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A Motivation of Algorithms

In this section, we provide rigorous theoretical results on the motivation of algorithms presented in
Section [2.3] The first result (Lemma[A.T) is a standard one-step progress bound which quantifies how
the iterate would move towards w* with a single update. The second result (Lemma[A.2) shows that
the time index 7 in Algorithm|[I]can be always found. Therefore, the algorithm is well defined.

Lemma A.1. Let the sequence {w}icn be generated by (2.2)), then the following inequality holds
for any w € R? independent of z;
E.,[Dy(w,Wi1)] — Dy (w,wi) < [¢(W) — ¢(wi)] + o307 [Ag(wy) + 28]
— 1 {O'FD\I;(W, wi) + 0. E,, [Dy(w, wt_H)]} . (A

Proof. According to the first-order optimality condition in (2.2)), there exists an 7/ (w¢41) € Or(Wiy1)
satisfying

nef' (Wi, 2e) + e’ (Wegr) + VU (W) — VE(wy) =0,
from which and the identity [[1]
D\p(w, Wt+1) + D\Il(WtJrh Wt) - Dy (W, Wt) = <W — Wi, V\I’(Wt) - V\I’(Wt+1)>

we derive

Dy (W, wii1) — Dy(w,wy) = Dy (W, Wii1) + Dy(Wiy1, We) — Dy (W, wi) — Dy (Wiyp1, Wy)

= (W = Wiy1, VI(Wy) = VU(Wip1)) — Do (Wei1, We)

=W — Wey1, [/ (W, 2¢) + 7' (Wig1)) — Dw(Wig1, we)

< (W — wepr, [/ (Wi, 20)) + e [r(w) — r(wig1) — 00 Do (W, Wip1)| — Do (Wipr, we)

= 0(W — Wy, f'(We, 20)) + 0e(We — Wepr, f/(We, 20)) +ne[r(w) —r(wi)]
+nelr(wi) = r(Wig1)] — opm Do (W, Wip1) — Dy (Wig1, Wy). (A.2)
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Here, we have used the o,.-strong convexity of » (3.2) in the inequality. From the convexity of , the
definition of dual norm and the strong convexity of W, it follows that

e (Wi — Wopr, f/(We, 20)) +7(We) = 7(Wig1)] — Du(Wigr, wy)

< nellwe = wora |1/ (We, o) [ A me{we — Wepr, 7/ (W) — 27 ow [ wy — Wi ||?

< mellwe = wept 1[I/ (We, z0) s + I (wo)||+] — 27 owllwe — Wi ||

<27 ogllwe — Wit |2 + 27 oy "R [ (we 2 + I (W) )7 = 27 o [we — w1

<oy i [ (we 20) |12 + 1 (wo)ll2] < oy i [Af (Wi, 20) + Ar(wy) + 2B],
where we have used the elementary inequality (a + b)? < 2(a? + b?) and (B.I) in the last two
inequalities. Plugging the above inequality back into (A.2), we get

Dy(w, Wit1) — Dy (w, wi) < (W — W, f'(We, 2¢)) + ne[r(w) — 7(wy)]

+ U\;ln? [Af(wt, zt) + Ar(wy) + QB] — oDy (W, wiy1).

Taking conditional expectations with respect to z; over both sides and using the ¢ r-strong convexity
of F' (3:2) then give (note both w and w; are independent of z;)

E..[Dy (W, Wii1)] — Du(w,wy) + ornilEz, [De (W, Wii1)]

< (W — Wi, F'(wy)) +melr(w) — r(wi)] + og ' nf [AF (wy) + Ar(w,) + 25]

<m[F(w) — F(wy) — opDy(w,we)| + ne[r(w) — r(wi)] + oy 'nf [A¢(we) + 2B].
This gives the stated inequality and completes the proof. O
Lemma A.2. There existsant € {T,T +1,...,2T — 1} such that

Dy (Wr,w;) — Dy (Wr,wit1) < T~ ' Dy (Wr, wr).

Proof. We prove this lemma by contradiction. Suppose that
Dq;(WT, Wt) — Dq;(WT, Wt+1) > T_ID\I;(WT, WT)7 Vit € {T, T+1,...,2T — 1}

Taking a summation of the above inequality from ¢ = T to ¢t = 27 — 1 gives

2T—1
Dy(Wr,wr) — Dy(Wr, Wor) = Y [Dy(Wr, W) — Dy(Wr, Wi 1))
t=T
271
>T7" Y Dy(Wr, wr) = D (Wr, wr),
t=T
which contradicts with the non-negativity of the Bregman distance. The proof is complete. [

B Proofs of Convergence Rates for Convex Objectives

In this section, we give proofs of Theorem [I} Theorem [2]and Corollary [3]on the performance of
Algorithm|[T]for convex objectives.

Proof of Theorem[I] Choosing w = w* in (A.T) and using o, 0 > 0, we derive
E.,[Dy(W*, Wii1)] — Dy (w*, wy) < me[p(W*) — d(wy)] + og "0} [Ad(we) + 2B].
Taking expectations over both sides then gives
E[Dy(w*,Wis1) — Do (w*, wi)] < nE[p(W*) — ¢(wy)] + o3 07 [AE[¢(w,)] + 28]
= mE[p(w") — (wy)] + oy '} [AE[p(we)] — Ap(w*) + Ag(w") + 2B]
= (e — oy NP AE[D(W") — ¢(wWe)] + oy 0} [Ag(w*) + 2B]
<2 'E[p(W") — ¢(wo)] + oy nf [Ap(w”) + 28], (B.1)



where we have used the inequality 7; < o (2A4)~! and ¢(w*) < ¢(w;). The above inequality can
be rewritten as

27'E[¢(w;) — o(W")] < 'E[Dy(w*, wi) — Dy (W*, Wei1)] + o n:(Ag(w™) + 2B).
Taking a summation of the above inequality from ¢ = 1 to ¢t = T gives

T
< Zn{l]E[D\p(w*,wt) — Dy (w™, thﬂ + O'\il(AQS(W*) +2B) Z i

T T
<Y EDo(whwo)lln ' = n ]+ ny  Da(w*, wa) + 0y (Ag(w™) + 2B) Z (B.2)

< Dnpt + 205 u(Ap(w™) + 2B)VT,
where we have used 7; < 7;.—1 and the elementary inequality Zthl t=2 < 2¢/T in the last step. Let
wr = % Zle w; be defined in Algorithmwith 04 = 0. The convexity of ¢ then gives

Elp(wr)] — o(w*) < 2 D+40y %Aww*) +2B)

According to Lemma([A.2]and the definition of 7* in Algorithm|[I] we know
D\I](WT7WT*) —D\p(WT7WT*+1) S T_lD\I/(WT,WT). (B4)

Choosing w = wr in (AJ)) followed with expectations over both sides implies (W is independent
of z; forany t > T

nE[¢(wi) —d(Wr)] < E[Dg(Wr, wi)— Dy (Wr, wip1)]+og 07 [AE[¢(w,)]+2B], vt >T.
Choosing t = T™* in the above inequality and using (B-4) then give
nr-E[p(wr) — ¢(Wr)| < E[Dy(Wr, W) — Dy (Wr, Wr-y1)] + 03 '3 [AE[p(wr-)] + 28]
< T7'E[Dy(Wr, wr)] + 03 17 [AE[¢(wr-)] + 2B]. (B.5)
Plugging the step size 1; = j1/+/1 into the above inequality and using 7 < T* < 2T, we derive
V2E[Dy(Wr, wr)] n p[AE[p(wr-)] + 2B]
H\/T qu\/f ’

(B.3)

E[p(wr) — ¢p(wr)] <
from which and (B:3) it further follows that

E[¢p(wr-) — ¢(wW*)] = E[p(wr-) — ¢(Wr)] + E[p(Wr) — p(w*)] <

V2E[Dy (W, wr)]

/T
HA(E[B(wr.)] — 6(w)) | ulAd(w*) +2B] | 21D + dog u(Ad(w") + 2B)
* - T JT ®6)
_VED | Efplwr)] - 6(w)  plAd(w') +2B] 2D + oy p(Ad(w?) + 2B)
ST 2 - VT 7

where the last inequality is due to p1 < o (2A4) 7! and ¢p(wr+) > ¢(w*). The above inequality can
be written as the stated inequality. The proof is complete.

Proof of Theorem[2] Taking a summation of (B-I) from ¢t = 1 to t = ¢, we derive the following
inequality forany ¢ =0,...,T — 1

E[Dy(w*, wi )] = De(w*,wy) + ZE[D\I/(W*,WH_l) — Dy(w*, wy)]

t=1
7
< Dy(W*,wy) ZmE — ¢(wi)] + oy [Ap(w") +2B] Y
t=1
< Dy, (B.7)



where we have used ¢(w*) < ¢(w;) and Dy is defined in Theorem |2} According to the Young’s
inequality
a® b . .. 11
ab < — + — forall a,b,s,s > 0 satisfying — + = =1,
s 5 s 5
the following inequality holds forall ¢ = 1,2,...,T

D (wiowr) < Lyllw; —wr|* < Ly 2~ aflw, — we ™% +1-271a]
=Ly[27 a|w, —w + W —wr[?+1-2""q]
< Ly [afw, — w2 +allw* — w4+ 1 - 2_1a]

< Ly [QUilaD\p(w*,wt) + QqulaD\p(w*,wT) +1-— 2*104,

which, coupled with the convexity of g(-) := Dy (-, wr) as a function on R? and (B.7)), then implies

T
1 _ _
E[D@(WT,WT)] < T ZE[D\I;(Wt,WT)] <Ly [40’\1110[DT +1-2 1()4]7 (B.8)
t=1

where W is defined in Algorithm [T|with o4 = 0. Analyzing analogously to (B.2Z) excepting using
E[Dg(w*,w;)] < Dr forall t < T (n; is a non-increasing sequence), we derive

2(Ap(w*) +2B) Sy 2Dr

Elp(wr)] = ¢(w") < Tog Tor (B.9)

Eq. (B:3) implies further
E[¢p(wp-) — ¢(Wr)] < (Tnp) " "E[Dy(Wr, wr)] + o - [AE[G(Wr-)] + 2B].
Combining the above inequality, (B-8), (B.9) together and using T' < T™* < 2T, we get

E[p(wr-) — d(w")] = E[p(wr-) — ¢(wr)] + E[p(Fr) — p(w")] < 2w{WT: wr)]

Tnar
n Ang (Elp(wr-)] — ¢(w*)) n nr(Ap(w*) + 2B) n 2(A¢(W*) +2B) Sy my n 2Dt
oy [oaV; TO'\I; TT]T
Ly (405 aDr +1) +2Dr  E[p(wr:)] — p(w*)  Ap(w*) + 2B s
< T + : + R (g > m),

where the last inequality is due to 2Anr < oy. The above inequality can be written as (3.3). The
proof is complete. O

Proof of Corollary[3] (a) Since {n,} is a non-increasing sequence, we know

2
0< limntzlimﬂ<
t—o0

This in turn shows that the sequence of arithmetic mean also converges to 0, i.e.,
limy o0 § 3 7y 77 = 0. Also, limy o 7= > 7y 72 = 0 immediately implies lim o tr, =
oo. Then, all the terms on the right-hand side of (3.3) converges to zero as T tends to co and
therefore limyp_, oo E[¢p(Wr-)] — ¢p(w*) = 0.

(b) For the step size sequence 1; = 1//T, (3.3) translates to

Elg(wr-)] - ¢(w") < % (2007 (405 aDy + 1) + 6oy (Ap(w”) +2) + 45~ Dy ],

which is of the stated form since in this case Dy = Dy (W*, w1) + o3 [Ad(W*) + 2B]u? is a
constant independent of T'.

The proof is complete. O



Remark 1. If we consider polynomially decaying step sizes 7, = % forallt =1,2,...,2T, then

there exists a constant C > 0 independent of 7" such that

Elé(wr-)] — p(w") < ‘”gf;”

Indeed, for the step size sequence 1; = u/+/t, we have 23:1 ne < 2uVT and 23:1 n? <
uz log(eT). Plugging these inequalities back into @) gives

1
VT

which is of the stated form since in this case Dy < Dy (W*, w1) + o [Ad(w*) + 2B]u? log(eT).

E[p(wr+)]—p(w*) < 2V2Lgpu~ (dog aDr+1)+10po g (Ap(w*)+2B)+4v2u ' Dy |,

C Proofs of Convergence Rates for Strongly Convex Objectives

In this section, we present proofs of convergence rates (Theorem ] Theorem [5] Theorem [6] and
Theorem [7) for strongly convex objectives.

Proof of Theoremd] Choosing w = w* in (A.T)) and taking expectation over both sides, we derive
the following inequality for any ¢ € N
(1 +om)E[Dy (W™, wiy1)] <
(1 — opm)E[Dy(w*, wi)] + mE[p(w*) — ¢(wi)] + o' 17 [AE[¢(w;)] +2B].  (C.1)

For any ¢ > t( := max{ [WL 1} (Ja] denotes the smallest integer not less than a), we have

Ny < oy (4A)~! and therefore derive
(14 o) E[Dy (W™, Wiy1)]
< (1= opn)E[Dy (W, we)] + (0 — o3 "7 A)E[p(w") — ¢(wy)] + oy "7 [Ap(w") + 2B]
< (1 —opn)E[Dy(W", wy)] + %EW(W*) — o(wy)] + oy ni [Ag(w*) + 2B], Wt > to.
Combining the above inequality and (C.I) together, we derive

3

1 E[o(w)—o(w)] +72Cy Yt € N,

(C2)

(140 E[Dg (W, wii1)] < (1—orn,)E[De(w", wi)|+

where _
Cy = oy [AmaxE[¢(w,)] + 2B]

t<to

is a constant independent of T". From (C.2), it then follows that

31t L—opm 27
————E[p(w;) — (W) +E[Dg(Ww*, w < —E[Dy(w*, w;)]+n;Cy, Vt € N.
T Bio(we) —olw ) +EIDa W Wes)] < T D wi)] 452

(C.3)

Since 1y = %H%ap’ we know

1*UF77t70¢t+20F*20F7 t

140, a ot +20r + 20, Ct42
and

1 > 1 _ oy + 20 > 1

140 = 140 304 -3

Plugging the above two inequalities into Eq. (C.3)), we derive
— * * t * ~
47 ' Elp(wi) — ¢(W*)] + E[Dy(w*, wyy1)] < mE[D\P(W ,wi)] +n7Cy,  VtEN.



Multiplying both sides by (¢ + 1) (¢ + 2) gives

A7HE+ 1)t + 2)E[p(we) — (W) + (E + 1)(t + 2)E[Dy (W*, Wiy1)]
< t(t+ D)E[Dg(w*, wy)] + (t + 1)(t + 2)n2Cy, Vt € N.

Taking a summation of the above inequality from ¢ = 1 tot = T gives

T
AN [+ )+ 2mE[p(we) — $(w)]] + (T + 1)(T + DE[Dy (w*, wrp1)]

T
§2Dq,(w*,w1)+6'42(t+1)( +2)n? < 2Dy (w* W1)+47042(t+1i#

o2
t=1 ¢ t=1

4C
< 2Dy (W*, w1) + 72‘4 [T + 3log(eT) + 4]
[

< 0,2 [ACA(T + 3¢ 'T + 7) + 2Dy (w*, w1)o3] < Cao,°T,
where we have used the elementary inequality log(7") < e~'T for any T' € N and introduced
52 = 454(36_1 + 8) + 2D\IJ(W*,W1)0'3>.

It then follows that _
E[Dg(w*,wri1)] < C20;2(T +2)7!

and

Sy (t+ 1)t + 2)mE[p(wi) — ¢(w*)]
St 1)+ 2)m,

_ 4C,T _ 4C,

Tyt D+ (T+ 1oy

E[p(wr) — ¢(w™)] <

Here we have used the inequality

T T T
2+ 1)(t+2 2 T(T+1
SO+ 1)+ 2) Z A HE+2) 2 g~y TEHL)
= = oyt o St o
The proof is complete. O

We will use the following lemma to prove sufficient conditions for the convergence of SCMD
established in Theorem@ The following lemma is known in the literature (see, e.g., [3}13]).

Lemma C.1. Let {n;}1en be a sequence of non-negative numbers such that lim;_, . n; = 0 and
Zt 1Me = 00. Leta > 0 and t1 € N such that n; < a~! forany t > t,. Then we have

T
hm Znt H (1 —ang)=0.

t ty k=t+1

Proof of Theorem ] Since lim;_,, = 0, there exists a to € N such that 7; < og(4A4)~! and
ny < o, forall t > to. From (C.2) and 0, < 1 it follows that

1+o.m — Tt
1 —+ O'»,"I’]t

< (1 - 2710'¢7’]t)E[D‘1;(W*,Wt)} + nfé5, Yt > 1o,

E[Dg(W*, wii1)] < [Dy(w*, w,)] +n?Cs

where
Cs = oy [AmaX]E[qS( O] + QB].

t<to



Applying this inequality iteratively for t = T',. ..t yields

T T T
E[Dg(w*, wry1)] < [[(1=2""ogn)E[De(w*, wi )]+C5 > n7 [ (1-27"opm), (C4)
t=tg t=to k=t+1

where we denote ngt (1= 27 1o 4nk) = 1 for t = T'. The first term of the above inequality can
be controlled by the standard inequality 1 — a < exp(—a),a > 0 together with >_,~, 7, = 00

T T
lim (1- 2_10¢nt)E[D\p(W*,Wt‘O)] < Th_r}réo H exp ( — 2_10'¢’I7t)]E[D\p(W*,Wt~O)]

T—oo &4
t=to t=to

= lim exp(—? J¢Zm) [Dy(w*,wz )] = 0.

T—o0
t=tg

Applying Lemma|C.1|with a = 2710, we get

T T
: 2 o1 _
Jim > 2 T (=27 ogm) = 0.

t=to k=t+1

Plugging the above two expressions into (C4) completes the proof. O

Proof of Theoreml6] According to the strong convexity of ¢ given in (3.2) and the optimality condi-
tion 0 € Op(w*), we get

El¢p(wr) — ¢(w)] = E[¢(Wr) — ¢(W") — (Wr — w",0)] > 04E[Dy (Wr, w")],
which, together with the strong convexity of ¥ and the first inequality of (3:4), gives

_ iz 2E[p(Wr) — ¢(w*)] 8C,
Bl | § =SS < e

It then follows from the Lg-strong smoothness of ¥, E[||w* — wr||?] < EE[D‘I,(W*, wr)] and
the second inequality of (3.4) that

E[Dy(Wr,wr)] < 2 'Ly E[||wr — wr|*] = 2’1Lq,IE[Hv’vT —w'+w"— WT||2]
10L\1,(72
Plugging the above inequality back into (B:3) and using T < T* < 2T — 1 give
E[¢(wr-) — ¢(Wr)] < T~ 'np! E[Dy(Wr, wr)] + o nr- [AE[¢(wr- )] + 28]
0o(T* +2) 10LyCy , 2[AE[g(wr-)] +2B]

< LyE[|wr — w*||* + |w* — wr||?] <

- 2T (T + l)aia\p ogoT™
10LyCy, 2[AR )+ 2B

_ 10 wCo n [AE[¢(wr-)] + ] (C.5)
TO'¢0'\11 O\pU¢T

Plugging the first inequality in (3.4) and (C.3)) back into the error decomposition (2.3) gives

0Ly Caoy" +4C,  2A[E[$(wr-)] — o(w)]  2[Ad(w") +2B]
TO'¢ O’\IJO'¢T O’\I/O'¢T

E[¢(wr-) — ¢(w")] <

< 10LyChog' +4C, 4 Elo(wr-)] = o(w?) 2[Ap(w*) + 28]

)

- T0'¢ 2 Jq;J¢T
where we have used the inequality — 2;1 + < 1 and ¢(wp-) — ¢(W*) > 0 in the last step. The above

inequality can be written as stated 1nequahty Wlth
Cs = 4Cy(5Lyoy" +2) + 4oy [Ag(w*) + 2B].
The proof is complete. O



Finally, we give the proof of Theorem[7]on lower bounds of convergence rates under a lower-bound
assumption on the variance of V f(w, z) as an unbiased estimate of VF(w).
Proof of Theorem[]} 1f ¥(w) = i||w||3 and r(w) = 0, then (2:2) becomes
Wip1 = Wy — 0V (Wi, 2¢),
from which we know
(Wi = w3 = Wi — W[5 + 07 [V f (Wi, 20) 13 — 2m(wi — W™,V f(wy, 20)).

Taking expectations over both sides, we get

Efl|wesr — w[3] = Elllwe — w* 3] + 57 E[|[V f(we, 20) 3] — 20 E[{(we — w™, V(w))]. (C.6)
According to the lower bound assumption on variances, we know

E., IV f(we, 2) 3] = Eo, [V f(we, 2¢) = VE(W2)[3] + [VF(we)[[3 > 0.
We can combine the above inequality and (C.6) to derive
E[lwipr —w*|3] > E[[|we — w* 3] + nfo? — 20E[(w; — w*, Vo(wy))]. (€
Since ¢ is Lg-smooth, we know
(W — Wi, V(W) > —Lo|w" — w3,
which, plugged into (C.6) with the assumption 2L 47, < 1, implies the following inequality
Eflwe1 — w|[3] > (1 = 2Lgne)Elllwe — w*[[3] + 2Lgme (0 / (2Ls)),
from which we know
El|werr — w¥[|3] > min{E[we — w3, m0%/(2L)}-
We can apply the above inequality iteratively to show
El|lwer — wl|3] > min{|lwi — w*[3,m0%/(2Ls), ..., m0?/(2Ly)}.

The proof is complete. O

Table C.1: Description of the datasets used in the experiments.

datasets | #inst # feat| datasets | #inst # feat|datasets|# inst # feat | datasets | # inst # feat

diabetes| 768 8 german 1000 24 | splice | 1000 60 usps | 7291 256
mnist | 60000 780 w8a 49749 300 | letter [15000 16 |satimage| 4456 36
ijennl 141691 22 |mushrooms| 8124 112 | a9a |32561 123 | connect |67557 126
cover |286048 10 |webspam_u|350000 254 |real-sim|72309 20958| rcvl |20242 47236

D Additional Experimental Results

In this section, we give the description of datasets used in the experiments and report more experi-
mental results.

D.1 Description of Datasets

In this subsection, we provide in Table [C.1] the information for the datasets used in Section [5.1]
Webspam_u is a subset used in the Pascal Large Scale Learning Challenge [4] to detect malicious
web pages. The remaining datasets can be downloaded from the LIBSVM homepage [2].

D.2 Testing errors versus iteration numbers

In this subsection, we compare the behavior of several variants of SGD and SPGD on testing datasets.
In Figure we plot the objective function values on testing datasets versus iteration numbers for
SPGD (mean=0.5std). In Figure[D.2] we plot the objective function values on testing datasets versus
iteration numbers for SGD applied to different datasets.
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Figure D.1: Objective function values on test datasets versus iteration numbers for SPGD.

D.3 Training errors versus iteration numbers

In this section, we report more experimental results on training errors. In Figure [D.3]and Figure
we report the objective function values on training examples versus the number of iterations for
SPGD and SGD, which behave analogously to testing errors.

D.4 Additional experimental results for tomography reconstruction

In this section, we report more experimental results for tomography reconstruction. In Figure[D.3] we
compare the behavior of our method with several baseline methods for the tomography reconstruction
problem with N = 32, n = 11520 and 5% relative noise.
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Figure D.2: Objective function values on test datasets versus iteration numbers for SGD.
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Figure D.3: Objective function values on training datasets versus iteration numbers for SPGD.
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Figure D.4: Objective function values on training datasets versus iteration numbers for SGD.

(a) True Image.
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