SUPPLEMENTARY MATERIAL
Exact inference in structured prediction

A Detailed Proofs

In this section, we state the proofs of Theorem 3 and Corollaries 1, 2, 3 from our manuscript.

A.1 Proof of Theorem 3
Proof. We are interested in upper bounding the probability of predicting the wrong vector y, that is,
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where for the last equation we applied Hoeffding’s inequality. [

A.2  Proof of Corollary 1

Proof. Fix ¢ = log®n. Let e,(n,c) = n=22="% then from Lemma 3 we get o5 € Q(log" n)
with probability at least 1 — €,(n,e). Let Apax be the maximum node degree of graph G, then
it is clear that AY

max

is a random variable with expected value JE[AQ~ ] < Apax + log® n. By

applying Markov’s inequality we obtain P(Agax > t) < EALL]/t < (Amaxtlog®n)/t for t > 0.
Set t = log” n, then let ea(Apax,7) = (Amax+log®n)/106% n, we have that A9, < log” n with
probability at least 1 — ea (Amax, 7).

By using the union bound and noting that ¢,, — 0 and ex — 0 as n — oo, we have that ¢3/a%_. €

Q(log® n) and Aiax € O(log” n) with high probability. Finally, this leads to ; — 0 as . — oo,

thus, exact inference is achievable in polynomial time. O

A.3 Proof of Corollary 2
Proof. For any set S C V with |S| < n/2, we have that:
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=15l = ¢¢=1I31.

Since G is a complete graph, we have that A,,.x = n — 1, which yields 9&/A ... € Q(n). Thus, from
Theorem 2, we have that € (¢g, Amax, ) — 0 asn — oo. O

A.4 Proof of Corollary 3

Proof. From Definition 6, we have that ¢g > c-d. Since the graph is regular, we have that A, = d.
Therefore, ¥3/Ama € Q(d). Finally, if d € Q(logn), then €1 (¢g, Amax, p) decays in at least n =
for some constant ¢; > 0. That is, €1 (g, Amax, ) — 0 asn — co. O



