
. With

R = O
( √

m
H6(logm)3

)
the requirement R√

m
+δ ≤ c

H6(logm)3 can be satisfied. Therefore, taking union
event over all N points, our proposition holds with probability

1−O(H)(O(
√
m/R))de−Ω((mR)2/3H)

=1−O(H)e−Ω((mR)2/3H)+d log(O(
√
m/R))

=1−O(H)e−Ω((mR)2/3H),

where the last equation is due to the condition m = Ω
(
d3/2 log3/2(

√
m/R)

RH3/2

)
.

With the above preparations, we are ready to prove the main theorem.

Proof of Theorem 4.1. We denote Wt as the parameter after t steps of projected gradient descent,
starting from the initialization W0. We perform a total of T steps with step size α.
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For projected gradient descent, Wt ∈ B(R) holds for all t = 0, 1, · · · , T . Recall that the update rule
is Wt+1 = PB(R) (Vt+1) for Vt+1 = Wt − α∇WLA(Wt). Let dt := ‖Wt −W∗‖F . We have

d2
t+1 =‖Wt+1 −W∗‖2F
≤‖Vt+1 −W∗‖2F
=‖Wt −W∗‖2F + 2〈Vt+1 −Wt,Wt −W∗〉+ ‖Vt+1 −Wt‖2F
=d2

t + 2α〈∇WLA(Wt), (W∗ −Wt)〉+ α2‖∇WLA(Wt)‖2F

=d2
t +

2α

n

n∑
i=1

〈∇Wl(Wt,A(Wt,xi)), (W∗ −Wt)〉+ α2‖ 1

n

n∑
i=1

∂l

∂f
∇Wf(Wt,A(Wt,xi))‖2F

≤d2
t +

2α

n

n∑
i=1

[l(W∗,A(Wt,xi))− l(Wt,A(Wt,xi))

+ ‖W∗ −Wt‖F O((mR)1/3H5/2
√

logm)] + α2O(mH2)

≤d2
t +

2α

n

n∑
i=1

(l(W∗,A∗(W∗,xi))− l(Wt,A(Wt,xi)))

+O(αm−1/6R4/3H5/2
√

logm+ α2mH2)

=d2
t + 2α (L∗(W∗)− LA(Wt)) +O(αm−1/6R4/3H5/2

√
logm+ α2mH2)

where the second inequality is due to Lemma A.6 and Lemma A.5, the third inequality is due to the
definition of A∗. Note that in order to satisfy the condition for Lemma A.6 and Lemma A.5, our
choice m = max{Ω

(
H16R9

ε7

)
,Ω(d2)} suffices. By induction on the above inequality, we have

d2
T ≤ d2

0 + 2α

T−1∑
t=0

(L∗(W∗)− LA(Wt)) +O(T (αm−1/6R4/3H5/2
√

logm+ α2mH2)),

which implies that

min
0≤t≤T

(L∗(W∗)− LA(Wt)) ≤
d2

0 − d2
T

αT
+O(m−1/6R4/3H5/2

√
logm+ αmH2)

≤ R2

mαT
+O(m−1/6R4/3H5/2

√
logm+ αmH2)

≤ ε,

where in the last inequality we use our choice of α = O
(

ε
mH2

)
, T = Θ

(
R2

mαε

)
, and also

m−1/6R4/3H5/2
√

logm ≤ O(ε), which is satisfied by m = Ω
(
H16R9

ε7

)
.

B Proof of Theorem 5.1: Convergence Result for Two-Layer Networks

Proof. We denote Wt as the parameter after t steps of projected gradient descent, starting from
the initialization W0. We perform a total of T steps with step size α, where each step is an update
Wt+1 = Wt − α∇WLA(Wt). Firstly, the formula for the network gradient is

∇Wf(W,x) =
1√
m

diag(a)σ′(Wx)x>,

where a = (a1, · · · , am
2
, a′1, · · · , a′m

2
)> is the parameter for the output layer. We can compute the

Lipschitz property of∇Wf w.r.t W: For any fixed x ∈ S,

‖∇Wf(W)−∇Wf(W′)‖F ≤
1√
m
‖diag(a)‖2 ‖σ

′(Wx))− σ′(W′x)‖2‖x‖2

≤ 1√
m
· 1 · C ‖Wx−W′x‖2 · 1

≤ O
(

1√
m

)
‖W −W′‖F ,
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For a fixed data point (x, y), we denote `(f(W)) as short for `(f(W,x), y). Since ` is convex and
has bounded derivative in f , we have

`(f(W′))− `(f(W))

≥`′(f(W))(f(W′)− f(W))

=`′(f(W))(〈∇Wf(W),W′ −W〉+ 〈
∫ 1

0

(∇Wf(sW + (1− s)W′)−∇Wf(W))ds,W′ −W〉)

≥〈∇W`(f(W)),W −W′〉 −O
(

1√
m

)
‖W −W′‖2F . (6)

In addition, we can also easily know that for W ∈ B(R) and R = O(
√
M), x ∈ S, we have

‖∇W`(f(W))‖2 ≤ |`
′| 1√

m
‖diag(a)‖2 (

√
m|σ′(0)|+ C ‖Wx‖2) ‖x‖2 = O(1) (7)

since the initialization satisfies ‖W0‖2 = O(
√
m) with high probability given m = Ω(d) (see

Lemma A.1), thereby ‖W‖2 = O(
√
m).

Denote dt = ‖Wt −W∗‖F . Without a projection step, there could be two possible scenarios during
the optimization process: Either Wt ∈ B(3R) holds for all t = 1, · · · , T , or there exists some
T0 < T such that Wt ∈ B(3R) for t ≤ T0 but WT0+1 /∈ B(3R). Either way, while Wt is still in
B(3R) up to t− 1, we have

d2
t = ‖Wt −W∗‖2F

= ‖Wt−1 −W∗‖2F + 2(Wt −Wt−1) · (Wt−1 −W∗) + ‖Wt −Wt−1‖2F
= d2

t−1 + 2α∇WLA(Wt−1) · (W∗ −Wt−1) + α2‖∇WLA(Wt−1)‖2F

≤ d2
t−1 +

2α

n

n∑
i=1

[
`(f(W∗,A(Wt−1,xi)), yi)− `(f(Wt−1,A(Wt−1,xi)), yi) +O

(
1√
m

)
‖W∗ −Wt−1‖2F

]
+O(α2)

≤
(

1 +
cα√
m

)
d2
t−1 + 2α(L∗(W∗)− LA(Wt−1)) +O(α2), (8)

where the first inequality is based on (6) and (7), the second inequality is based on the definition of
L∗(W∗), and c is some constant. Let St = (1 + cα√

m
)t which is a geometric series, and dividing (8)

by St we have

d2
t

St
≤
d2
t−1

St−1
− 2α

LA(Wt−1)− L∗(W∗)

St
+
O(α2)

St
,

which, by induction, gives us

d2
t

St
≤ d2

0 − 2α

t−1∑
i=0

LA(Wi)− L∗(W∗)

Si+1
+O(α2)

t−1∑
i=0

1

Si+1

≤ d2
0 − 2α min

i=0,··· ,t−1
(LA(Wi)− L∗(W∗))

t−1∑
i=0

1

Si+1
+O(α2)

t−1∑
i=0

1

Si+1
,

and note that
∑t−1
i=0

1
Si+1

=
√
m
cα

(
1− 1

St

)
, which yields

min
i=0,··· ,t−1

LA(Wi)− L∗(W∗) ≤ O(α) +
c
(
d2

0 −
d2t
St

)
√
m(1− 1

St
)
. (9)

Now we will consider the two cases separately:

Case 1. Wt ∈ B(3R) holds for all t = 1, · · · , T . We have chosen T =
√
m
cα , and then ST ≈ e. Also,

since d2
0 −

d2T
ST
≤ d2

0 = O(R2), by choosing m = Ω(R4/ε2) and α = O (ε), and taking t = T in (9),
we can obtain mint=0,··· ,T LA(Wt)− L∗(W∗) ≤ ε.
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Case 2. There exists some T0 < T such that Wt ∈ B(3R) for t ≤ T0 but WT0+1 /∈ B(3R).
Since W∗ ∈ B(R), we know that d0 ≤ R and dT0+1 ≥ 2R. Still using the choice of parameters

above, we have d2
0 −

d2T0+1

ST0+1
≤ R2 − (4/e)R2 ≤ 0. Hence, taking t = T0 + 1 in (9), we obtain

mint=0,··· ,T LA(Wt)− L∗(W∗) ≤ mint=0,··· ,T0
LA(Wt)− L∗(W∗) ≤ ε.

So in any case the result is correct, thus we have proved the convergence without the need of
projection.

C Proof of Gradient Descent Finding Robust Classifier in Section 5

C.1 Proof of Theorem 5.2

As discussed in Section 5, we will use the idea of random feature [7] to approximate g ∈ H(Kσ) on
the unit sphere. We consider functions of the form

h(x) =

∫
Rd

c(w)>xσ′(w>x)dw,

where c(w) : Rd → Rd is any function from Rd to Rd. We define the RF-norm of h as
‖h‖RF = supw

‖c(w)‖2
p0(w) where p0(w) is the probability density function of N (0, Id), which is

the distribution of initialization. Define the function class with finite N (0, Id)-norm as FRF ={
h(x) =

∫
Rd c(w)>xσ′(w>x)dw : ‖h‖RF <∞

}
. We firstly show that FRF is dense inH(Kσ).

Lemma C.1 (Universality of FRF). Let FRF andH(Kσ) be defined as above. Then FRF is dense in
H(Kσ), and further, dense inH(Kσ) w.r.t. ‖·‖∞,S , where ‖f‖∞,S = supx∈S |f(x)|.

Proof. Observe that by the definition of the RKHS introduced by Kσ, functions with form h(x) =∑
t atK(x,xt), xt ∈ S are dense inH(Kσ). But these functions can also be written in the form

h(x) =
∫
Rd c(w)>xσ′(w>x)dw where c(w) = p0(w)

∑
t atxtσ

′(w>xt). Note that ‖c(w)‖2 ≤
p(w)

∑
t

∥∥atxtσ′(w>xt)∥∥2
< ∞ since S is a compact set and σ′ is bounded, this verifies that h

is an element in FRF. So FRF contains a dense set ofH(Kσ) and therefore dense inH(Kσ). Then
note that the evaluation operator Kσ,x is uniformly bounded for x ∈ S, and h(x) = 〈Kσ,x, h〉H, so
the RKHS norm can be used to control the norm ‖·‖∞,S and is therefore stronger, thus the proof is
complete.

We then show that we can approximate elements of FRF by finite random features. Our results are
inspired by [7]. For the next theorem, recall Assumption 5.1, 5.3, the constant C satisfies σ′ is
C-Lipschitz, |σ′(·)| ≤ C.

Proposition C.1 (Approximation by Finite Sum). Let h(x) =
∫
Rd c(w)>xσ′(w>x)dw ∈ FRF.

Then for any δ > 0, with probability at least 1−δ over w1, · · · ,wM drawn i.i.d. fromN (0, Id), there
exists c1, · · · , cM where ci ∈ Rd and ‖ci‖2 ≤

‖h‖RF
M , so that the function ĥ =

∑M
i=1 c

>
i xσ

′(w>i x),
satisfies ∥∥∥ĥ− h∥∥∥

∞,S
≤
C ‖h‖RF√

M

(
2
√
d+

√
2 log(1/δ)

)
.

Proof. This result is obtained by importance sampling, where we construct ĥ with ci = c(wi)
Mp0(wi)

.

We first notice that ‖ci‖2 =
‖c(wi)‖2
Mp0(wi)

≤ ‖h‖RF
M which satisfies the condition of the theorem. We then

define the random variable

v(w1, · · · ,wM ) =
∥∥∥ĥ− h∥∥∥

∞,S
.

We bound this deviation from its expectation using McDiarmid’s inequality.
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To do so, we should first show that v is robust to the perturbation of one of its arguments. In fact, for
w1, · · · ,wM and w̃i we have

|v(w1, · · · ,wM )− v(w1, · · · , w̃i, · · · ,wM )|

≤ 1

M
max
x∈S

∣∣∣∣∣c(wi)
>xσ′(w>i x)

p0(wi)
− c(w̃i)

>xσ′(w̃i
>x)

p0(w̃i)

∣∣∣∣∣
≤ 1

M
‖h‖RF max

x∈S

(∣∣σ′(w>i x)
∣∣+
∣∣∣σ′(w̃i

>x)
∣∣∣)

≤
2C ‖h‖RF

M
=: ξ

by using triangle, Cauchy-Schwartz inequality, |σ′(·)| ≤ C and ‖x‖2 = 1.

Next, we bound the expectation of v. First, observe that the choice of c1, · · · , cM ensures that
Ew1,··· ,wM

ĥ = h. By symmetrization [5], we have

Ev =E sup
x∈S

∣∣∣ĥ(x)− Eĥ(x)
∣∣∣

≤2Ew,ε sup
x∈S

∣∣∣∣∣
M∑
i=1

εic
>
i xσ

′(w>i x)

∣∣∣∣∣ , (10)

where ε1, · · · , εM is a sequence of Rademacher random variables.

Since
∣∣c>i x∣∣ ≤ ‖ci‖2 ≤ ‖h‖RF

M and σ′ is C-Lipschitz, we have that c>i xσ
′(·) is C‖h‖RF

M -Lipschitz in
the scalar argument and zero when the scalar argument is zero. Following (10), by Talagrand’s lemma
(Lemma 5.7) in [6] together with Cauchy-Schwartz, Jensen’s inequality, we have

Ev ≤2Ew,ε sup
x∈S

∣∣∣∣∣
M∑
i=1

εic
>
i xσ

′(w>i x)

∣∣∣∣∣
≤

2C ‖h‖RF

M
E sup

x∈S

∣∣∣∣∣
M∑
i=1

εiw
>
i x

∣∣∣∣∣
≤

2C ‖h‖RF

M
E

∥∥∥∥∥
M∑
i=1

εiwi

∥∥∥∥∥
2

≤
2C ‖h‖RF√

M

√
Ew∼N (0,Id) ‖w‖

2
2 =: µ

Then McDiarmid’s inequailty implies

P[v ≥ µ+ ε] ≤ P[v ≥ Ev + ε] ≤ exp(− 2ε2

Mξ
).

The proposition is proved by solving the ε while setting the right hand to the given δ.

Proof of Theorem 5.2 . Finally, we construct W∗ within a ball of the initialization W0 that suffers
little robust loss L∗(W∗). Using the symmetric initialization in (4), we have f(W0,x) = 0 for all x.
We then use the neural Taylor expansion w.r.t. the parameters:

f(W,x)− f(W0,x) ≈ 1√
m

m/2∑
i=1

ai(wi −wi0)>xσ′(w>i0x) +

m/2∑
i=1

a′i(w̄i − w̄i0)>xσ′(w̄>i0x)


︸ ︷︷ ︸

(i)

,

where wi0 denotes the value of wi at initialization. We omitted the second order term. The term (i)
has the form of the random feature approximation, and so Proposition C.1 can be used to construct a
robust interpolant.

In summary, we give the entire proof of Theorem 5.2 as follows.
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Proof. Let L be the Lipschitz coefficient of the loss function `. Let ε̄ = 1
3L .

By Assumption 5.2 with ε̄, there exists g1 ∈ H(Kσ) such that

|g1(x′i)− yi| ≤ ε̄,
for every x′i ∈ B(xi), i ∈ [n], where B(xi) is the perturbation set.

By Lemma C.1, for ε̄ there exists g2 ∈ FRF such that ‖g1 − g2‖∞,S ≤ ε̄. Then, by Theorem C.1, we
have c1, · · · , cm/2 where ci ∈ Rd and

‖ci‖2 ≤
‖g2‖RF

m
,

such that g3 =
∑m/2
i=1 c

>
i xσ

′(w>i x) satisfies

‖g2 − g3‖∞,S ≤
C ‖g2‖RF√

m/2

(
2
√
d+

√
2 log 1/δ

)
,

with probability at least 1− δ on the initialization wi’s.

We decompose f into the linear part and its residual:

f(W,x) =
1√
m

m/2∑
i=1

ai(wi −wi0)>xσ′(w>i0x) +

m/2∑
i=1

a′i(w̄i − w̄i0)>xσ′(w̄>i0x)


+

1√
m

(m/2∑
i=1

ai

∫ 1

0

x
(
σ′((twi + (1− t)wi0)>x)− σ′(w>i0x)

)
dt

+

m/2∑
i=1

a′i

∫ 1

0

x
(
σ′((tw̄i + (1− t)w̄i0)>x)− σ′(w̄>i0x)

)
dt
)
,

Then set wi = wi0 +
√

m
4 ci, w̄i = −

√
m
4 ci + w̄i0, we have

‖wr −wr0‖2 ≤
‖g2‖RF√

4m
,

and
1√
m

m/2∑
i=1

ai(wi −wi0)>xσ′(w>i0x) +

m/2∑
i=1

a′i(w̄i − w̄i0)>xσ′(w̄>i0x)


=

1√
m

m/2∑
i=1

ai

√
m

4
c>i xσ

′(w>i0x)−
m/2∑
i=1

a′i

√
m

4
c>i xσ

′(w̄>i0x)


=

m∑
i=1

c>i xσ
′(w>i x)

=g3,

So

‖f(W, x)− g3‖∞,S =
∥∥∥ 1√

m

(m/2∑
i=1

ai

∫ 1

0

x
(
σ′((twi + (1− t)wi0)>x)− σ′(w>i0x)

)
dt

+

m/2∑
i=1

a′i

∫ 1

0

x
(
σ′((tw̄i + (1− t)w̄i0)>x)− σ′(w̄>i0x)

)
dt
)∥∥∥
∞,S

≤ 1√
m

∥∥m× C ∣∣(twi + (1− t)wi0)>x−w>i0x
∣∣ ‖x‖ ‖wi −wi0‖

∥∥
∞,S

≤
C ‖g2‖2RF

4
√
m

,
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and therefore

‖f(W, x)− g2‖∞,S ≤
C ‖g2‖2RF

4
√
m

+
C ‖g2‖RF√

m/2

(
2
√
d+

√
2 log(1/δ)

)
. (11)

Finally, set m to be large enough (= Ω
(
‖g2‖4RF
ε2

)
) so that the left hand in Equation (11) no more than

ε̄ and let RD,B,ε to be ‖g2‖RF /2. Then

L∗(W) =
1

n

n∑
i=1

sup
x∈B(xi)

` (f(W,x), yi)

≤ sup
i∈[n],x∈B(xi)

` (f(W,x), yi)

≤L sup
i∈[n],x∈B(xi)

(|f(W,x)− g2(x)|+ |g2(x)− g1(x)|+ |g1(x)− yi|)

≤3Lε̄

=ε.

The theorem follows by setting δ = 0.01.

C.2 Example of Using Quadratic ReLU Activation

Theorem 5.2 shows that when Assumption 5.2, 5.1, 5.3 hold, we can indeed find a classifier of low
robust loss within a neighborhood of the initialization. However, these assumptions are either for
generality or simplicity, and for specific activation functions, we can remove these assumptions. As a
guide example, we consider the quadratic ReLU function σ(x) = ReLU (x)

2
= x2 · 1x≥0 and its

induced NTK. Following the previous work [3, 2], we consider the initialization of each wr with the
uniform distribution on the surface of the sphere of radius

√
d in this section.4 We can verify that

this induced kernel is universal and quantitatively derive the dependency of ε for RD,B,ε and m in
Theorem 5.2 for this two-layer network. In order to do so, we need to make a mild assumption of the
dataset:5

Assumption C.1 (Non-overlapping). The dataset {xi, yi}ni=1 ⊂ S and the perturbation set function
B satisfies the following: There does not exist x, x̄ and i, j such that x ∈ B(xi) ∪ (−B(xi)), x̄ ∈
B(xj) ∪ (−B(xj)) but yi 6= yj .

And then we can derive the finite-sum approximation result by random features.

Theorem C.1 (Approximation by Finite Sum). For a given Lipschitz function h ∈ H(Kσ). For
ε > 0, δ ∈ (0, 1), let w1, · · · ,wM be sampled i.i.d. from the uniform distribution on the surface of
the sphere of radius

√
d where

M = Ω

(
CD,B

1

εd+1
log

1

εd+1δ

)
. (12)

and CD,B, C ′D,B is a constant that only depends on the dataset D and the compatible perturbation
B. Then with probability at least 1 − δ, there exists c1, · · · , cM where ci ∈ Rd such that ĥ =∑M
r=1 c

>
r xReLU

(
w>r x

)
satisfies

M∑
r=1

‖cr‖22 = O

(
C ′D,B
M

)
, (13)∥∥∥h− ĥ∥∥∥

∞,S
≤ ε. (14)

4It is not hard to see that Theorem 5.1 still holds under this situation by the same proof.
5Our assumption on the dataset essentially requires xi 6= ±xj since the quadratic ReLU NTK kernel only

contains even functions. However, this can be enforced via a lifting trick: let x̃ = [x, 1] ∈ Rd+1 , then the data
x̃ lie on the positive hemisphere. On the lifted space, even functions can separate any datapoints.
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To prove this theorem, we use the `2 approximation result in [3] and translate it to an `∞ approxima-
tion result by using Lipshitz continuity. We first state Proposition 1 in [3].

Lemma C.2 (Approximation of unit ball of H(Kσ), Corollary of Proposition 1 in [3]). Let h ∈
H(Kσ). For ε > 0, let dρ be the uniform distribution on S . Let w1, · · · ,wM be sampled i.i.d. from
uniform distribution on the surface of the sphere of radius

√
d, then for any δ ∈ (0, 1), if

M = exp(Ω(d))
‖h‖2H
ε

log

(
‖h‖2H
εδ

)
,

with probability at least 1− δ, there exists c1, · · · , cM ∈ Rd such that ĥ =
∑M
r=1 c

>
r xReLU

(
w>r x

)
satisfies

M∑
r=1

‖cr‖22 =
‖h‖2H exp(O(d))

M
, (15)

∥∥∥h− ĥ∥∥∥2

L2(dρ)
=

∫
S

(
h− ĥ

)2

dρ ≤ ε. (16)

Then we can give the proof of Theorem C.1.

Proof. Let Lip(f) denote the Lipschitz coefficient of f . We consider ĥ in Lemma C.2, by the
property of Lipschitz coefficient, we have

Lip(ĥ) =Lip

(
M∑
r=1

c>r xReLU
(
w>r x

))

≤
M∑
r=1

Lip
(
c>r xReLU

(
w>r x

))
≤

M∑
r=1

‖cr‖2 ‖x‖2 Lip
(
ReLU

(
w>r x

))
≤

M∑
r=1

‖cr‖2 ‖wr‖2

≤

√√√√( M∑
r=1

‖cr‖22

)(
M∑
r=1

‖wr‖22

)
,

So

Lip(ĥ) = ‖h‖H exp(O(d)),

which means ĥ has finite Lipschitz coefficient and therefore so does h− ĥ, and the upper bound of
Lipschitz constant cL only depends on the data and the perturbation. Then we can bound the `∞
approximation error. Suppose for some x ∈ S ,

∣∣∣h(x)− ĥ(x)
∣∣∣ > ε, since h− ĥ is Lipschitz, it is not

hard to see that, when ε is small,∫
S

(
h− ĥ

)2

&
π

d
2 εd+1

Γ(d/2 + 1)cdL
� εd+1

cdL

(2πe)
d
2

d
d+1
2

. (17)

By Lemma C.2, for some constant CD,B, when M = Ω
(
CD,B
εd+1 log 1

εd+1δ

)
, Equation (17) fails, so∥∥∥h− ĥ∥∥∥

∞,S
≤ ε holds and at the same time we have

∑M
r=1 ‖cr‖

2
2 = O

(
C′

D,B
M

)
for some C ′D,B that

only depends on the data and the perturbation.

Now, we get a similar but more explicit finite-sum approximation result for quadratic ReLU activation,
we are then going to show that the RKHS is rich enough that Assumption 5.2 can be derived. We
have the following lemma to characterize the capacity of the RKHS.
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Lemma C.3 (RKHS Contains Smooth Functions, Proposition 2 in [2], Corollary 6 in [4]). Let
f : S → R be an even function such that all i-th order derivatives exist and are bounded by η for
0 ≤ i ≤ s, with s ≥ (d + 3)/2. Then f ∈ H(Kσ) with ‖f‖H ≤ Cdη where Cd is a constant that
only depend on the dimension d.

Then, by plugging-in the finite-sum approximation theorem (Theorem C.1) and the theorem of the
capacity of RKHS (Theorem C.3) to the proof of Theorem 5.2 and combining with the optimiza-
tion theorem, we can get an overall theorem for the quadratic-ReLU network which is similar to
Corollary 5.1 but with explicit ε dependence:

Corollary C.1 (Adversarial Training Finds a Network of Small Robust Train Loss for Quadrat-
ic-ReLU Network). Given data set on the unit sphere equipped with a compatible perturbation
set function and an associated perturbation function A, which also takes value on the unit sphere.
Suppose Assumption 3.1, C.1 are satisfied. Let C ′′D,B be a constant that only depends on the datasetD
and perturbation B. Then for any 2-layer quadratic-ReLU network with width m = Ω(

C′′
D,B
εd+1 log 1

ε ),

if we run gradient descent with stepsize α = O(ε) for T = Ω(
√
m
α ) steps, then with probability 0.99,

min
t=1,··· ,T

LA(Wt) ≤ ε. (18)

D Proof of Theorem 6.1

Proof. We prove this theorem by an explicit construction of
[
n
2

]
× d data points that F is guaranteed

to be able to shatter. Consider the following data points

xi,j = ci + εej for i ∈ {1, · · · ,
[n

2

]
}, j ∈ [d],

where ci = (6iδ, 0, · · · , 0)> ∈ Rd, ε is a small constant, and ej = (0, · · · , 1, · · · , 0) ∈ Rd
is the j-th unit vector. For any labeling yi,j ∈ {1,−1}, we let Pi = {j ∈ [d] : yi,j = 1},
Ni = {j ∈ [d] : yi,j = −1}, and let #Pi = ki. The idea is that for every cluster of points {xi,j}nj=1,
we use 2 disjoint balls with radius δ to separate the positive and negative data points. In fact, for
every such cluster, if Pi and Ni are both non-empty, the hyperplane

Mi = {x : (yi,1, · · · , yi,d) · (x− ci) = 0},

clearly separates the points into {xi,j : j ∈ Pi} and {xi,j : j ∈ Ni}. Then we can see easily that
there exists a γki > 0 such that for any r > γkiε, there exist two Euclidean balls Br(x′i,1),Br(x′i,2)

in Rd with radius r, such that they contain the set {xi,j : j ∈ Pi} and {xi,j : j ∈ Ni} respectively,
and that Br(x′i,1) and Br(x′i,2) are also separated byMi. Therefore, as long as we take

ε < δmax

(
1

γ1
, · · · , 1

γd−1
, 1

)
,

we can always put r = δ. This also holds in the case that Pi or Ni is empty, where we can simply
put one ball centered at xi,1 = ci and put Br(xi,2) anywhere far away so that it is disjoint from
the other balls. Recall that we have chosen ‖ci − ci′‖2 ≥ 6δ for i 6= i′. Such balls Br(xi,l) : i ∈
{1, · · · ,

[
n
2

]
}, l ∈ {1, 2}, are disjoint since ε ≤ δ, and

∥∥∥x′i,l − ci

∥∥∥
2
≤ 2δ for l = 1, 2. In this way,

since F is an n-robust interpolation class, we can use the fact that there exists a function f ∈ F such
that for any i ∈ {1, · · · ,

[
n
2

]
}, f(x) = 1 for x ∈ Br(xi,1) and f(x) = −1 for x ∈ Br(xi,2). In this

way, f(xi,j) = yi,j holds for all i, j. Since the labels yi,j can be picked at will, by the definition of
the VC-dimension, we know that the VC-dimension of F is always at least

[
n
2

]
× d.
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