
Supplementary Material

A Proof of Proposition 1

The proof of feasibility relies on the following result, which states that there is a bijection mapping
between reward space and value function space.
Proposition 4. Given an MDP with transition probability function P and discounting factor � 2
[0, 1), let R = {R : S ⇥A 7! R} denote the set of all possible reward functions, and let Q = {Q :

S ⇥A 7! R} denote the set of all possible Q tables. Then, there exists a bijection mapping between

R and Q, induced by Bellman optimality equation.

Proof. ) Given any reward function R(s, a) 2 R, define the Bellman operator as

H
R

(Q)(s, a) = R(s, a) + �
X

s

0

P (s0 | s, a)max

a

0
Q(s0, a0). (39)

Since � < 1, H
R

(Q) is a contraction mapping, i.e., kH
R

(Q1) � H
R

(Q2)k1  �kQ1 � Q2k1,
8Q1, Q2 2 Q. Then by Banach Fixed Point Theorem, there is a unique Q 2 Q that satisfies
Q = H

R

(Q), which is the Q that R maps to.

( Given any Q 2 Q, one can define the corresponding R 2 R by

R(s, a) = Q(s, a)� �
X

s

0

P (s0 | s, a)max

a

0
Q(s0, a0). (40)

Thus the mapping is one-to-one.

Proposition 1. The attack problem (12)-(15) is always feasible for any target policy ⇡†
.

Proof. For any target policy ⇡†
: S 7! A, we construct the following Q:

Q(s, a) =

⇢
" 8s 2 S, a = ⇡†

(s),

0, otherwise.
(41)

The Q values in (41) satisfy the constraint (15). Note that we construct the Q values so that for all
s 2 S , max

a

Q(s, a) = ". By proposition 4, the corresponding reward function induced by Bellman
optimality equation is

ˆR(s, a) =

⇢
(1� �)" 8s 2 S, a = ⇡†

(s),

� �", otherwise.
(42)

Then one can let r
t

=

ˆR(s
t

, a
t

) so that r = (r0, ..., rT�1), ˆR in (42), together with Q in (41) is a
feasible solution to (12)-(15).

B Proof of Theorem 2

The proof of Theorem 2 relies on a few lemmas. We first prove the following result, which shows
that given two vectors that have equal element summation, the vector whose elements are smoother
will have smaller `

↵

norm for any ↵ � 1. This result is used later to prove Lemma 6.
Lemma 5. Let x, y 2 RT

be two vectors. Let I ⇢ {0, 1, ..., T � 1} be a subset of indexes such that

i). x
i

=

1

|I|
X

j2I
y
j

, 8i 2 I, ii). x
i

= y
i

, 8i 6= I. (43)

Then for any ↵ � 1, we have kxk
↵

 kyk
↵

.

Proof. Note that the conditions i) and ii) suggest the summation of elements in x and y are equal,
and only elements in I differ for the two vectors. However, the elements in I of x are smoother than
that of y, thus x has smaller norm. To prove the result, we consider three cases separately.
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Case 1: ↵ = 1. Then we have
kxk

↵

� kyk
↵

=

X

i

|x
i

|�
X

j

|y
j

| =
X

i2I
|x

i

|�
X

j2I
|y

j

| = |
X

j2I
y
j

|�
X

j2I
|y

j

|  0. (44)

Case 2: 1 < ↵ < 1. We show kxk↵
↵

 kyk↵
↵

. Note that

kxk↵
↵

� kyk↵
↵

=

X

i

|x
i

|↵ �
X

j

|y
j

|↵ =

X

i2I
|x

i

|↵ �
X

j2I
|y

j

|↵

=

1

|I|↵�1
|
X

j2I
y
j

|↵ �
X

j2I
|y

j

|↵  1

|I|↵�1
(

X

j2I
|y

j

|)↵ �
X

j2I
|y

j

|↵.
(45)

Let � =

↵

↵�1 . By Holder’s inequality, we have
X

j2I
|y

j

|  (

X

j2I
|y

j

|↵) 1
↵
(

X

j2I
1

�

)

1
�
= (

X

j2I
|y

j

|↵) 1
↵ |I|1� 1

↵ . (46)

Plugging (46) into (45), we have

kxk↵
↵

� kyk↵
↵

 1

|I|↵�1
(

X

j2I
|y

j

|↵)|I|↵�1 �
X

j2I
|y

j

|↵ = 0. (47)

Case 3: ↵ = 1. We have

kxk
↵

= max

i

|x
i

| = max{ 1

|I| |
X

j2I
y
j

|,max

i/2I
|x

i

|}  max{ 1

|I|
X

j2I
|y

j

|,max

i/2I
|x

i

|}

 max{max

j2I
|y

j

|,max

i/2I
|x

i

|} = max{max

j2I
|y

j

|,max

j /2I
|y

j

|} = max

j

|y
j

| = kyk
↵

.
(48)

Therefore 8↵ � 1, we have kxk
↵

 kyk
↵

.

Next we prove Lemma 6, which shows that one possible optimal attack solution to (12)-(15) takes
the following form: shift all the clean rewards in T

s,a

by the same amount  (s, a). Here  (s, a) is a
function of state s and action a. That means, rewards belonging to different T

s,a

might be shifted a
different amount, but those corresponding to the same (s, a) pair will be identically shifted.
Lemma 6. There exists a function  (s, a) such that r

t

= r0
t

+  (s
t

, a
t

), together with some

ˆR and

Q, is an optimal solution to our attack problem (12)-(15).

We point out that although there exists an optimal attack taking the above form, it is not necessarily
the only optimal solution. However, all those optimal solutions must have exactly the same objective
value (attack cost), thus it suffices to consider the solution in Lemma 6.

Proof. Let r⇤ = (r⇤0 , ..., r
⇤
T�1), ˆR⇤ and Q⇤ be any optimal solution to (12)-(15). Fix a particular

state-action pair (s, a), we have

ˆR⇤
(s, a) =

1

|T
s,a

|
X

t2Ts,a

r⇤
t

. (49)

Let ˆR0
(s, a) = 1

|Ts,a|
P

t2Ts,a
r0
t

be the reward function for the (s, a) pair estimated from clean data
r

0. We then define a different poisoned reward vector r0 = (r00, ..., r
0
T�1), where

r0
t

=

(
r0
t

+

ˆR⇤
(s, a)� ˆR0

(s, a), t 2 T
s,a

,

r⇤
t

, t /2 T
s,a

.
(50)

Now we show r

0, ˆR⇤ and Q⇤ is another optimal solution to (12)-(15). We first verify that r0, ˆR⇤, and
Q⇤ satisfy constraints (13)-(15). To verify (13), we only need to check ˆR⇤

(s, a) = 1
|Ts,a|

P
t2Ts,a

r0
t

,
since r

0 and r

⇤ only differ on those rewards in T
s,a

. We have
1

|T
s,a

|
X

t2Ts,a

r0
t

=

1

|T
s,a

|
X

t2Ts,a

⇣
r0
t

+

ˆR⇤
(s, a)� ˆR0

(s, a)
⌘

=

ˆR0
(s, a) + ˆR⇤

(s, a)� ˆR0
(s, a) = ˆR⇤

(s, a),

(51)
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Thus r0 and ˆR⇤ satisfy constraint (13). ˆR⇤ and Q⇤ obviously satisfy constraints (14) and (15) because
r

⇤, ˆR⇤ and Q⇤ is an optimal solution.

Let �0 = r

0 � r

0 and �⇤ = r

⇤ � r

0, then one can easily show that �0 and �⇤ satisfy the conditions
in Lemma 5 with I = T

s,a

. Therefore by Lemma 5, we have

kr0 � r

0k
↵

= k�0k
↵

 k�⇤k
↵

= kr⇤ � r

0k
↵

. (52)

But note that by our assumption, r⇤ is an optimal solution, thus kr⇤ � r

0k
↵

 kr0 � r

0k
↵

, which
gives kr0 � r

0k
↵

= kr⇤ � r

0k
↵

. This suggests r0, ˆR⇤, and Q⇤ is another optimal solution. Compared
to r

⇤, r0 differs in that r0
t

� r0
t

now becomes identical for all t 2 T
s,a

for a particular (s, a) pair.
Reusing the above argument iteratively, one can make r0

t

� r0
t

identical for all t 2 T
s,a

for all (s, a)
pairs, while guaranteeing the solution is still optimal. Therefore, we have

r0
t

= r0
t

+

ˆR⇤
(s, a)� ˆR0

(s, a), 8t 2 T
s,a

, 8s, a, (53)

together with ˆR⇤ and Q⇤ is an optimal solution to (12)-(15). Let  (s, a) =

ˆR⇤
(s, a) � ˆR0

(s, a)
conclude the proof.

Finally, Lemma 7 provides a sensitive analysis on the value function Q as the reward function changes.

Lemma 7. Let

ˆM = (S,A, ˆP , ˆR0, �) and

ˆM0
= (S,A, ˆP , ˆR0, �) be two MDPs, where only the

reward function differs. Let Q0
and Q0

be action values satisfying the Bellman optimality equation

on

ˆM and

ˆM0
respectively, then

(1� �)kQ0 �Q0k1  k ˆR� ˆR0k1  (1 + �)kQ0 �Q0k1. (54)

Proof. Define the Bellman operator as

H
R̂

(Q)(s, a) = ˆR(s, a) + �
X

s

0

ˆP (s0 | s, a)max

a

0
Q(s0, a0). (55)

From now on we suppress variables s and a for convenience. Note that due to the Bellman optimality,
we have H

R̂

0(Q0
) = Q0 and H

R̂

0(Q0
) = Q0, thus

kQ0 �Q0k1 = kH
R̂

0(Q
0
)�H

R̂

0(Q
0
)k1

= kH
R̂

0(Q
0
)�H

R̂

0(Q
0
) +H

R̂

0(Q
0
)�H

R̂

0(Q
0
)k1

 kH
R̂

0(Q
0
)�H

R̂

0(Q
0
)k1 + kH

R̂

0(Q
0
)�H

R̂

0(Q
0
)k1

 �kQ0 �Q0k1 + kH
R̂

0(Q
0
)�H

R̂

0(Q
0
)k1 (by contraction of H

R̂

0(·))
= �kQ0 �Q0k1 + k ˆR0 � ˆR0k1 (by H

R̂

0(Q
0
)�H

R̂

0(Q
0
) =

ˆR0 � ˆR0)

(56)

Rearranging we have (1� �)kQ0 �Q0k1  k ˆR0 � ˆR0k1. Similarly we have

kQ0 �Q0k1 = kH
R̂

0(Q
0
)�H

R̂

0(Q
0
)k1

= kH
R̂

0(Q
0
)�H

R̂

0(Q
0
) +H

R̂

0(Q
0
)�H

R̂

0(Q
0
)k1

� kH
R̂

0(Q
0
)�H

R̂

0(Q
0
)k1 � kH

R̂

0(Q
0
)�H

R̂

0(Q
0
)k1

� kH
R̂

0(Q
0
)�H

R̂

0(Q
0
)k1 � �kQ0 �Q0k1

= k ˆR0 � ˆR0k1 � �kQ0 �Q0k1

(57)

Rearranging we have k ˆR0 � ˆR0k1  (1 + �)kQ0 �Q0k1, concluding the proof.

Now we are ready to prove our main result.

Theorem 2. Assume ↵ � 1 in (12). Let r

⇤
,

ˆR⇤
and Q⇤

be an optimal solution to (12)-(15), then

1

2

(1� �)�(")

✓
min

s,a

|T
s,a

|
◆ 1

↵

 kr⇤ � r

0k
↵

 1

2

(1 + �)�(")T
1
↵ . (16)
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Proof. We construct the following value function Q0.

Q0
(s, a) =

8
><

>:

Q0
(s, a) +

�(")

2

, 8s 2 S, a = ⇡†
(s),

Q0
(s, a)� �(")

2

, 8s 2 S, 8a 6= ⇡†
(s).

(58)

Note that 8s 2 S and 8a 6= ⇡†
(s), we have

�(") = max

s

02S
[ max

a

0 6=⇡†(s0)
Q0

(s0, a0)�Q0
(s0,⇡†

(s0)) + "]+

� max

a

0 6=⇡†(s)
Q0

(s, a0)�Q0
(s,⇡†

(s)) + " � Q0
(s, a)�Q0

(s,⇡†
(s)) + ",

(59)

which leads to
Q0

(s, a)�Q0
(s,⇡†

(s))��(")  �", (60)

thus we have 8s 2 S and 8a 6= ⇡†
(s),

Q0
(s,⇡†

(s)) = Q0
(s,⇡†

(s)) +
�(")

2

= Q0
(s, a)� [Q0

(s, a)�Q0
(s,⇡†

(s))��(")]� �(")

2

� Q0
(s, a) + "� �(")

2

= Q0
(s, a) + ".

(61)

Therefore Q0 satisfies the constraint (15). By proposition 4, there exists a unique function R0

such that Q0 satisfies the Bellman optimality equation of MDP ˆM 0
= (S,A, ˆP ,R0, �). We then

construct the following reward vector r0 = (r00, ..., r
0
T�1) such that 8(s, a) and 8t 2 T

s,a

, r0
t

=

r0
t

+ R0
(s, a) � ˆR0

(s, a), where ˆR0
(s, a) is the reward function estimated from r

0. The reward
function estimated on r

0 is then

ˆR0
(s, a) =

1

|T
s,a

|
X

t2Ts,a

r0
t

=

1

|T
s,a

|
X

t2Ts,a

⇣
r0
t

+R0
(s, a)� ˆR0

(s, a)
⌘

=

ˆR0
(s, a) +R0

(s, a)� ˆR0
(s, a) = R0

(s, a).

(62)

Thus r0, ˆR0 and Q0 is a feasible solution to (12)-(15). Now we analyze the attack cost for r0, which
gives us a natural upper bound on the attack cost of the optimal solution r

⇤. Note that Q0 and Q0

satisfy the Bellman optimality equation for reward function ˆR0 and ˆR0 respectively, and

kQ0 �Q0k1 =

�(")

2

, (63)

thus by Lemma 7, we have 8t,

|r0
t

� r0
t

| = | ˆR0
(s

t

, a
t

)� ˆR0
(s

t

, a
t

)|  max

s,a

| ˆR0
(s, a)� ˆR0

(s, a)| = k ˆR0 � ˆR0k1

 (1 + �)kQ0 �Q0k1 =

1

2

(1 + �)�(").
(64)

Therefore, we have

kr⇤ � r

0k
↵

 kr0 � r

0k
↵

= (

T�1X

t=0

|r0
t

� r0
t

|↵) 1
↵  1

2

(1 + �)�(")T
1
↵ . (65)

Now we prove the lower bound. We consider two cases separately.

Case 1: �(") = 0. We must have Q0
(s,⇡†

(s)) � Q0
(s, a) + ", 8s 2 S, 8a 6= ⇡†

(s). In this case no
attack is needed and therefore the optimal solution is r⇤ = r

0. The lower bound holds trivially.

Case 2: �(") > 0. Let s0 and a0 (a0 6= ⇡†
(s0)) be a state-action pair such that

�(") = Q0
(s0, a0)�Q0

(s0,⇡†
(s0)) + ". (66)
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Let r⇤, ˆR⇤ and Q⇤ be an optimal solution to (12)-(15) that takes the form in Lemma 6, i.e.,

r⇤
t

= r0
t

+

ˆR⇤
(s, a)� ˆR0

(s, a), 8t 2 T
s,a

, 8s, a. (67)
Constraint (15) ensures that Q⇤

(s0,⇡†
(s0)) � Q⇤

(s0, a0)+", in which case either one of the following
two conditions must hold:

i). Q⇤
(s0,⇡†

(s0))�Q0
(s0,⇡†

(s0)) � �(")

2

, ii). Q0
(s0, a0)�Q⇤

(s0, a0) � �(")

2

, (68)

since otherwise we have

Q⇤
(s0,⇡†

(s0)) < Q0
(s0,⇡†

(s0)) +
�(")

2

= Q0
(s0,⇡†

(s0)) +
1

2

[Q0
(s0, a0)�Q0

(s0,⇡†
(s0)) + "]

=

1

2

Q0
(s0, a0) +

1

2

Q0
(s0,⇡†

(s0)) +
"

2

= Q0
(s0, a0)� 1

2

[Q0
(s0, a0)�Q0

(s0,⇡†
(s0)) + "] + "

= Q0
(s0, a0)� �(")

2

+ " < Q⇤
(s0, a0) + ".

(69)
Next note that if either i) or ii) holds, we have kQ⇤ �Q0k1 � �(")

2 . By Lemma 7, we have

max

s,a

| ˆR⇤
(s, a)� ˆR0

(s, a)| = k ˆR⇤ � ˆR0k1 � (1� �)kQ⇤ �Q0k1 � 1

2

(1� �)�("). (70)

Let s⇤, a⇤ 2 argmax

s,a

| ˆR⇤
(s, a)� ˆR0

(s, a)|, then we have

| ˆR⇤
(s⇤, a⇤)� ˆR0

(s⇤, a⇤)| � 1

2

(1� �)�("). (71)

Therefore, we have

kr⇤ � r

0k↵
↵

=

T�1X

t=0

|r⇤
t

� r0
t

|↵ =

X

s,a

X

t2Ts,a

|r⇤
t

� r0
t

|↵ �
X

t2Ts⇤,a⇤

|r⇤
t

� r0
t

|↵

=

X

t2Ts⇤,a⇤

| ˆR⇤
(s⇤, a⇤)� ˆR0

(s⇤, a⇤)|↵ �
✓
1

2

(1� �)�(")

◆
↵

|T
s

⇤
,a

⇤ |

�
✓
1

2

(1� �)�(")

◆
↵

min

s,a

|T
s,a

|.

(72)

Therefore kr⇤ � r

0k
↵

� 1
2 (1� �)�(") (min

s,a

|T
s,a

|)
1
↵ .

We finally point out that while an optimal solution r

⇤ may not necessarily take the form in Lemma 6,
it suffices to bound the cost of an optimal attack which indeed takes this form (as we did in the proof)
since all optimal attacks have exactly the same objective value.

C Convex Surrogate for LQR Attack Optimization

By pulling the positive semi-definite constraints on Q and R out of the lower level optimization (32),
one can turn the original attack optimization (27)-(33) into the following surrogate optimization:

min

r,Q̂,R̂,q̂,ĉ,X,x

kr� r0k↵ (73)

s.t. ��
⇣
ˆR+ � ˆB>X ˆB

⌘�1
ˆB>X ˆA = K†, (74)

��
⇣
ˆR+ � ˆB>X ˆB

⌘�1
ˆB>x = k†, (75)

X = � ˆA>X ˆA� �2 ˆA>X ˆB
⇣
ˆR+ � ˆB>X ˆB

⌘�1
ˆB>X ˆA+

ˆQ (76)

x = q̂ + �( ˆA+

ˆBK†
)

>x (77)

(

ˆQ, ˆR, q̂, ĉ) = argmin

T�1X

t=0

����
1

2

s>
t

Qs
t

+ q>s
t

+ a>
t

Ra
t

+ c+ r
t

����
2

2

(78)

ˆQ ⌫ 0, ˆR ⌫ "I,X ⌫ 0. (79)
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The feasible set of (73)-(79) is a subset of the original problem, thus the surrogate attack optimization
is a more stringent formulation than the original attack optimization, that is, successfully solving
the surrogate optimization gives us a (potentially) sub-optimal solution to the original problem. To
see why the surrogate optimization is more stringent, we illustrate with a much simpler example as
below. A formal proof is straight forward, thus we omit it here. The original problem is (80)-(81).
The feasible set for â is a singleton set {0}, and the optimal objective value is 0.

min

â

0 (80)

s.t. â = argmin

a�0
(a+ 3)

2, (81)

Once we pull the constraint out of the lower-level optimization (81), we end up with a surrogate
optimization (82)-(84). Note that (83) requires â = �3, which does not satisfy (84). Therefore the
feasible set of the surrogate optimization is ;, meaning it is more stringent than (80)-(81).

min

â

0 (82)

s.t. â = argmin(a+ 3)

2, (83)
â � 0 (84)

Back to our attack optimization (73)-(79), this surrogate attack optimization comes with the advantage
of being convex, thus can be solved to global optimality.
Proposition 8. The surrogate attack optimization (73)-(79) is convex.

Proof. First note that the sub-level optimization (78) is itself a convex problem, thus is equivalent to
the corresponding KKT condition. We write out the KKT condition of (78) to derive an explicit form
of our attack formulation as below:

min

r,Q̂,R̂,q̂,ĉ,X,x

kr� r0k↵ (85)

s.t. ��
⇣
ˆR+ � ˆB>X ˆB

⌘�1
ˆB>X ˆA = K†, (86)

��
⇣
ˆR+ � ˆB>X ˆB

⌘�1
ˆB>x = k†, (87)

X = � ˆA>X ˆA� �2 ˆA>X ˆB
⇣
ˆR+ � ˆB>X ˆB

⌘�1
ˆB>X ˆA+

ˆQ (88)

x = q̂ + �( ˆA+

ˆBK†
)

>x (89)
T�1X

t=0

(

1

2

s>
t

ˆQs
t

+ q̂>s
t

+ a>
t

ˆRa
t

+ ĉ+ r
t

)s
t

s>
t

= 0, (90)

T�1X

t=0

(

1

2

s>
t

ˆQs
t

+ q̂>s
t

+ a>
t

ˆRa
t

+ ĉ+ r
t

)a
t

a>
t

= 0, (91)

T�1X

t=0

(

1

2

s>
t

ˆQs
t

+ q̂>s
t

+ a>
t

ˆRa
t

+ ĉ+ r
t

)s
t

= 0, (92)

T�1X

t=0

(

1

2

s>
t

ˆQs
t

+ q̂>s
t

+ a>
t

ˆRa
t

+ ĉ+ r
t

) = 0, (93)

ˆQ ⌫ 0, ˆR ⌫ "I,X ⌫ 0. (94)

The objective is obviously convex. (86)-(88) are equivalent to

� � ˆB>X ˆA =

⇣
ˆR+ � ˆB>X ˆB

⌘
K†. (95)

� � ˆB>x =

⇣
ˆR+ � ˆB>X ˆB

⌘
k†. (96)

X = � ˆA>X(

ˆA+

ˆBK†
) +

ˆQ, (97)
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Note that these three equality constraints are all linear in X , ˆR, x, and ˆQ. (89) is linear in x and
q̂. (90)-(93) are also linear in ˆQ, ˆR, q̂, ĉ and r. Finally, (94) contains convex constraints on ˆQ, ˆR, and
X . Given all above, the attack problem is convex.

Next we analyze the feasibility of the surrogate attack optimization.
Proposition 9. Let

ˆA,

ˆB be the learner’s estimated transition kernel. Let

L†
(s, a) =

1

2

s>Q†s+ (q†)>s+ a>R†a+ c† (98)

be the attacker-defined loss function. Assume R† ⌫ "I . If the target policy K†
, k† is the optimal

control policy induced by the LQR with transition kernel

ˆA,

ˆB, and loss function L†
(s, a), then

the surrogate attack optimization (73)-(79) is feasible. Furthermore, the optimal solution can be

achieved.

Proof. To prove feasibility, it suffices to construct a feasible solution to optimization (73)-(79). Let

r
t

=

1

2

s>
t

Q†s
t

+ q†
>
s
t

+ a>
t

R†a
t

+ c† (99)

and r be the vector whose t-th element is r
t

. We next show that r, Q†, R†, q†, c†, together with some
X and x is a feasible solution. Note that since K†, k† is induced by the LQR with transition kernel
ˆA, ˆB and cost function L†

(s, a), constraints (74)-(77) must be satisfied with some X and x. The
poisoned reward vector r obviously satisfies (78) since it is constructed exactly as the minimizer.
By our assumption, R† ⌫ "I , thus (79) is satisfied. Therefore, r, Q†, R†, q†, c†, together with the
corresponding X , x is a feasible solution, and the optimization (73)-(79) is feasible. Furthermore,
since the feasible set is closed, the optimal solution can be achieved.

D Conditions for The LQR Learner to Have Unique Estimate

The LQR learner estimates the cost function by

(

ˆQ, ˆR, q̂, ĉ) = argmin

(Q⌫0,R⌫"I,q,c)

1

2

T�1X

t=0

����
1

2

s>
t

Qs
t

+ q>s
t

+ a>
t

Ra
t

+ c+ r
t

����
2

2

. (100)

We want to find a condition that guarantees the uniqueness of the solution.

Let  2 RT be a vector, whose t-th element is

 
t

=

1

2

s>
t

Qs
t

+ q>s
t

+ a>
t

Ra
t

+ c, 0  t  T � 1. (101)

Note that we can view  as a function of D, Q, R, q, and c, thus we can also denote  (D,Q,R, q, c).
Define  (D) = { (D,Q,R, q, c) | Q ⌫ 0, R ⌫ "I, q, c}, i.e., all possible vectors that are
achievable with form (101) if we vary Q, R, q and c subject to positive semi-definite constraints on
Q and R. We can prove that  is a closed convex set.
Proposition 10. 8D,  (D) = { (D,Q,R, q, c) | Q ⌫ 0, R ⌫ "I, q, c} is a closed convex set.

Proof. Let  1, 2 2  (D). We use  
i,t

to denote the t-th element of vector  
i

. Then we have

 1,t =
1

2

s>
t

Q1st + q>1 st + a>
t

R1at + c1 (102)

for some Q1 ⌫ 0, R1 ⌫ "I , q1 and c1, and

 2,t =
1

2

s>
t

Q2st + q>2 st + a>
t

R2at + c2 (103)

for some Q2 ⌫ 0, R2 ⌫ "I , q2 and c2. 8k 2 [0, 1], let  3 = k 1 +(1� k) 2. Then the t-th element
of  3 is

 3,t =
1

2

s>
t

[kQ1 + (1� k)Q2]st + [kq1 + (1� k)q2]
>s

t

+ a>
t

[kR1 + (1� k)R2]at + kc1 + (1� k)c2

(104)

Since kQ1 + (1� k)Q2 ⌫ 0 and kR1 + (1� k)R2 ⌫ "I ,  3 2  (D), concluding the proof.
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The optimization (100) is intrinsically a least-squares problem with positive semi-definite constraints
on Q and R, and is equivalent to solving the following linear equation:

1

2

s>
t

ˆQs
t

+ q̂>s
t

+ a>
t

ˆRa
t

+ ĉ =  ⇤
t

, 8t, (105)

where  ⇤
= argmin

 2 (D) k + rk22 is the projection of the negative reward vector �r onto the set
 (D). The solution to (105) is unique if and only if the following two conditions both hold

i). The projection  ⇤ is unique.

ii). (105) has a unique solution for  ⇤.

Condition i) is satisfied because  (D) is convex, and any projection (in `2 norm) onto a convex set
exists and is always unique (see Hilbert Projection Theorem). We next analyze when condition ii)
holds. (105) is a linear function in ˆQ, ˆR, q̂, and ĉ, thus one can vectorize ˆQ and ˆR to obtain a problem
in the form of linear regression. Then the uniqueness is guaranteed if and only if the design matrix
has full column rank. Specifically, let ˆQ 2 Rn⇥n, ˆR 2 Rm⇥m, and q̂ 2 Rn. Let s
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and a
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the i-th element of s

t

and a
t

respectively. Define
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⇤
,

then (105) is equivalent to Ax =  ⇤, where x contains the vectorized variables ˆQ, ˆR, q̂ and ĉ.
Ax =  ⇤ has a unique solution if and only if A has full column rank.

E Sparse Attacks on TCE and LQR

In this section, we present experimental details for both TCE and LQR victims when the attacker uses
`1 norm to measure the attack cost, i.e. ↵ = 1. The other experimental parameters are set exactly the
same as in the main text.

We first show the result for MDP experiment 2 with ↵ = 1, see Figure 4. The attack cost is
kr� r

0k1 = 3.27, which is small compared to kr0k1 = 105. We note that the reward poisoning is
extremely sparse: only the reward corresponding to action “go up” at the terminal state G is increased
by 3.27, and all other rewards remain unchanged. To explain this attack, first note that we set the
target action for the terminal state to “go up”, thus the corresponding reward must be increased. Next
note that after the attack, the terminal state becomes a sweet spot, where the agent can keep taking
action “go up” to gain large amount of discounted future reward. However, such future reward is
discounted more if the agent reaches the terminal state via a longer path. Therefore, the agent will
choose to go along the red trajectory to get into the terminal state earlier, though at a price of two
discounted �10 rewards.

The result is similar for MDP experiment 3. The attack cost is kr � r

0k1 = 1.05, compared to
kr0k1 = 121. In Figure 5, we show the reward modification for each state action pair. Again, the
attack is very sparse: only rewards of 12 state-action pairs are modified out of a total of 124.

Finally, we show the result on attacking LQR with ↵ = 1. The attack cost is kr � r

0k1 = 5.44,
compared to kr0k1 = 2088.57. In Figure 6, we plot the clean and poisoned trajectory of the vehicle,
together with the reward modification in each time step. The attack is as effective as with a dense
2-norm attack in Figure 3. However, the poisoning is highly sparse: only 10 out of 400 rewards are
changed.
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+3.270

Figure 4: Sparse reward modification for MDP experiment 2.

(a) Clean and poisoned vehicle trajectory. (b) Clean and poisoned rewards.

Figure 6: Sparse-poisoning a vehicle running LQR in 4D state space.

F Derivation of Discounted Discrete-time Algebraic Riccati Equation

We provide a derivation for the discounted Discrete-time Algebraic Riccati Equation. For simplicity,
we consider the noiseless case, but the derivation easily generalizes to noisy case. We consider the
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Figure 5: Sparse reward modification for MDP experiment 3.

loss function is a general quadratic function w.r.t. s as follows:

L(s, a) =
1

2

s>Qs+ q>s+ c+ a>Ra. (106)

When q = 0, c = 0, we recover the classic LQR setting. Assume the general value function takes
the form V (s) = 1

2s
>Xs + s>x + v. Let Q(s, a) (note that this is different notation from the Q

matrix in L(s, a)) be the corresponding action value function. We perform dynamics programming
as follows:

Q(s, a) =
1

2

s>Qs+ q>s+ c+ a>Ra+ �V (As+Ba)

=

1

2

s>Qs+ q>s+ c+ a>Ra+ �

✓
1

2

(As+Ba)>X(As+Ba) + (As+Ba)>x+ v

◆

=

1

2

s>(Q+ �A>XA)s+
1

2

a>(R+ �B>XB)a+ s>(�A>XB)a

+ s>(q + �A>x) + a>(�B>x) + (c+ �v).
(107)

We minimize a above:

(R+ �B>XB)a+ �B>XAs+ �B>x = 0

) a = ��(R+ �B>XB)

�1B>XAs� �(R+ �B>XB)

�1B>x , Ks+ k.
(108)

21



Now we substitute it back to Q(s, a) and regroup terms, we get:

V (s) =
1

2

s>(Q+ �A>XA+K>
(R+ �B>XB)K + 2�A>XBK)s

+ s>(K>
(R+ �B>XB)k + �A>XBk + q + �A>x+ �K>B>x) + C

(109)

for some constant C, which gives us the following recursion:

X = �A>XA� �2A>XB(R+ �B>XB)

�1B>XA+Q,

x = q + �(A+BK)

>x.
(110)
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