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A Missing proofs

A.1 Missed Proofs from Section 3

Remark A.1. All the proofs are provided for arbitrary discounts that satisfy γS ≤ γB. Hence,
they hold also for geometrical discounts with γS ≤ γB, because they are particular cases of discounts
that satisfy γS ≤ γB.

Remark A.2. Note that both an optimal buyer strategy and an optimal algorithm will remain
optimal, if the discount γB or γS is multiplied by any positive constant. Hence, from here on we
assume w.l.o.g. that γB1 = 1 and γS1 = 1.

A.1.1 Optimality of the constant Myerson pricing via a feasible mechanism when
γS = γB

One can apply the almost folklore technique of reducing the case of equal discounts to a single-round
feasible mechanism [1]. For any algorithm A ∈ AT , one constructs the feasible mechanism1 MA
which proceeds as follows: after the buyer’s report of his valuation v, the mechanisms MA chooses
a random round (s-th round is chosen with the probability proportional to the discount coefficient:
γs−1/Γ) and simulates it according to the optimal buyer strategy aOpt(A, v,γ) = {aot (v)}Tt=1, i.e.,
allocates the good for the price A(ao1(v) . . . aos−1(v)), if aos(v) = 1.

Proposition A.1. The mechanism MA is feasible (i.e., it satisfies correctness QA(v) ≤ 1, incentive-
compatibleness and individual rationality conditions; see [8, Sec.3]).

Proof. Formally the allocation QA : [0; +∞)→ [0, 1] and the payment PA : [0; +∞)→ [0; +∞) of
the feasible mechanism MA=(QA,PA) defined above are the following:

PA(v) :=

∑T
t=1 a

o
t (v)γt−1A

(
ao1(v) . . . aot−1(v)

)
Γ

def
=

SRevγ,γ(A, v)

Γ
,

QA(v) :=

∑T
t=1 a

o
t (v)γt−1

Γ
.

(A.1)

Let us denote SSurγ(A, v) := Surγ(A, v,aOpt(A, v,γ)).
The correctness QA(v) ≤ 1 is trivially satisfied.
The individual-rationality condition is that the buyer expect to gain non-negative utility: ∀v ≥

0 : QA(v) ·v−PA(v) ≥ 0. Note that the latter term of the left-hand side is the normalized strategic
surplus Γ−1SSurγ(A, v) which is not less than the normalized surplus Γ−1Surγ(A, v, 0T ) = 0 for
the strategy 0T (the strategy that rejects all offered prices), by the definition of aOpt. Thus, the
individual-rationality condition holds.

Finally, the incentive compatibleness is that ∀v, u ≥ 0 : QA(v) · v−PA(v) ≥ QA(u) · v−PA(u)
due to that the right-hand side of the inequality is the expression Surγ(A, v,aOpt(A, u,γ)) (again,
by the definition of aOpt). Thus, the mechanism MA is indeed feasible.

The expected revenue of MA is Γ−1E [SRevγ,γ(A, V )], where Γ :=
∑T

t=1 γ
t−1. From [8], we

know that the expected revenue of any feasible mechanism for the considered environment (single
object, one agent) cannot be greater than p∗D(1− FD(p∗D)), where FD is the CDF of our valuation
variable V ∼ D and p∗D is the Myeson price, i.e., the price that maximizes the functional HD(p) :=

1Details on feasible mechanisms in [8, Sec.3].
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pP[V ≥ p] = p(1 − FD(p))2. Therefore, bringing these together, we obtain the following upper
bound:

E [SRevγ,γ(A, V )] ≤ Γp∗(1− FD(p∗)) ∀A ∈ AT . (A.2)

A.1.2 Detailed proof of “big deal” optimality

Recall the “big deal” algorithm, which is defined in Sec.3. Here we prove its optimality in details.

Proposition A.2. Let γS,γB be discounts. The ESR of Abd is equal to ΓBHD(p∗D).

Proof. First, note that the buyer has no incentive to lie after the first round since the algorithm
prices pt, t ≥ 2, do not depend on his decisions at, t ≥ 2. Hence, possible candidates for optimal
strategies are 0∞, 1∞, 01∞, and 10∞. It easy to see that the optimal buyer strategy in response to
Abd is 1∞ for the case v > p∗D and 0∞ for v < p∗D. Indeed, if the buyer accepts p1 := Abd(e) = ΓBp∗D,
further offers are for free goods that will be accepted. If the buyer rejects p1, then, for any strategy
a ∈ ST s.t. a1 = 0, we have

Sa(v) ≤ (ΓB − 1)(v − p∗) < ΓB(v − p∗) = S1∞(v). (A.3)

Thus, if S1∞(v) > 0 = S0∞(v), then 1∞ is optimal strategy, and, if S1∞(v) < 0, then Eq. (A.3)
implies optimality of 0∞. Hence, the expected strategic revenue of Abd is

E
[
SRevγS,γB(Abd, V )

]
= P[p∗D ≤ V ] · ΓB · p∗D = HD(p∗D)ΓB = E

[
SRevγB,γB(A∗1, V )

]
. (A.4)

Bringing Proposition A.2 together with the bound Eq.(2), obtained in Sec.3, we obtain the
optimality of Abd for the case γS ≤ γB. Note that all the above text applies to arbitrary discounts,
not just the geometric ones.

A.2 Missed Proofs from Section 4

Definition A.1. For a discount sequence γ = {γt}Tt=1, we define the discount rate sequence ν(γ) :=
{νt(γ)}T−1

t=1 as the sequence of the ratios of consecutive components of γ: νt(γ) := γt+1/γt

Remark A.3. Let γ1 = {γ1
t }Tt=1 and γ2 = {γ2

t }Tt=1 be some discounts sequences. Then, the
condition ν(γ2) ≥ ν(γ1) is equivalent to the one that the sequence {γ2

t /γ
1
t }Tt=1 is non-decreasing.

The proof of this statement straightforwardly follows from Definition A.1.

Remark A.4. All the proofs are provided for arbitrary discounts that satisfy ν(γS) ≥ ν(γB).
Hence, they hold also for geometrical discounts with γS ≥ γB, because they are particular cases of
discounts that satisfy ν(γS) ≥ ν(γB).

Remark A.5. Note that both an optimal buyer strategy and an optimal algorithm will remain
optimal, if the discount γB or γS is multiplied by any positive constant. Hence, from here on in our
paper we assume w.l.o.g. that γB1 = 1 and γS1 = 1.

2This price can be find by the equation p=(1−FD(p))/fD(p), when D has continuous probability density fD.
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A.2.1 Full proof of Proposition 1

The right and left children of a node n are denoted by r(n) and l(n) respectively. The left (right)
subtrees rooted at the node l(n) (r(n) resp.) are denoted by L(n) (R(n) resp.). The operators l(·)
and r(·) sequentially applied s times to a node n are denoted by ls(n) and rs(n) respectively, s ∈ N.

Proof of Proposition 1. For a given algorithm and a given discount γS, we will use the notation
ra := RevγS(A,a) for any a ∈ ST (similarly to Remark B.1, but indicating explicitly the seller’s
discount). The main idea of the proof consists in the following technique. We will consider all
strategies a s.t. Sa(v) < S(v) ∀v ∈ [0; +∞) (referred to as non-active), and, consequently, for
each of them denoted by a, we apply the following procedure of modifying the source algorithm A:
define a transformation A′ that does not change Sb for b ∈ ST \ {a}, moves Sa to the left until it
is tangent to S in some v ∈ [0; +∞), decreases ra, and does not decrease rb for b ∈ ST \{a}. That
will imply that the expected strategic revenue of the transformed algorithm A′ is no lower than the
one of the source algorithm A. In this way, we will (one-by-one) make all strategies active.

Let us consider the set of all non-active strategies. If it is empty, then A ∈ ÃT (γB) and Eq. (3)
from Sec. 4 holds. Otherwise, note that the “always-reject” strategy a = 0T is always active,
since Sa(0) = 0 = S(0). Hence, one can order all non-active strategies by “the last 1 index”
t1(a) = max{t| at = 1}.

We take a non-active strategy a with the smallest t1(a), denoting t1 := t1(a) and the node
n := a1a2 . . . at1−1, and construct a new algorithm A′ based on the source one A in the following
way. Set A′ = A and transform the prices A′(n),A′(r(n)), . . . ,A′(lT−t1−1(r(n))) as follows:

1. decrease A′(n) until the function Sa is tangent to the function S in some v ∈ [0; +∞);

2. if t1 < T , increase A′(lj(r(n))) for j = 0, . . . , T − t1 − 1 in such a way that

γBt1 · A
′(n) + γBt1+j+1 · A′(lj(r(n))) = const. (A.5)

Since we chosen a with the smallest t1(a) among non-active strategies the price A′(n) obtained
in the step 1 is non-negative (and, thus, this step is correct). Indeed, substitute the t1-th component
in a by 0 and denote the obtained strategy by b. Due to selection of a, the strategy b is active.
Therefore, assume A′(n) is decreased to 0, then the function Sa(v) becomes equal to Sb(v) + γBt1v
by the definition. Since Sb is tangent to S, the increase of its slope by γBt1 will result in intersection
with S. This means that Sa will be tangent to S before A′(n) reaches 0.

In Fig.A.1, we visually show how our tuning technique works for an example.
Now let us prove that the transformation A′ satisfies properties announced at the beginning of

the proof. Let b ∈ ST \ {a}. The step 2 implies that the transformation does not change Sb. For
a strategy b that does not come through the node r(n), the revenue rb remains the same, since
the algorithm prices that contribute to rb are not altered. For b 6= a that comes through the node
r(n), let us prove that rb can only increase. Since b 6= a there is a round t = t1 + j+1, j ≥ 0, where
bt = 1. Let j s.t. this t is the first round of acceptance after reaching the node r(n), and let us
denote the node where this acceptance take place by m := lj(r(n)). Therefore, one can write the fol-

lowing expression for the increment of rb: γSt1

(
A′(n)−A(n) + (γSt1+j+1/γ

S
t1)
(
A′(m)−A(m)

))
= =

γSt1

(
−(γBt1+j+1/γ

B
t1)
(
A′(m)−A(m)

)
+ (γSt1+j+1/γ

S
t1)
(
A′(m)−A(m)

))
≥ 0, where we used Eq. (A.5)

to obtain the first equation and used ν(γB) ≤ ν(γS) to obtain the last inequality. So, rb can only
increase for b ∈ ST \ {a}.

Finally, since Sa becomes tangent to S, which is convex (see Remark B.1), the function Sa either
equals to S exactly in one point v ∈ [0; +∞) or coincides with Sb for some b ∈ ST \ {a}. The
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Figure A.1: A visual example of how our tuning technique from the proof of Proposition 1 works. Here
T = 2, γS = 3.0 > γB = 0.7. Initial algorithm is not active: its prices are A(e) = 0.5,A(0) = 0.2,A(1) = 0.6.
Tuned algorithm has prices Â(e) = 0.374, Â(0) = 0.2, Â(1) = 0.78 and is active.

latter case is impossible since a function Sb have different slope for different strategy b, because of
regularity of γB. Therefore, the optimal strategy does not change for the buyer with any valuation
v except the only one s.t. Sa(v) = S(v), and the strategic revenue expectation is not affected by
the decrease of ra (due to continuity of the valuation distribution D). Thus, E

[
SRevγS,γB(A, V )

]
≤

E
[
SRevγS,γB(A′, V )

]
and the number of non-active strategies of A′ is reduced by one w.r.t. A. After

that, we repeatedly apply the above described transformation to A′ until the resulted algorithm
has no non-active strategies. In this way, we get Ã ∈ ÃT that satisfies Eq. (A.5).

A.2.2 Proof of linear mapping of CA algorithms onto ∆k (Lemma A.1)

Let us remind the notations.
Our goal is to show that this class of algorithms ÃT can be linearly parametrized by the set

∆k := {v = {vj}kj=1 ∈ Rk| 0 ≤ v1 ≤ · · · ≤ vk}, where k := k(T ) := 2T − 1. In order to do this, first
of all, we introduce several matrix and vector notations. First, from here on in our paper we fix an
order of nodes NT = {n1, . . . , nk}3, and, given this, we represent an algorithm A ∈ AT as the vector

3E.g., a consistent order: the nodes from the left subtree come before the root node e, and the ones from the right
subtree come after the root e; then we recursively repeat this rule for the left and right subtrees.
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of its prices A = (A(n1), . . . ,A(nk)); note we use the same notation both for the algorithm and its
vector representation, since the object type could be easily restored from the context where it is
used. We also introduce the map p : ST × AT → RT , where p(a,A) is the vector of consecutively
offered prices by the algorithm A ∈ AT along the path a ∈ ST .

Second, given a regular discount γ, we introduce the notion of γ-dependent natural order of
the buyer strategies ST = {0, 1}T : a ≺γ b ⇔ γ · a < γ · b for any a,b ∈ ST . The important
property of this order consists in that the slope of the γ-discounted surplus function Sa is lower
than the one of Sb when a ≺γ b. Using this order, we index the strategies: ST = {a0, . . . ,ak};
note that the strategy 0T is always the first one a0, while the strategy 1T is the last one ak. Third,
given another discount γ ′, we introduce the payment vector r(γ ′,γ,A), whose j-th component is
rj(γ

′,γ,A) := γ ′ · p(aj ,A) for j = 1, . . . , k (note that we exclude the zero payment corresponded
to the zeroth strategy a0). We treat all vectors as vector-columns in our matrix operations.

Finally, we introduce the following k × k matrices:

• JT is a two-diagonal matrix with 1 on the diagonal and −1 under the diagonal;

• ZT (γ) = diag(z1, . . . , zk), where with zj = (γ · aj − γ · aj−1)−1 for j = 1, . . . , k;

• KT (γ,γ ′) = ((κij))i,j=1,...,k, where κij = γ′ta
i
t if the path ai ∈ ST passes through the node

nj ∈ NT whose round is t4, and κ = 0, otherwise. Note that, by the definition, the i-th

component of the vector KT (γ,γ ′)A is equal to
∑T

t=1 γ
′
ta
i
tA(ai1 . . . a

i
t−1).

Lemma A.1. Let T ∈ N,γ be a regular discount, the strategies ST be naturally ordered by γ
(as above) and the matrix and vector notations be introduced as above. Then the set of CA (for
γ) algorithms ÃT (γ) (i.e., their vector representations) can be linearly mapped onto ∆k(T ) by the
matrix WT (γ) := ZT (γ)JTKT (γ,γ), which is correctly defined and is invertible.

Proof. First, by the definition of the matrix KT (γ,γ) and the vector A, we have that the payment
vector r(γ,γ,A) = KT (γ,γ)A. Second, let us denote the intersection point of the lines Saj and
Saj−1 by vj for j = 1, . . . , k and combine them in the vector v = (v1, . . . , vk). From the identities

γ · ajvj − rj(γ,γ,A) = Saj (vj) = Saj−1(vj) = γ · aj−1vj − rj(γ,γ,A), j = 1, . . . , k,

by simple arithmetic calculations, one can show that these intersection points can be expressed via
the payment vector in the following matrix form: v = ZT (γ)JT r(γ,γ,A). Combining with the
previous finding, we have that v = ZT (γ)JTKT (γ,γ)A. So, we obtain in this way the linear map
wγ(A) := WT (γ)A : AT → Rk that depends on γ.

Now we prove that wγ(A) ∈ ∆k(T ) ⇔ A ∈ ÃT (γ). We make via two following inductions.

• Let A ∈ ÃT (γ) and v = wγ(A). Then, for j = 1, . . . , k, vj ≥ 0 (the basis of the induction).
Indeed, assume that this condition is violated for some j, then Saj−1(v) < Saj (v) ∀v > vj ,
but vj < 0, and, thus aj−1 is not active, which is a contradiction. So, let us set v0 := 0 (for
the notation simplicity); assume, for s ≥ 0, 0 ≤ v1 ≤ · · · ≤ vs and vs ≤ vs+1, . . . , vk; and
prove that vs+1 ≤ vs+2, . . . , vk (the inductive step).

Assume the contrary: for some j > s+ 1 we have vs ≤ vj < vs+1. Then Sas(vj) > Sas+1(vj)
since Sas(vs+1) = Sas+1(vs+1) and the slope of Sas is less than that of Sas+1 . If Saj (vj) ≥ Sas(vj),
we have Sas+1(v) < Saj−1(v) for v > vj and Sas+1(v) < Sas(v) for v ≤ vj , which means that
as+1 is not active. Otherwise, we have Saj−1(v) < Sas(v) for v ≤ vj and Saj−1(v) < Saj (v)
for v > vj , which means that aj−1 is not active. Both cases infer contradiction, thus, the
induction holds.

4In other words, the node nj can be represented in the string notation as ai1 . . . a
i
t−1 for some 1 ≤ t ≤ T .
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• Conversely, let v = wγ(A) ∈ ∆k(T ). Then Saj (0) ≤ Saj−1(0) for all j > 0 (and, thus, Sa0 is
active). Indeed, assume that this condition is violated for some j, then vj < 0, contradiction
(the basis of the induction). So, let us set v0 := 0 (for the notation simplicity); assume, for
s ≥ 0, that

Saj , j ≤ s, are active , Saj (vs) ≤ Saj−1(vs) for j > s and Saj (vs) ≤ Sas(vs) for j < s;

and prove that

Sas+1 is active, Saj (vs+1) ≤ Saj−1(vs+1)forj > s+1 and Saj (vs+1) ≤ Sas+1(vs+1)forj < s+1;

i.e., (the inductive step).

The second condition is due to vj ≥ vs+1 for j > s + 1. The third condition for j = s
follows from the definition of vs+1 and the same for j < s is due to the fact that Saj (vs+1) ≤
Sas(vs+1)(= Sas+1(vs+1)), since the slope of the function Saj is less than the slope of the
function Sas and Saj (vs) ≤ Sas(vs). The second condition together with the third conditions
gives the activeness of Sas+1 . Thus, the induction holds.

The matrices ZT , JT , and KT are invertible5, thus, both the matrix WT and the map wγ :
AT → Rk are invertible as well. Hence, ÃT (γ) is linearly mapped onto ∆k(T ) by wγ .

A.2.3 Proof of Proposition 2

Proof of Proposition 2. Let us take the transformation wγB defined by wγB(A) := WT (γB)A (as in
Lemma A.1 in Appendix A.2.2) and v = wγB(A). Recall that, in this case, the j-th component
of v is the intersection point of the straight-line functions Saj and Saj−1 . It is evident that the
strategic buyer chooses the strategy aj , when his valuation v is in the segment [vj ; vj+1) for j ≥ 0
(to be formally correct, we set v0 := 0, vk+1 := +∞). Thus, the expected strategic revenue equals
to

E
[
SRevγS,γB(A, V )

]
=

k∑
j=1

(FD(vj+1)−FD(vj))(γ
S·p(aj ,A)) =

k∑
j=1

(FD(vj+1)−FD(vj))rj(γ
S,γB,A),

see the definitions of p and r before the proof of Lemma A.1. (Appendix A.2.2). Let us denote
by dF (v) the k-dimensional vector with FD(vj+1)−FD(vj) in the j-th component, then, using the
identity dF (v) = Jᵀ

T (1− FD(v)), we have

E
[
SRevγS,γB(A, V )

]
= dF (v)ᵀr(γS,γB,A) = (1− FD(v))ᵀJT r(γS,γB,A).

From the definition of the matrix KT , one can obtain r(γS,γB,A) = KT (γB,γS)A (as in the proof of
Lemma A.1. (Appendix A.2.2)). Finally, we have A = WT (γB)−1v = KT (γB,γB)−1J−1

T ZT (γB)−1v
due to v = WT (γB)A and invertibility of wγB .

So, let us combine all together:

E
[
SRevγS,γB(A, V )

]
= (1− FD(v))ᵀJT ·KT (γB,γS)KT (γB,γB)−1J−1

T ZT (γB)−1v,

where the matrix product between (1− FD(v))ᵀ and v is exactly the matrix ΞT (γS,γB).

5This fact is trivial for matrices ZT and JT . To show this for KT , just apply the induction. By rearranging of
rows and columns of KT (it does not affect the property of invertibility) one can obtain a block diagonal matrix with
two blocks. Each of these blocks is based on a matrix with the form like KT−1.
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A.2.4 The function HD as a special case of the functional LD,γB,γB

Let us consider the case of equal discounts, γS = γB, then KT (γB,γS) = KT (γB,γB) and the matrix
ΞT (γS,γB) = JT ·KT (γB,γS)KT (γB,γB)−1J−1

T ZT (γB)−1 becomes equal just to the diagonal matrix
ZT (γB)−1 = diag(α1, . . . , αk), αj=γB · aj − γB · aj−1. Hence,

LD,γB,γB(v) = (1− FD(v))ᵀZT (γB)−1v =
∑k

j=1(1− FD(vj))αjvj =
∑k

j=1HD(vj)αj .

Since αj > 0 (due to the dependence of the order of {aj}j on γB) and HD(v) ≤ HD(p∗D), ∀v, (see
Sec. 3) we infer that this sum above is maximal when v1 = . . . = vk = p∗D. Thus, in the case
of equal discounts, the optimization of the functional LD,γB,γB reduces to the maximization of the
function HD used to find Myerson’s price p∗D. This is expected and additionally highlights the strong
similarity of our optimization functional for the dynamic pricing to the one for the static pricing.

A.3 Missed Proofs from Section 5

A.3.1 Proof of Proposition 3

Proof of Proposition 3. The left inequality is trivial, since Aτ∞ ⊂ A∞. The second obvious ob-
servation is that SRevγS,γB(A, v) for A ∈ Aτ∞ is equal to SRevγS,τ ,γB,τ (Aτ , v), where γS,τ =
(γS1 , . . . , γ

S
τ−1,

∑∞
t=τ γ

S
t ),γB,τ = (γB1 , . . . , γ

B
τ−1,

∑∞
t=τ γ

B
t ) andAτ ∈ Aτ is a restriction ofA on {n | |n| ≤

τ − 1}. Thus,
max
A∈Aτ∞

E
[
SRevγS,γB(A, V )

]
= max
A∈Aτ

E
[
SRevγS,τ ,γB,τ (A, V )

]
.

The following step of the proof is formulated as a lemma:

Lemma A.2. Let γS,γS,1,γS,2 be discounts such that γS = γS,1 + γS,2. 6 In this case

max
A∈A

E
[
SRevγS,γB(A, V )

]
≤ max
A∈A

E
[
SRevγS,1,γB(A, V )

]
+ max
A∈A

E
[
SRevγS,2,γB(A, V )

]
We omit the proof, since it is trivial. Apply Lemma A.2 to the sellers discount divided into two

parts as follows: γS = γS · I{t>τ} + γS · I{t≤τ}:

max
A∈A

E
[
SRevγS,γB(A, V )

]
≤ max
A∈A

E
[
SRevγS·I{t≤τ},γB(A, V )

]
+ max
A∈A

E
[
SRevγS·I{t>τ},γB(A, V )

]
The left term of the right-hand side of the inequality is not greater than maxA∈Aτ E

[
SRevγS,τ ,γB,τ (A, V )

]
,

since γS,τ ≥ γS · I{t≤τ} for t ≤ τ and for t > τ the discount γS · I{t≤τ} is zero. The right term is
not greater than ΓS

τE [V ]. This fact can be proved in following several steps:

1. Following identitiy can be verifyed by the direct application of ν(γ) definition:

γSτ+i = γBτ+i ·
ν(γS)τ+i−1

ν(γB)τ+i−1
· · · · · ν(γS)τ+1

ν(γB)τ+1
· γ

S
τ

γBτ

2. Define ci := ν(γS)τ+i−1

ν(γB)τ+i−1
· · · · · ν(γS)τ+1

ν(γB)τ+1
· γ

S
τ
γBτ

for i ≥ 1, thus, ci are increasing and

γSτ+i = ci · γBτ+i

6Here we allow discounts to be zero, but this does not affect the result.
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3. In this case

γS · I{t>τ} = c1γ
B · I{t>τ} + (c2 − c1)γB · I{t>τ+1} + (c3 − c2)γB · I{t>τ+2}

4. Consider a case when the discount of the seller is c · γB · I{t>τ+i} for some c > 0. Let A ∈ A
and a = {at}∞t=1 be some optimal strategy for a valuation v > 0. Then

S(v) =

∞∑
t=1

atγ
B
t (v−A(a1:t−1)) ≥

τ+i∑
t=1

atγ
B
t (v−A(a1:t−1))⇒

∞∑
t=τ+i+1

atγ
B
t v ≥

∞∑
t=τ+i+1

atγ
B
tA(a1:t−1)

But the right part of the last inequality is 1
cSRevcγB·I{t>τ+i},γB(A, v), and, thus,

cΓB
τ+iv ≥ SRevcγB·I{t>τ+i},γB(A, v)⇒ cΓB

τ+iE [V ] ≥ max
A∈A

E
[
SRevcγB·I{t>τ+i},γB(A, V )

]
5. Finally, apply Lemma A.2 and the identity from our third step and get (for the notation

simplicity c0 := 0):

max
A∈A

E
[
SRevγS·I{t>τ},γB(A, V )

]
≤
∞∑
i=1

(ci − ci−1)ΓB
τ+i−1E [V ] = ΓS

τE [V ] Q.E.D.

A.4 Existence of an optimal strategy a ∈ ST

Assume we are given an algorithm A ∈ AT , a correct discount sequence γ = {γt}Tt=1 and a private
valuation v ∈ [0; +∞) (they are fixed). In this case, for the function F : ST → R∪{−∞}, F (a) =
Sa(v) the following proposition holds.

Proposition A.3. There exists a strategy a∗ ∈ ST such that ∀a ∈ ST : F (a∗) ≥ F (a).

Proof of Proposition A.3. The proof of the case T < ∞ is trivial: we just need to choose the
maximum of a finite set of numbers. Thus, let us consider T =∞.

Denote M = supa∈S∞ Sa(v) and S0 = S∞. Let k ≥ 0 be a non-negative integer, then as-
sume that a∗1, . . . , a

∗
k ∈ {0, 1} and Sk = {a = {at}∞t=1 ∈ S| a1 . . . ak = a∗1 . . . a

∗
k} such that

supa∈Sk Sa(v) = M defined (if such conditions holds we call the tuple (a∗1, . . . , a
∗
k,S

k) correct).
We define such a∗k+1 that the tuple (a∗1, . . . , a

∗
k, a
∗
k+1,S

k+1) is correct.
{a = {at}∞t=1 ∈ S∞| a1 . . . akak+1 = a∗1 . . . a

∗
k0} and {a = {at}∞t=1 ∈ S∞| a1 . . . akak+1 =

a∗1 . . . a
∗
k1} are denoted by S0,k and S1,k respectively, similarly supa∈S0,k Sa(v) and supa∈S1,k Sa(v)

are denoted byM0 andM1. Since Sk = S0,k∪S1,k, the following identity holdsM = max{M0,M1}.
If M = M0 we define a∗k+1 = 0 and Sk+1 = S0,k, otherwise a∗k+1 = 1 and Sk+1 = S1,k. Thus, by

the definition of a∗k+1 and Sk+1 the tuple (a∗1, . . . , a
∗
k, a
∗
k+1,S

k+1) is correct.
Taking into account that for k = 0 the tuple (S0) is correct, we obtain uniquely defined sequence

a∗ = {a∗t }∞t=1 such that for all integer k ≥ 0 the tuple (a∗1, . . . , a
∗
k,S

k) for Sk = {a = {at}∞t=1 ∈
S∞| a1 . . . ak = a∗1 . . . a

∗
k} is correct.

Before finally proving Proposition 1 we prove an auxillary statement:

∀τ ∈ N
∑
t≥τ

γta
∗
t (v − pt) ≥ 0,

9



where {pt}∞t=1 is the sequence of prices set by the algorithm A in response to a∗. Indeed, for an
arbitrary τ ∈ N assume

∑
t≥τ γta

∗
t (v − pt) = −δ < 0. In this case, since the series

∑
t≥τ γt and∑

t≥τ γta
∗
t (v−pt) converge, there exists such integer τ0 ≥ τ that

∑
t≥τ0 γtv <

δ
3 and

∑
t≥τ0 γta

∗
t (v−

pt) > − δ
2 , which impllies∑

τ0≥t≥τ
γta
∗
t (v − pt) =

∑
t≥τ

γta
∗
t (v − pt)−

∑
t>τ0

γta
∗
t (v − pt) < −δ +

δ

2
= −δ

2

Thus, for an arbitrary strategy a ∈ Sτ0 (denote prices corresponding to a by qt : ∀t ≤ τ0 + 1 : qt =
pt) we gain for b = a∗1 . . . a

∗
τ0
∞

Sa(v) =
∑
t≤τ

γta
∗
t (v − pt) +

∑
τ<t≤τ0

γta
∗
t (v − pt) +

∑
τ0<t

γtat(v − qt) < Sb(v)− δ

2
+
δ

3
< M − δ

6
,

which implies supa∈Sτ0−1 Sa(v) ≤ M − δ
6 < M . This contradicts to the correctness of the tuple

(a∗1, . . . , a
∗
τ0−1,S

τ0−1).
Now assume ∀a ∈ S∞ Sa(v) < M , hence, Sa∗(v) < M and there exists such strategy a ∈ S∞

that M > Sa(v) > Sa∗(v) by the definition of M . Define ε = Sa(v) − Sa∗(v). Consider an
integer τ1 ≥ 0 such that

∑
t>τ1

γtv < ε (τ1 exists, since the series
∑∞

t=1 γt converges). By the
definition of a∗ and Sτ1 there exists such strategy b = {bt}∞t=1 ∈ Sτ1 that Sb(v) > Sa(v) (and
b1 . . . bτ1 = a∗1 . . . a

∗
τ1). Hence, denoting the price sequence set by A in response to b by {p1

t }∞t=1

(p1
1 . . . p

1
τ1+1 = p1 . . . pτ1+1) and using that

∑
t>τ1

γta
∗
t (v − pt) ≥ 0 we gain

ε < Sb(v)− Sa∗(v) =
∑
t>τ1

γtbt(v − p1
t )−

∑
t>τ1

γta
∗
t (v − pt) < ε− 0 = ε,

which is the contradiction. Thus, the desired result ∃a ∈ S Sa(v) = M is obtained.

An optimal strategy can be not unique here though, and, therefore, the strategic revenue (see
Sec.2) is not always defined. This is not a problem for us due to Corollary B.1: the optimal strategy
is unique for almost all v, and since we have continuous distribution, the ESR (expected strategic
revenue) is not affected by the indefiniteness of SRev on the set of zero measure.

A.5 Existence of a global maximum point of HD(v)

Assume the non-negative random variable V ∼ D has a finite expectation, and the distribution
function G(v) = PV∼D[v < V ] is continuous.

Proposition A.4. In this case, the function HD(v) = G(v) · v has a global maxima point.

Proof of Proposition A.4. We denote the probability measure function by µV : B(R)→ [0; 1], µV (A) =
P[V ∈ A], since we already use P in traditional manner (e.g. P[V ≥ 0]). Here B(R) is the Borel
Algebra for R with the standard topology set. In this terms, the function HD can be expressed as
follows

HD(v̄) = G(v̄) · v̄ = P[V > v̄] · v̄ = v̄ ·
∫

(v̄;+∞)
1dµV ,

which can be upper bound by
∫

(v̄;+∞) vdµV , where
∫
A f(v)dµV denotes the Lebegue’s integral of

a function f on a set A w.r.t. the probability measure µV . Due to the absolute continuity of the
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Lebesgue integral (see Appendix H.1), the fact that µV ((v̄; +∞)) −−−→
v̄→∞

0 holds, and, since V has

a finite expectation, we obtain that
∫

(v̄;+∞) vdµV −−−→v̄→∞
0 and, thus,

HD(v̄) ≤
∫

(v̄;+∞)
vdµV −−−→

v̄→∞
0⇒ HD(v̄) −−−→

v̄→∞
0.

Hence, for an arbitrary picked point v0 > 0 such that HD(v0) > 0 there exists such v1 > v0 that
∀v > v1 HD(v) < HD(v0), thus, if HD has a maxima point v∗ in the segment [0; v1], then v∗ is
the global maxima point, but HD is a continuous function, hence, it has a maxima point in any
segment, thus, the proposition is proved.

B Alternative proof for the case γS = γB

Let γ := γS = γB all throughout this section. The proof holds for any discounts, not only geometric
ones. The game horizon T may be both finite and infinite. For simplicity, we use the following
short form notations: SRevγ := SRevγ,γ . First of all, we summarize some useful properties of
surplus and revenue as functions of the valuation v.

Remark B.1. Let a pricing algorithm A ∈ AT and the discount sequence γ be given. Denote
Sa(v) := Surγ(A, v,a) and S(v) := Surγ(A, v,aOpt(A, v,γ)). These functions satisfy following
properties:

1. for each strategy a ∈ ST , the surplus Sa w.r.t. this strategy is a linear function of v of the
form Sa(v) = qav−ra, where qa :=

∑T
t=1 γtat(= γ ·a)7 is the discounted quantity of purchased

goods and ra is the discounted revenue of the seller (i.e., ra = Revγ(A,a));

2. the strategic (optimal) surplus S is convex as a function of v, because it is the maximum of
a set of linear functions: S(v) = maxa∈ST Sa(v) (by definition);

3. the strategic surplus S(v) is non-negative for any v ≥ 0 since, for the strategy a = 0T , we
have Sa(v) = 0, which implies in turn that S(v) ≥ Sa(v) = 0, ∀v ≥ 0;

4. the derivative S′(v) exists for almost all v ∈ [0; +∞) (i.e., it does not exist on a set of Lebesgue
measure zero), because S(v) is convex and is thus absolutely continuous.

Lemma B.1. For any pricing algorithm A ∈ AT , the strategic revenue R(v) := SRevγ(A, v) is
increasing on the valuation domain [0; +∞), it starts from zero (i.e., R(0) = 0), and the random
variable R(V ) has thus finite non-negative expectation (i.e., 0 ≤ E [R(V )] < +∞).

Proof. Proof of that R(v) is increasing. For any two valuations v1 and v2 ∈ [0; +∞) s.t. v1 < v2,

and two corresponding optimal strategies a1 and a2 ∈ ST , i.e., such that S(vj) = Saj (vj), j = 1, 2,
(using the notations from Remark B.1), we have

Sa1(v1) ≥ Sa2(v1) and Sa2(v2) ≥ Sa1(v2).

Therefore, since Saj , j = 1, 2, are linear, they either coincide (then ra1 = ra2), or have an intersection
point w in [v1, v2]⊂ [0; +∞). In the latter case, one gets Sa1(v)≥Sa2(v) ∀v ∈ [0, w], which implies
−ra1 ≥ −ra2 when v = 0. Hence, we obtain R(v2) = ra2 ≥ ra1 = R(v1) for any v2 > v1 ≥ 0.

7Remember Def.2 from Sec.4: a · b is for the scalar product.
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Proof of R(0) = 0.

Now we also note that ∀v ≥ 0 R(v) ≥ 0, since R(v) =
∑T

t=1 γtatpt (as a sum of non-negative
terms). By the definition S(0) = −R(0) and, thus, R(0) = −S(0) ≤ 0. Therefore, R(0) = 0.

Proof of 0 ≤ E [R(V )] < +∞.

Now consider v ≥ 0 and let a = {at}Tt=1 be the optimal strategy for v. Hence,

0 ≤ S(v) =

T∑
t=1

γtat(v − pt) ≤ Γv −R(v)⇒ R(v) ≤ Γv

Thus,

∀v ≥ 0 : 0 ≤ R(v) ≤ Γv ⇒ 0 ≤ E [R(V )] ≤ Γ · E [V ]

Similarly to the optimal surplus function S(·) and the strategic revenue one R(·), we intro-
duce the strategic purchased quantity Q(·) as a map from the valuation domain, i.e., Q(v) :=∑T

t=1 γta
O
t (v), where {aOt (v)}∞t=1 = aOpt(A, v,γ). Note that S(v) = Q(v)v − R(v), for each

v ∈ [0,+∞).

Lemma B.2. Assume that, for a given v ≥ 0, the derivative S′(v) exists. Then, Q(v) is uniquely
defined and equals to S′(v) for any optimal strategy a of the buyer that holds the valuation v.

Proof. Consider an arbitrary optimal strategy a for the valuation v, i.e., s.t. S(v) = Sa(v). Since
Sa(w) = qaw − ra for any w ≥ 0 and Sa(v) = S(v), we can write Sa(v + δ) = S(v) + qaδ and by
the definition of the derivative S(v + δ) = S(v) + S′(v)δ + oδ→0(δ), thus Sa(v + δ) − S(v + δ) =
(qa − S′(v))δ + oδ→0(δ), which should be not greater than zero for all possible δ since S is convex.
Hence we get qa = S′, because otherwise (qa−S′(v))δ+oδ→0(δ) will take both positive and negative
values in a neighborhood of 0. Finally, remind that Q(v) = qa since a is optimal for v.

Lemma B.2 together with the identity SRevγ(A, v)=R(v)=Q(v)v−S(v) gives us:

Corollary B.1. For almost all v ∈ [0; +∞), the strategic revenue SRevγ(A, v) is uniquely defined
for any optimal strategy a of the buyer that holds the valuation v.

Remark B.2. Function Q(v) is defined almost everywhere and non-decreasing on its domain, since
Q′(v) = S′′(v), which also defined almost everywhere and not less than 0, since S is convex on its
domain8. Also by the definition Q(v) ≤ Γ and, thus, Q(+∞) is finite.

B.1 Optimality of the constant algorithm with the Myerson price

We use following notations for the distribution functions: F (v) := P[V ≤ v] and G(v) := 1− F (v).

Lemma B.3. For the mappings S(v), R(v), and Q(v) the following identity holds:

E [R(V )] =

∫
[0;+∞)

G(v)Q(v)dv +

∫
[0;+∞)

G(v)vdQ(v)−
∫

[0;+∞)

G(v)dS(v).

8Note that this fact can be proved directly like in Lemma B.1.
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Proof. First we note, that due to the absolute continuity of the Lebesgue integral (see Appendix
H.1) and the fact that R(V ) has a finite expectation we can write E

[
R(V )I[0;v̄](V )

]
−−−−→
v̄→+∞

E [R(V )]. Rewrite E
[
R(V )I[0;v̄](V )

]
using Lebesgue-Stieltjes integral w.r.t. the fact that F (v) =

1−G(v):

E
[
R(V )I[0;v̄](V )

]
=

∫
[0;v̄]

R(v)dF (v) = −
∫

[0;v̄]

R(v)dG(v) (B.1)

For the latter integral we use the integration by parts formula (which holds since G is continuous
on it’s domain and R is non-decreasing on it’s domain) and gain

−
∫

[0;v̄]

R(v)dG(v) = −G(v)R(v)
∣∣∣v̄
0

+

∫
[0;v̄]

G(v)dR(v) = (B.2)

−G(v)R(v)
∣∣∣v̄
0

+

∫
[0;v̄]

G(v)d(Q(v) · v)−
∫

[0;v̄]

G(v)dS(v) (B.3)

Since the function G is continuous on [0; v̄], the Riemann-Stieltjes integral
v̄∫
0

G(v)d(Q(v) · v)

is defined and equals to the corresponding Lebesgues-Stieltjes integral. For the Riemann-Stieltjes
integral for our conditions following identity holds

v̄∫
0

G(v)d(Q(v) · v) =

v̄∫
0

G(v)Q(v)dv +

v̄∫
0

G(v) · vdQ(v). (B.4)

Bringing together that R(0) = 0 (Lemma 1) and lim
v̄→+∞

R(v̄)G(v̄) = 0 (because

R(v̄)G(v̄) ≤
∫

(v̄;+∞)
R(v)dF (v) −−−−→

v̄→+∞
0,

which holds due to the absolute continuity of the Lebesgue integral), Eq. (B.1), Eq. (B.2) and
Eq. (B.4) (and taking the limits) we get

E [R(V )] = lim
v̄→+∞

E
[
R(V )I[0;v̄](V )

]
=

+∞∫
0

G(v)Q(v)dv +

+∞∫
0

G(v)vdQ(v)−
∫

[0;+∞)

G(v)dS(v).

Considering first two integrals in the latter expression as Lebesgue and Lebesgue-Stieltjes integrals
respectively, we obtain the desired result

Finally we prove the bound in Eq.(3) which we stated in Sec.3:

Theorem B.1. Assume the valuation V ∼ D. Then the following bound holds:

E [SRevγ,γ(A, V )] ≤ Γ ·HD(p∗D) ∀A ∈ AT . (B.5)

Proof. Consider an arbitrary algorithm A ∈ A and use the notations S, R, and Q introduced above.
From Lemma B.3, we have

E [R(V )] =

∫
[0;+∞)

G(v)Q(v)dv +

∫
[0;+∞)

G(v)vdQ(v)−
∫

[0;+∞)

G(v)dS(v) =

∫
[0;+∞)

G(v)vdQ(v), (B.6)
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where the latter identity of Eq. (B.6) holds due to the facts that S is absolutely continuous on its
domain (see Remark B.1), thus,

∫
[0;+∞)G(v)dS(v) =

∫
[0;+∞)G(v)S′(v)dv, and that S′(v) = Q(v)

almost everywhere (see Lemma B.2). By definition, we have HD(v) = G(v)v, ∀v ≥ 0, and, hence,
Eq. (B.6) implies that E [R(V )] =

∫
[0;+∞)HD(v)dQ(v) can be upper bound by the expression

HD(p∗D) ·
∫

[0;+∞)
1dQ(v) = HD(p∗D) · (Q(+∞)−Q(0)) ≤ HD(p∗D) · Γ, (B.7)

where HD(v) is bounded by its maximum HD(p∗D), the first identity is due to the fact that Q is
non-decreasing on v, and non-negative Q(v) is bounded by Γ for all v ≥ 0 (see Remark B.2). Thus,
the theorem is proved.

C Numerical solutions for finite games and different distributions
of V

C.1 The dimension reduction in the case of finite game with horizon T = 2

Let γB = {γt−1
B }2t=1 and γS = {γt−1

S }2t=1 for 0 < γB < γS < 1. Build the ΞT (γB,γS) matrix by the
definition:

ΞT (γB,γS) =

 γS 0 0
−(γS − γB) 1− γB 0

0 0 γS


Now we prove that L(v) = (1 − F (v))ᵀΞT (γB,γS)v always has a maximum on the hyperplane
v2 = v3.

Indeed, assume it’s not and consider a maximum point with coordinates v1, v2, v3 such that v2 <
v3. Consider two possible cases: (1− F (v3))v3 > (1− F (v2))v2 and (1− F (v3))v3 ≤ (1− F (v2))v2.

• (1− F (v3))v3 > (1− F (v2))v2 implies L(v1, v2, v3) < L(v1, v3, v3), since

L(v1, v3, v3)−L(v1, v2, v3) = −(γS−γB)(F (v2)−F (v3))v1+(1−γB)((1−F (v3))v3−(1−F (v2))v2),

where the left term is non-negative, since v3 > v2, and the right term is strictly positive by
the assumption. L(v1, v2, v3) < L(v1, v3, v3) contradicts to our assumption.

• (1− F (v3))v3 ≤ (1− F (v2))v2 implies L(v1, v2, v3) ≤ L(v1, v2, v2), since

L(v1, v2, v2)− L(v1, v2, v3) = γS((1− F (v2))v2 − (1− F (v3))v3) ≥ 0.

This also contradicts to our assumption.

Both possible cases infer contradiction, thus, our assumption is wrong. Q.E.D.

C.2 Experiments

In all our numerical experiments we have used:

• laptop MacBook Pro 13 (CPU: 2.7 GHz Intel Core i5; RAM: 16Gb)

• python’s library scipy
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C.2.1 The case of T = 2

The maximum of the 3-variate functional LD,γS,γB can be found in the hyperplane v2 = v3 (the
proof is provided in Appendix C.1). Thus, for T = 2 the maximization problem is reduced9 to a
2-variate optimization of the function L2 : ∆2 → R, where L2(v1, v2) = (1 − FD(v))ᵀΥ2(γS, γB)v,

v ∈ ∆2, and Υ2(γS, γB) =

(
γS 0

−(γS − γB) 1 + γS − γB

)
.

Note that, for the uniform distribution D = U [0; 1], FD(v) = v and the optimized functional
L2 becomes thus quadratic. Hence the problem can be solved by means of QP. We solve this
problem numerically using the Sequential Least Squares Programming method. So, for several
pairs of (γS, γB), we find the optimal algorithm A∗ and depict in Fig. C.1 both its prices A∗(n) for
all nodes n and its relative expected strategic revenue (w.r.t. A∗1). Namely, Fig. C.1(a) contains
results for γS = 0.8 and γB ∈ {0.01 + i · 0.005}148

i=0, while Fig. C.1(b) contains results for γB = 0.2
and γS ∈ {0.2 + i · 0.005}159

i=0.
First, at the bottom of Fig. C.1 we see that the optimal algorithm outperforms the baseline

optimal constant pricing for any observed pair of discounts. Second, the top part of Fig. C.1
demonstrates us that, for any pair of discounts, the optimal algorithm is a consistent pricing, i.e.,
the one which never sets prices lower (higher) than earlier accepted (rejected, resp.) ones [2]. In
fact, this property is theoretically guaranteed for the studied case; namely, it easily follows from
the relation between the optimal prices and the optimum v: A∗(0) = v1, A∗(e) = γBv1 + (1−γB)v2,
and A∗(1) = v3. Third, the obtained optimal algorithms are appeared to be continuous in γS and
γB. Moreover, if the distance between the discount rates γS and γB converges to 0, then the optimal
algorithm A∗ converges to the optimal constant one A∗1.
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Figure C.1: 2-round game. The prices A∗(0),A∗(e),A∗(1) and the relative expected strategic revenue
(w.r.t. A∗1) of the optimal algorithm A∗ for discount rates: (a) γS = 0.8 and various γB; (b) γB = 0.2 and
various γS.

9This case shows that even though the dimension of the problem can be reduced, it still could not be reduced to
a one-dimensional problem in general. The same we observe in the case of T = 3.
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C.2.2 The case of T = 3

In a similar way as it done for the previous case, the dimensionality of the optimization problem
can be lowered from 7 to 4, when γB < (

√
5− 1)/2, and to 5, when γB > (

√
5− 1)/210. The method

to solve the optimization problem and the set of (γS, γB) are the same as in the case of T = 2.
Fig. C.2 is arranged similarly to Fig. C.1.

Analogously to the case of T = 2, in Fig. C.2, we observe the superiority of the optimal algorithm
A∗ over the baseline A∗1 for any pair of discount rates, as well as convergence to A∗1 as |γS−γB| → 0
and the continuity of A∗ in γS and γB. But, in contrast to the case of T = 2, the optimal algorithm
may be non-consistent : the condition of consistency is violated by the reverse order of the prices
A∗(e) < A∗(01) for γB > ≈ 0.54 (which seen in Fig. C.2(a)), i.e., the seller offers a price larger
than the one at the first round if the buyer rejects the first price, but accepts the one at the second
round.

There is a lot of other interesting observations: e.g., pairs of equal prices when γB → 0 (see
Fig. C.1 and C.2); some specific area of pairs of (γS, γB) where algorithm prices becomes equal (see
Fig. C.2), etc. They are seen also in Sec.5, Fig.1 as well, and a thorough study of them is deferred
to future work.
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Figure C.2: 3-round game. The prices A∗(n), for nodes n ∈ N s.t. |n| ≤ 2, and relative expected strategic
revenue (w.r.t. A∗1) of the optimal algorithm A∗ for discounts: (a) γS = 0.8 and various γB; (b) γB = 0.2 and
various γS.

C.2.3 The case of T =∞: more details on observations

Several interesting facts, that reoccur for all distributions that we examined:

1. At the bottom of Fig. C.8, we see that the optimal τ -step algorithms A∗τ outperform the
baseline optimal constant pricing A∗1 for any observed pair of discounts. Moreover, Fig. C.8
demonstrates that the significant increase in revenue can be obtained even when the minimal
possible step aside from the constant pricing is made (τ = 2). For instance, the seller can
extract up to +20% revenue by just maximizing the functional Eq. (4) in the 3-dimensional

10The different cases are results of the change of the order of the values {γB ·a|a ∈ S} at the border point (
√

5−1)/2.
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space (since 2τ − 1 = 3 for τ = 2): e.g., the revenue improvement is larger than 20%
for γS = 0.9, γB = 0.2, larger than 16% for γS = 0.8, γB = 0.5, and larger than 10% for
γS = 0.8, γB = 0.55.

2. We see that the expected strategic revenue of A∗τ converges quite quickly to the optimal one
(which thus larger than the revenue of the baseline A∗1 as well). This observation constitutes
the empirical evidence of Prop. 3, which suggests that the convergence rate is equal to γS.

3. The top part of Fig. C.8 demonstrates us that an optimal algorithm may be non-consistent11:
e.g., the condition of consistency is violated by the reverse order of the prices A∗4(e) < A∗4(001)
for γB > ≈ 0.57 (which is seen in Fig. C.8(a)), i.e., the seller offers a price larger than the one
at the first round if the buyer rejects the first and second prices, but accepts the one at the
third round.

4. The obtained optimal algorithms are appeared to be continuous in γS and γB. Moreover, if
the distance between the discount rates γS and γB converges to 0, then the optimal algorithm
A∗ converges to the optimal constant one A∗1 (what experimentally supports that HD is a
special case of LD,γS,γB).

5. There is a lot of other interesting observations (see Fig. C.8): pairs of equal prices when
γB→ 0; some specific area of pairs of (γS, γB) where algorithm prices becomes equal; etc. A
thorough study of them is left for future work.

Overall, we conclude that learning of prices even in several starting rounds allow to extract
revenue significantly larger than the one of optimal static pricing.

C.2.4 Different distributions

Here we provide plots for V ∼ β(4, 2), V ∼ β(2, 4), and V distributed with the density 1−e−x
1−e−1 I0≤x≤1

in different special cases. Discounts are taken identically to those from Appendices C.2.1 and C.2.2
(as well as grids for γB and γS). Figures descriptions are given in the following list:

1. Figure C.3: 2-round game for V ∼ β(4, 2).

2. Figure C.4: 2-round game for V ∼ β(2, 4).

3. Figure C.5: 3-round game for V ∼ β(4, 2).

4. Figure C.6: 3-round game for V ∼ β(2, 4).

5. Figure C.7: infinite game for V distributed with the density 1−e−x
1−e−1 I0≤x≤1, which is a density

of a random variable ξ ∼ Exp(1) conditioned by 0 ≤ ξ ≤ 1.

6. Figure C.8: infinite game for V ∼ U [0, 1] (uniform distribution).

11A consistent algorithm never sets prices lower (higher) than earlier accepted (rejected, resp.) ones [2, 3, 4, 5].
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Figure C.3: 2-round game, V ∼ β(4, 2). The prices A∗(0),A∗(e),A∗(1) and the relative expected strategic
revenue (w.r.t. A∗1) of the optimal algorithm A∗ for discount rates: (a) γS = 0.8 and various γB; (b) γB = 0.2
and various γS.
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Figure C.4: 2-round game, V ∼ β(2, 4). The prices A∗(0),A∗(e),A∗(1) and the relative expected strategic
revenue (w.r.t. A∗1) of the optimal algorithm A∗ for discount rates: (a) γS = 0.8 and various γB; (b) γB = 0.2
and various γS.
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Figure C.5: 3-round game, V ∼ β(4, 2). The prices A∗(n), for nodes n ∈ N s.t. |n| ≤ 2, and relative
expected strategic revenue (w.r.t. A∗1) of the optimal algorithm A∗ for discounts: (a) γS = 0.8 and various
γB; (b) γB = 0.2 and various γS.
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Figure C.6: 3-round game, V ∼ β(2, 4). The prices A∗(n), for nodes n ∈ N s.t. |n| ≤ 2, and relative
expected strategic revenue (w.r.t. A∗1) of the optimal algorithm A∗ for discounts: (a) γS = 0.8 and various
γB; (b) γB = 0.2 and various γS.
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Figure C.7: Infinite game T = ∞, V distributed with the density 1−e−x

1−e−1 I0≤x≤1. The prices A∗4(n), for
nodes n ∈ N s.t. |n| ≤ 3, of the optimal 4-step algorithm A∗4 and the relative expected strategic revenue
(w.r.t. A∗1) of the optimal τ -step algorithm A∗τ , τ = 2, .., 6, for discounts: (a) γS = 0.8 and various γB; (b)
γB = 0.2 and various γS.
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Figure C.8: Infinite game T =∞, uniform D. The prices A∗4(n), for nodes n∈N s.t. |n|≤3, of the optimal
4-step algorithm A∗4 and the relative expected strategic revenue (w.r.t. A∗1) of the optimal τ -step algorithm
A∗τ , τ=2, ..,6, for discounts: (a) γS=0.8 and various γB; (b) γB=0.2 and various γS.

20



D Discussion on regularity

The regularity of the discount γB is used in two cases, namely, to get: (1) the uniqueness of γ-
dependent natural order of the strategies S; (2) zero probability of the set of the valuations for
which the optimal buyer strategy is not unique. The case (1) is used in Lemma A.1 and Prop.
2 from Sec.4; there, regularity is just needed for simplicity of presentation of the proofs; these
statements (possibly with a slight change) will certainly hold without this restriction on γB. The
case (2) is used in Prop. 1 to guarantee that the strategic buyer will not prefer (with non-zero
probability) a strategy that has been non-active before the transformation. So, Prop. 1 may not
hold without regularity of γB. But we believe that one can obtain a similar result for a series of
algorithms that ”converges” to a one from Ã and use this series to obtain the statement of Th.
3. In any way, the restriction on the regularity of γB does not harm the main conclusions of our
work, because, for a finite horizon, regular discounts are more frequent than non-regular ones, e.g.,
there is just a finite number of non-regular geometric discounts for a finite horizon. Hence, our
qualitative results from Sec.5 and Appendix C are not affected by this restriction.

E Our setting as two-stage game

Due to the commitment and the presence of only one buyer, our setting of repeated posted-price
auctions can be formalized as a two stage game.

The common knowledge here are the discounts γB, γS, and the prior distribution D of the
private valuation V , while the realization v of V is known only by the buyer. At the first stage, the
seller picks a pricing algorithm A ∈ AT , her choice is announced to the buyer; at the second stage,
the buyer picks a buyer strategy a ∈ ST . The buyer’s utility is the surplus and the seller’s one is
the expected revenue (see Eq. (1)). Thus, if some pricing A∗ ∈ AT is a solution to our problem,
then the pair (A∗,aOpt(A∗, v,γB)) will be an equilibrium of above described game.

We believe that an equilibrium concept is unnatural for our setting, and our approach to
formalize the problem is more suitable.

Also note that the backward induction isn’t applicable here. There is no way to find an optimal
left subtree without fixing the root and the right subtree and vice versa, since the set of types that
rejects (accepts) the root price depends on all of the three. Note that backward induction is useful
when there are long enough sequences of subgames embedded one into another in the game, while
in our problem the game is essentially two-stage.

F Example of a real instantiation of the studied auction setup in
web advertising industry

During our work on the paper, we considered real practical problems of one of the most popular
global ad exchange. This Internet company faces with instances of our game, that can be described
by the following example: an Internet user searches for an apartment for rent; an advertiser (with
an ad about apartments) targets this user. An ad exchange (seller) tracks this user each time she
visits web sites related to the rent intent. Each view of a web page with a vacant ad slot by this user
is a round (t=1,2,..) in a sequence of posted price auctions between the seller and the advertiser
(buyer). The advertiser holds fixed valuation v for a view of this user of his ad about apartments
until the user holds the rent intent. The discount rate γ is the probability that the user will still
search for an apartment for rent at the next round.
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In practice of ad exchanges, many thousands of instances of our game are performed each
day. In this case, the buyer believes that the seller will follow the committed algorithm, since the
seller does it all previous instances. On the other hand, the seller is incentivized to follow her
commitment, since its violation will incur significant losses due to loss of trust from advertisers,
because the studies [9, 1, 6] showed that the seller earns noticeably less revenue in settings without
commitment than with it. In particular, when the seller is faced with one buyer and does not
commit for a pricing algorithm, the buyer in perfect Bayesian equilibrium (PBE) rejects goods all
rounds except a low number of last ones. These studies constitute economic arguments for the seller
to commit for a pricing algorithm and to do the best to assure the buyer that the commitment will
not be violated in practice.

G Lower bound on revenue improvement for the case γS = 1 > γB

In the special case of the more patient seller with γS = 1, one can get theoretically guaranteed lower
bound on the optimal expected strategic revenue and thus mathematically prove that the constant
Myerson pricing is no longer optimal.

Lemma G.1. In our setup, the following inequality holds:

EV∼D[V ] > max
p∈R+

HD(p). (G.1)

Proof. By the definition we have:

EV∼D[V ] =

∫ +∞

0
vdFD(v) ≥

∫ +∞

p
vdFD(v) >

∫ +∞

p
pdFD(v) = p(1− FD(p)) ∀p ∈ R+.

Since, by the definition, HD(p) = p(1− FD(p)), we obtain the claimed inequality.

Proposition G.1. Let the valuation V be distributed on [0, 1] (i.e., FD(1) = 1), the discounts be
γBt = γt−1

B I{t≤T}, γB ∈ (0, 1), and γSt = I{t≤T} (i.e., a game with a finite horizon T ∈ N is considered
and the seller’s strategic revenue is without discount). Then, if A∗1 is the optimal constant algorithm
(i.e., offers always the Myerson price p∗D) and A∗ be the optimal algorithm, then the following lower
bound holds for the optimal expected strategic revenue:

EV∼D[SRevγS,γB(A∗, V )] ≥ TEV∼D[V ]− (rEV∼D[V ] + 4)(log2 log2 T + 2), (G.2)

where r := dlogγB
(
(1− γB)/2

)
e, and the following bound for relative gain in the expected revenue of

the optimal algorithm A∗ w.r.t. the optimal constant pricing A∗1 holds as well:

ρA∗

ρA∗1
≥ EV∼D[V ]

HD(p∗D)
− rEV∼D[V ] + 4

HD(p∗D)
· log2 log2 T + 2

T
−−−−−→
T→+∞

EV∼D[V ]

HD(p∗D)
> 1. (G.3)

where the following short notation is used: ρA := EV∼D[SRevγS,γB(A, V )].

Proof. Let us consider the Penalized Reject-Revising Fast Exploiting Search [2] (PRRFES) as a
pricing algorithm, for which the following bound holds [2, Th.5]:

Tv − SRevγS,γB(APRRFES, v) ≤ (rv + 4)(log2 log2 T + 2) ∀v ∈ [0, 1] ∀T ≥ 4. (G.4)

Eq. (G.4) implies Eq. (G.2), because

EV∼D[SRevγS,γB(A∗, V )] ≥ EV∼D[SRevγS,γB(PRRFES, V )] ≥
≥ TEV∼D[V ]− (rEV∼D[V ] + 4)(log2 log2 T + 2).

(G.5)
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In order to obtain the first inequality in Eq. (G.3), one needs Eq. (G.2) and remind that
EV∼D[SRevγS,γB(A∗1, V )] = THD(p∗D).

Finally, the inequality EV∼D[V ]
HD(p∗D) > 1 holds due to Lemma G.1.

So, Eq. (G.2) is a theoretical guarantee of the fact that the constant optimal pricing is no
more optimal in the considered case, because the relative improvement lower bound converges to
the constant which is strictly higher than 1. Therefore, this result supports our empirical evidence
from the numerical experiments. Moreover the provided improvement is achievable by the algorithm
PRRFES [2].

In order to demonstrate the possible relative improvement, let us consider the uniform distribu-
tion on [0, 1] as an example of D, for which the Myerson price p∗D = 1/2 and the expected strategic
revenue provided by the optimal constant algorithm A∗1 is in turn E[SRevγS,γB(A∗1, V )] = T/4.

Based on Proposition G.1, we have

ρPRRFES

ρA∗1
≥ 2− (2r + 16)

log2 log2 T + 2

T
, (G.6)

which goes to 2 as T → ∞. Hence, we see that the seller is able to increase his revenue by up
to +100% (depending on the horizon T ) just by applying the algorithm PRRFES instead of the
optimal constant one. Note that PRRFES is horizon independent, and the seller thus may not
know the horizon T in advance to apply it.

H Auxiliary definitions and propositions

H.1 Absolute continuity of the Lebesgue integral ([7])

Proposition H.1. Consider the Lebesgue measure µ on R and let f : R → R be an integrable
function on A ⊂ R, then for any ε > 0 there exists such δ > 0 that∣∣∣∣∫

B
f(x)dµ

∣∣∣∣ < ε,

where B ⊂ A : µ(B) < δ.
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I Pseudo-code for evaluating the matrix ΞT (γS,γB).

Algorithm I.1 Evaluation of a pair of matrices (KT (γ, γ),KT (γ, γ′))

1: Input: γ, γ′ ∈ R+ and T ∈ N
2: if T = 1 then
3: (K,K ′) := (

(
1
)
,
(
1
)
)

4: else
5: (KT−1,K

′
T−1) := ALGI.1(γ, γ′, T − 1)

6: k := 2T − 1, k−1 := 2T−1 − 1

7: (K̂, K̂ ′) :=

 γKT−1 0k−1×1 0k−1×k−1

01×k−1
1 01×k−1

0k−1×k−1 1k−1×1 γKT−1

 ,

 γ′K ′T−1 0k−1×1 0k−1×k−1

01×k−1
1 01×k−1

0k−1×k−1 1k−1×1 γ′K ′T−1


8: for i = 1, . . . , 2T − 1 do

9: wi :=
∑2T−1
j=1 κ̂ij , where K̂ = (κij)

10: end for
11: Find the permutation π s.t. wπ(1) < wπ(2) < · · · < wπ(2T−1).

12: (K,K ′) := (π(K̂), π(K̂ ′)), where π(A) is the matrix A with rows permuted according to π.
13: end if
14: Output: (K,K ′)

Algorithm I.2 Evaluation of the matrix ΞT (γB, γS)

1: Input: γ, γ′ ∈ R+ and T ∈ N
2: J := (ηij)i,j∈[2T−1], where

ηij =


1, if i = j

−1, if i = j + 1

0, otherwise

3: I := (ιij)i,j∈[2T−1], where

ιij =

{
1, if i ≥ j
0, otherwise

4: (K,K ′) := ALGI.1(γB, γS, T )
5: for i = 1, . . . , 2T − 1 do

6: wi :=
∑2T−1
j=1 κij , w0 := 0, where K = (κij).

7: end for
8: M := (µij)i,j∈[2T−1], where

µij =

{
wi − wi−1, if i = j

0, otherwise

9: Ξ := J ·K · (K ′)−1 · I ·M
10: Output: Ξ
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