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1 Definitions and notations

In this section we recall the models introduced in the main body of the article, and introduce the
notations used throughout the Supplementary Material.

1.1 Models

Spiked Wigner model (vvᵀ): Consider an unknown vector (the spike) v? ∈ Rp drawn from a
distribution Pv , we observe a matrix Y ∈ Rp×p such that:

Y =
1√
p

v?v?ᵀ +
√

∆ξ , (1.1)

with symmetric noise ξ ∈ Rp×p drawn from ξij ∼
i.i.d.
N (0, 1) and ∆ > 0. The aim is to find back the

hidden spike v? from the observation of Y .

Spiked Wishart (or spiked covariance) model (uvᵀ): Consider two unknown vectors u? ∈ Rn
and v? ∈ Rp drawn from distributions Pu and Pv , we observe Y ∈ Rn×p such that

Y =
1√
p

u?v?ᵀ +
√

∆ξ , (1.2)

with noise ξ ∈ Rn×p drawn ξiµ ∼
i.i.d.
N (0, 1), ∆ > 0, and the goal is to find back the hidden spikes

u? and v? from the observation of Y . We define the ratio between the spike dimensions β = n/p.

In either models, we are interested in the case where v? is given by a generative model. In the
setting studied here the generative model is a fully-connected single-layer neural network (a.k.a.
generalised linear model) with Gaussian random weights W ∈ Rp×k, Wil ∼

i.i.d.
N (0, 1) and latent

variable z? ∈ Rk drawn from a given factorised distribution Pz ,

v? = ϕ

(
1√
k
W z?

)
with z?l ∼i.i.d.

Pz, (1.3)

where ϕ : R→ R is the activation function, a real-valued function acting component-wise on Rp that
can be deterministic or stochastic. An equivalent formulation of eq. (1.3) is

v?∼Pout

(
·
∣∣∣ 1√
k
W z?

)
. (1.4)

For instance, a deterministic layer with activation ϕ is written in this formulation as Pout(v|x) =
δ(v − ϕ(x)). We define the compression rate of the signal as α = p/k.

Although we will mainly focus on the single-layer model, some of our results apply more broadly to
any generative prior with a well-defined free energy density in the thermodynamic limit. In particular,
we will mention the example of a fully-connected multi-layer generative prior, given by

v? = ϕ(L)

(
1√
kL
W (L) · · ·ϕ(1)

(
1√
k1

W (1)z
))

with z?l ∼i.i.d.
Pz (1.5)

where now {ϕ(l)}1≤l≤L are a family of real-valued component-wise activation functions and
W

(l)
νlνl−1 ∼i.i.d.

N (0, 1) are independently drawn random weights. The equivalent probabilistic formula-

tion of the multi-layer case is

v ∼ P (L)
out

(
·
∣∣∣ 1√
kL
W (L)h(L)

)
, v ∈ Rp

h(L) ∼ P (L−1)
out

(
·
∣∣∣ 1√

kL−1

W (L−1)h(L−1)

)
, h(L) ∈ RkL

...

h(2) ∼ P (1)
out

(
·
∣∣∣ 1√
k1

W (1)z
)
, h(2) ∈ Rk2

z ∼
i.i.d.

Pz, z ∈ Rk1 (1.6)
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where we introduced the hidden variables h(l) ∈ Rkl for 2 ≤ l ≤ L and the family of densities{
P

(l)
out

}
1≤l≤L

. In this case, we define the compression rate as the ratio between the dimensions of the

latent variable in the first layer z ∈ Rk1 and the signal v ∈ Rp, α = p/k1. It is also useful to define
the compression at each layer, αl = kl/k1. The thermodynamic limit for this generative model is
defined by taking p → ∞ while keeping all α, αl ∼ O(1), 1 ≤ l ≤ L. As one might expect, the
single-layer generative prior is a particular case with L = 1.

1.2 Bayesian inference and posterior distribution

Since the information about the generative model Pv of the spike is given, the optimal estimator for
v? is the mean of its posterior distribution, v̂opt = EP (v?|Y )v, which in general reads

P (v?|Y ) =
1

P (Y )
Pv(v?)

∏
1≤i<j≤p

1√
2π∆

e
− 1

2∆

(
Yij−

v?i v
?
j√
p

)2

, (1.7)

for the vvᵀ model and by

P (v?|Y ) =
1

P (Y )
Pv(v?)

∫
Rn

du Pu(u)
∏

1≤i≤p,1≤µ≤n

1√
2π∆

e
− 1

2∆

(
Yµi−

u?µv
?
i√
p ,

)2

(1.8)

for the uvᵀ model. In both cases the evidence P (Y ) is fixed as the normalisation of the posterior. In
the specific case of a single-layer generative model from eq. (1.3), we can be more explicit and write
the prior for v? explicitly

Pv(v?) =

∫
Rk

dz?Pz (z?)
p∏
i=1

Pout

(
v?i

∣∣∣ 1√
k

k∑
l=1

Wilz
?
l

)
. (1.9)

The multi-layer case is written similarly by integrating over the intermediate hidden variables and
their respective distributions. It is important to stress that we assume the structure of the generative
model is known, i.e. (Pz, Pout,W ) (and Pu in the uvᵀ case) are given and the only unknowns of the
problem are the spike v? and the corresponding latent variable z?. This setting, in which the Bayesian
estimator is optimal, is commonly refereed as the Bayes-optimal inference.

In principle eqs. (1.7) and (1.8) are of little use, since sampling from these high-dimensional distribu-
tions is a hard problem. Luckily, physicists have been dealing with high-dimensional distributions -
such as the Gibbs measure in statistical physics - for a long time. The replica trick and the approx-
imate message passing (AMP) algorithm presented in the main body of the paper are two of the
statistical physics inspired techniques we borrow to circumvent the hindrance of dimensionality.

Summary of the Supplementary Material: A detailed account of the derivation of eq. (7) from
the replica method is given in Section 2. Although the replica calculation is not mathematically
rigorous, it gives a constructive method to compute the mutual information. The final expression can
be made rigorous using an interpolation method, which we detail in Section 3. The sketch for the
derivation of the AMP algorithm 1 and its associated spectral algorithm in eq. (16) are discussed
respectively in Section 4 and 5. We detail the stability analysis of the state evolution equations leading
to the transition point for generic activation function in Section 6, and finally we present a rigorous
proof for the transition in the case of linear activation in Section 7.

1.3 Notation and conventions

Index convention: In the whole paper, we use the convention that indices µ, i and l correspond
respectively to variables u, v and z such that µ ∈ [1 : n], i ∈ [1 : p] and l ∈ [1 : k].

Unless otherwise stated, ξ, η ∈ R denote independent random variables variables distributed accord-
ing to N (0, 1).
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Normalised second moments

We define ρv as the normalised second moments of the priors Pv, Pu and Pz respectively,

ρv = lim
p→∞

EPv
[

vᵀv
p

]
, ρu = lim

n→∞
EPu

[
uᵀu
n

]
, ρz = lim

z→∞
EPz

[
zᵀz
k

]
. (1.10)

In the case we consider Pz(z) =
k∏
l=1

Pz(zl), ρz is simply the one-dimensional second moment of Pz

ρz = EPzz2. (1.11)
In the case Pv is the single-layer generative model in eq. (1.9) with Wil ∼

i.i.d.
N (0, 1) and zl ∼

i.i.d.
Pz ,

ρv is self-averaging in the thermodynamic limit and is given by
ρv = EQ0

out
v2 , (1.12)

where Q0
out is defined below in eq. (1.16).

Denoising distributions

The upshot of the replica calculation is that the high dimensional mutual information between the
spike and the data I(Y, v?) is given by a simple one-dimensional expression, c.f. the right-hand
side of the main part eq. (7). This expression can be interpreted as the mutual information of a
one-dimensional denoising problem.

Below we introduce the one-dimensional probability densities appearing in the factorised mutual
information, from which the free energy and the AMP update equations are derived from:

Qu(u;B,A) ≡ 1

Zu(B,A)
Pu(u)e−

1
2Au

2+Bu , (1.13)

Qz(z; γ,Λ) ≡ 1

Zz(γ,Λ)
Pz(z)e

− 1
2 Λz2+γz , (1.14)

Qout(v, x;B,A, ω, V ) ≡ 1

Zout(B,A, ω, V )
e−

1
2Av

2+BvPout (v|x)
e−

1
2V
−1(x−ω)2

√
2πV

, (1.15)

Q0
out(v, x; ρz) ≡ Qout(v, x; 0, 0, 0, ρz) =

1

Z0
out

Pout (v|x)
e−

1
2ρz

x2

√
2πρz

. (1.16)

Free entropy terms

The mutual information density can be written in terms of the partition functions of the denoising
distributions above as:

Ψu(x) ≡ Eξ
[
Zu
(
x1/2ξ, x

)
log
(
Zu
(
x1/2ξ, x

))]
, (1.17)

Ψz(x) ≡ Eξ
[
Zz
(
x1/2ξ, x

)
log
(
Zz
(
x1/2ξ, x

))]
, (1.18)

Ψout(x, y) ≡ Eξ,η
[
Zout

(
x1/2ξ, x, y1/2η, ρz − y

)
log
(
Zout

(
x1/2ξ, x, y1/2η, ρz − y

))]
.

(1.19)

AMP update functions

Similarly, the update functions appearing in AMP are also given in terms of the moments of the above
denoising distributions:

fu(B,A) ≡ ∂B log (Zu) = EQu [u] , ∂Bfu(B,A) ≡ EQu
[
u2
]
− (fu)2 (1.20)

fz(γ,Λ) ≡ ∂γ log (Zz) = EQz [z] , ∂γfz(γ,Λ) ≡ EQz
[
z2
]
− (fz)

2 (1.21)

fv(B,A, ω, v) ≡ ∂B log (Zout) = EQout [v] , ∂Bfv(B,A, ω, v) ≡ EQout

[
v2
]
− (fv)

2 (1.22)

fout(B,A, ω, v) ≡ ∂ω log (Zout) = V −1EQout
[x− ω] , ∂ωfout(B,A, ω, v) ≡ ∂fout

∂ω
(1.23)
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2 Mutual information from the replica trick

In this section we give a derivation for the mutual information formula in main part eq. (7) from the
replica trick. The derivation is detailed for the symmetric vvᵀ model, since the derivation for the
asymmetric uvᵀ model follows exactly the same steps. In both cases, it closely follows the calculation
of the replica free energy of the spiked matrix model with factorized prior in [1].

Before diving into the derivation, we note that the formula in main part eq. (7) actually holds for any
channel of the form

P (Y |ω) =
∏

1≤i<j≤p

eg(Yij ,ωij) , (2.1)

where ω ∈ Rp×p is a matrix with components ωij ≡ vivj√
p and g : R2 → R is any two-dimensional

real function such that P (Y |ω) is properly normalised. The gaussian noise in eq. (1) is a particular
case given by g(Y, ω) = − 1

2∆ (Y − ω)2 − 1
2 log 2π∆.

The first step in the derivation is to note that the mutual information I(Y, v?) between the observed
data Y and the spike v? can be writen as

I(Y, v?) =
1

4∆
EPv [v?ᵀv?]2 − EY logZ(Y ) , (2.2)

where

Z(Y ) =

∫
Rp

dv Pv(v)
∏

1≤i<j≤p

eg(Yij ,ωij)−g(Yij ,0). (2.3)

Note that since the data is generated from a planted spike v?, we have Y = Y (v?), and therefore the
partition function Z depends on v? implicitly through Y .

2.1 Derivation of the replica free energy for the vvᵀ model

The partition function Z is a p-dimensional integral, and computing the average over Y (a p × p
integral) of logZ seems hopeless. The replica trick is a way to surmount this hindrance. It consists
of writing

EY logZ = lim
r→0+

1

r
(EY Zr − 1) . (2.4)

Note that Zr is the partition function of r non-interacting copies (named in the physics literature and
hereafter replicas) of the initial system. The average over the replicated partition function Zr can be
conveniently written as

EY Zr =

∫ ∏
1≤i<j≤p

dYij eg(Yij ,0)

∫
Rp×(r+1)

r∏
a=0

dvaPv (va)

r∏
a=0

∏
1≤i<j≤p

eg(Yij ,ω
a
ij)−g(Yij ,0) ,

(2.5)

where in the second line we have defined

va =

{
v? for a = 0

va for 1 ≤ a ≤ r . (2.6)

Averaging over Y

The key observation to simplify the integrals in eq. (2.5) is to note that ωij is of order 1/
√
p, and

therefore in the large-p limit of interest, we can keep only terms of order 1/p,

exp

(
r∑
a=0

[
g(Yij , ω

a
ij)− g(Yij , 0)

])
= 1 +

r∑
a=0

(∂ωg)ω=0 ω
a
ij +

1

2

r∑
a=0

(
∂2
ωg
)
ω=0

(
ωaij
)2

+
1

2

r∑
a,b=0

(∂ωg)
2
ω=0 ω

a
ijω

b
ij +O

(
p−3/2

)
(2.7)
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From the normalisation condition of P (Y |ω), we can derive the following relations∫ ∏
1≤i<j≤p

dYij eg(Yij ,0) = 1,∫ ∏
1≤i<j≤p

dYij eg(Yij ,0) (∂ωg)ω=0 = 0,∫ ∏
1≤i<j≤p

dYij eg(Yij ,0)
[
∂2
ωg + (∂ωg)

2
]
ω=0

= 0. (2.8)

Further defining

∆−1 =

∫ ∏
1≤i<j≤p

dYij eg(Yij ,0) (∂ωg)
2
ω=0 , (2.9)

allows us to evaluate the integral over Y term by term in the expansion in eq. (2.7),

EY Zr =

∫
Rp×(r+1)

r∏
a=0

dva Pv (va)
∏

1≤i<j≤p

1 +
1

2∆

∑
0≤a<b≤r

ωaijω
b
ij +O

(
p−3/2

)
=

∫
Rp×(r+1)

r∏
a=0

dva Pv (va)
∏

1≤i<j≤p

e
1

2∆

∑
0≤a<b≤r

ωaijω
b
ij

+O
(
p−3/2

)
. (2.10)

The upshot of this expansion is that on the large-p limit ∆ is the only relevant parameter we need
from the channel. Therefore, from the perspective of the mutual information density, a channel with
parameter ∆ is completely equivalent to a Gaussian channel with variance ∆. This property is known
as channel universality [1].

Rewritting as a saddle-point problem

Note that we can rewrite∑
1≤i<j≤p

ωaijω
b
ij =

1

p

∑
1≤i<j≤n

vai v
a
j v
b
i v
b
j =

p

2

(
qabv
)2
, (2.11)

where we defined the overlap between two replicas as qabv = p−1
p∑
i=1

vai v
b
i . This allows us to write

the average over the replicated partition function as a function of a set of order parameters qabv , and
therefore to factorise all the index i dependence of the exponential,

EY Zr =

∫
Rp×(r+1)

r∏
a=0

dva Pv (va) e

p
4∆

∑
0≤a<b≤r

(qabv )
2

. (2.12)

Since the expression above only depends on qabv now, we exchange the integral over the spike for an
integral over this order parameter by introducing

1 ∝
∫
R(r+1)×(r+1)

∏
0≤a<b≤r

dqabv
∏

0≤a<b≤r

δ

(
p∑
i=1

qabv − pqabv

)

∝
∫
R(r+1)×(r+1)

∏
0≤a<b≤r

dqabv

∫
(iR)(r+1)×(r+1)

∏
0≤a<b≤r

q̂abv e
−p

∑
0≤a<b≤r

q̂abv qabv +
∑

0≤a<b≤r
q̂abv

p∑
i=1

vai v
b
i

(2.13)

Note that we neglected some constants and made a rotation to the complex axis over the Fourier
integral. These will not be important for the argument that follows.
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Inserting this identity in eq. (2.12) yields

EY Zr ∝
∫
R(r+1)×(r+1)

∏
0≤a<b≤r

dqabv

∫
(iR)(r+1)×(r+1)

∏
0≤a<b≤r

q̂abv epΦ
(r)(qab,q̂ab) ,

Φ(r)(qabv , q̂
ab
v ) =

1

4∆

∑
0≤a<b≤r

(
qabv
)2 − ∑

0≤a<b≤r

q̂abv q
ab
v + Ψ(r)

v (q̂abv ) , (2.14)

where Ψ
(r)
v (q̂abv ) contains all the information about the prior Pv:

Ψ(r)
v (q̂abv ) =

1

p
log

∫
Rp×(r+1)

r∏
a=0

dva Pv (va)

p∏
i=1

e

∑
0≤a<b≤p

vai q̂
ab
v vbi

. (2.15)

Note that when the prior factorises, Pv(v) =
p∏
i=1

Pv(vi), Ψ
(r)
v is given by a simple one-dimensional

integral. However in the case of a generative model for v, Pv is kept general.

We are interested in the mutual information density in the thermodynamic limit. According to
eq. (2.35), this is given by

lim
p→∞

ip(Y, v?) = lim
p→∞

1

p
I(Y, v?) =

1

4∆
lim
p→∞

EPv
[

v?ᵀv?

p

]
− lim
p→∞

1

p
EY logZ (2.16)

=
ρ2
v

4∆
− lim
r→0+

1

r

(
lim
p→∞

1

p
EY Zr

)
. (2.17)

where we assumed that ρv, the re-scaled second moment of Pv, remains finite and that we can
commute the r → 0+ and the p→∞ limit. Since EY Zr is given in terms of an integral weighted
by epΨ

(r)

, in the limit p→∞ the integral will be dominated by the configurations of (qabv , q̂
ab) that

extremise the potential Ψ(r). This extremality condition, known as the Laplace method, yields the
following saddle-point equations,

q̂abv =
1

2∆
qabv , qabv = lim

p→∞
∂q̂vΨ(r)

v (q̂abv ). (2.18)

where we also assume that Pv is such that Ψ
(r)
v remains well defined in the limit p→∞.

Replica symmetric solution

Enforcing the first saddle-point equation allow us to write

lim
p→∞

1

p
EY Zr = extr

qabv

− 1

2∆

∑
0≤a<b≤r

(
qabv
)2

+ lim
p→∞

Ψ(r)
v

(
qabv
∆

) (2.19)

Solving this extremisation problem for general matrices is cumbersome. We therefore restrict
ourselves to solutions that are replica symmetric

qabv = qv for 0 ≤ a ≤ r. (2.20)

The replica symmetry assumption might seen restrictive, but it is justified in the Bayes-optimal case
under consideration - see [2]. Replica symmetry allow us to factor the r dependence explicitly for
each term,∑

0≤a<b≤r

(
qabv
)2

=
r(r + 1)

2
q2
v ,

∑
0≤a<b≤r

vai q
ab
v v

b
i = qvv

?
r∑
a=1

vai + qv

r∑
a,b=1

vai v
b
i (2.21)

the last sum that couples a, b can be decoupled using

e

qv
2

r∑
a,b=1

vai v
b
i

= Eξ

[
e
−√qvξ

r∑
a=1

(vai )2
]

(2.22)
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where ξ ∼ N (0, 1). This transformation factorise Ψ
(r)
v in replica space,

Ψ(r)
v (qv) =

1

p
log

∫
Rp

dv? Pv (v?)
∫
R

dξ√
2π
e−

1
2 ξ

2

[∫
Rp

dv Pv(v)

p∏
i=1

e−
qv
2∆ v

2
i+( qv∆ v?i +

√
q
∆ ξ)vi

]r

=
r→0+

r

p
Eξ,Pv(v?) log

∫
Rp

dv Pv(v)

p∏
i=1

e−
qv
2∆v

2
i+( qv∆ v?i +

√
q
∆ ξ)vi +O

(
r2
)
. (2.23)

allowing us to take the r → 0+ limit explicitly, and giving the following partial result

lim
p→∞

ip(Y, v?) =
ρ2
v

4∆
+ extr

qv

[
1

4∆
q2
v − lim

p→∞
Ψv

(qv
∆

)]
, (2.24)

where

Ψv

(qv
∆

)
= lim
r→0+

Ψ(r)
v =

1

p
Eξ,Pv(v?) logEPv(v)

[
p∏
i=1

e
− qv

2∆v
2
i+
(
qv
∆ v?i +

√
qv
∆ ξ
)
vi

]
. (2.25)

Interpretations of Ψv as a mutual information

The prior term Ψv in the free energy has an interesting interpretation as the mutual information of
an effective denoising problem over v. To see this, we complete the square in the exponential of
eq. (2.25),

Ψv (x) =
1

p
Eξ,Pv(v?) log

∫
Rp

dv Pv(v)

p∏
i=1

e−
x
2 [vi−(v?i +x−1/2ξ)]

2
+ x

2 (v?i +x−1/2ξ)
2

,

=
x

2p
Eξ,Pv(v?)

p∑
i=1

(
v?i + x−1/2ξ

)2

+
1

p
Eξ,Pv(v?) log

∫
Rp

dv Pv(v)

p∏
i=1

e−
x
2 [vi−(v?i +x−1/2ξ)]

2

,

=
x

2
EPv

[
vᵀv
p

]
+

1

2
+

1

p
Eξ,Pv(v?) log

∫
Rp

dv Pv(v)

p∏
i=1

e−
x
2 [vi−(v?i +x−1/2ξ)]

2

. (2.26)

The last integral is a convolution between the prior Pv and a un-normalised Gaussian. Up to an
aditive constant it admits a natural representation as the mutual information of a denoising problem,

1

p
Eξ,Pv(v?) log

∫
Rp

dv Pv(v)

p∏
i=1

e−
x
2 [vi−(v?i +x−1/2ξ)]

2

= −1

p
I(v?; v? + x−1/2ξ)− 1

2
. (2.27)

Putting together with eq. (2.26) and taking the limit,

lim
p→∞

Ψv

(qv
∆

)
=
qvρv
2∆
− lim
p→∞

1

p
I

(
v?; v? +

√
∆

qv
ξ

)
. (2.28)

Together with eq. (2.24), this representation lead to eq. (6) in the main article.

Interestingly, the signal to noise ratio in the effective denoising problem is proportional to ∆ and
inversely proportional to the overlap qv . This is quite intuitive: when ∆� 1 (or the overlap with the
ground truth is small), denoising is hard. On the other hand, when ∆ = 0 the mutual information
reaches its upper bound, given by the entropy of Pv .

2.2 Free energy for the uvᵀ model

The exact same steps outlined above can be followed for the spiked Wishart model with spikes
u? ∈ Rn and v? ∈ Rp drawn from non-factorisable priors Pu and Pv respectively. In this case, the
free energy density associated with the following partition function

Zuv(Y ) =

∫
Rp

dv Pv (v)

∫
Rn

du Pu (u)

n∏
µ=1

p∏
i=1

e
g
(
Yµi,

uµvi√
p

)
−g(Yµi,0) (2.29)

9



is given by

lim
p→∞

1

p
EY logZuv = extr

qu,qv

[
β

2∆
quqv − lim

p→∞
Ψv

(
β
qu
∆

)
− β lim

n→∞
Ψu

(qv
∆

)]
(2.30)

with β = n/p fixed. The functions Ψv,Ψu are given by

Ψu

(
β
qv
∆

)
=

1

n
Eξ,Pu(u?) log

∫
Rn

du Pu(u)

n∏
µ=1

e
−β qv2∆u

2
µ+
(
β qu∆ u?µ+

√
β qv∆ ξ

)
uµ

Ψv

(qu
∆

)
=

1

p
Eξ,Pv(v?) log

∫
Rp

dv Pv(v)

p∏
i=1

e
− qu

2∆v
2
i+
(
qv
∆ v?i +

√
qu
∆ ξ
)
vµ (2.31)

2.3 Application to generative priors

Generalised linear model prior

The expression we derived for the mutual information density in the vvᵀ model is valid for any prior
Pv as long as Ψv is well defined in the thermodynamic limit. For the specific case when

Pv(v) =

∫
Rk

(
k∏
l=1

dzl Pz(zl)

)
p∏
i=1

Pout

(
vi

∣∣∣ 1√
k

k∑
l=1

Wilzl

)
, (2.32)

with Wil ∼
i.i.d.
N (0, 1), Ψv is, up to a global 1/α scaling, the Bayes-optimal free energy of a

generalised linear model with channel given by

P̃out (v|x; ξ, qv) = Pout(v|x)e−
qv
2∆v

2+
√

qv
∆ ξv , (2.33)

and factorised prior Pz . The expression for this free energy is well known - see for example [3] for a
derivation and [3] for a proof - and reads

lim
p→∞

Ψv =
1

α
extr
qz,q̂z

[
−1

2
qz q̂z + αΨout

(qv
∆
, qz

)
+ Ψz (q̂z)

]
(2.34)

where the functions Ψout and Ψz are defined in eq. (1.3). Inserting this expression in our general
formula for the mutual information density eq. (2.24) give us

lim
p→∞

ip =
ρv
4∆

+ extr
qv,qz,q̂z

[
1

4∆
q2
v +

1

2α
q̂zqz −Ψout

(qv
∆
, qz

)
− 1

α
Ψz(q̂z)

]
(2.35)

which is precisely the result from eq. (7). The extremisation problem in eq. (2.35) is solved by looking
for the directions (qv, q̂z, qz) of zero gradient of the potential Ψv. These saddle-point equations are
known in this context as state evolution equations, and they can be conveniently written in terms of
the auxiliary function we defined in Section 1.3, equations (1.16-1.23) as

qv = 2∂qvΨout

(qv
∆
, qz

)
= Eξ,η

[
Zout

(√
qv
∆
ξ,
qv
∆
,
√
qzη, ρz − qz

)
fv

(√
qv
∆
ξ,
qv
∆
,
√
qzη, ρz − qz

)2
]

q̂z = 2α∂qzΨout

(qv
∆
, qz

)
= Eξ,η

[
Zout

(√
qv
∆
ξ,
qv
∆
,
√
qzη, ρz − qz

)
fout

(√
qv
∆
ξ,
qv
∆
,
√
qzη, ρz − qz

)2
]

qz = 2∂q̂zΨz (q̂z) = Eξ
[
Zz
(√

q̂zξ, q̂z

)
fz

(√
q̂zξ, q̂z

)2
]

(2.36)

Multi-layer prior

The multi-layer prior can be conveniently written as

Pv(v) =

∫ L∏
l=1

kl∏
νl=1

dh(l)
νl
P

(l−1)
out

h(l)
νl

∣∣∣ 1√
kl−1

kl−1∑
νl−1=1

W (l−1)
νlνl−1

hνl−1

 p∏
i=1

P
(L)
out

(
vi

∣∣∣ 1√
kL

kL∑
νL=1

WiνLhL

)
,

(2.37)
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where we define h(1) ≡ z ∈ Rk1 and P (0)
out ≡ Pz . As in the single-layer case, the Bayes-optimal free

energy of Pv has been computed in [4], and in our notation it is written as

lim
p→∞

Ψv =
1

α
extr

{q̂l,ql}1≤l≤L

[
−1

2

L∑
l=1

αlq̂lql + αΨout

(qv
∆
, qL

)
+

L∑
l=2

αlΨout (q̂l, ql−1) + Ψz (q̂1)

]
,

(2.38)

where in this case α = p/k1 and we defined αl = kl/k1 for 1 ≤ l ≤ L (note in particular that
α1 = 1). The (q̂l, ql) are the overlaps of the hidden variables h(l) at each layer, and to be consistent
with the shorthand notation introduced we have (q̂1, q1) = (q̂z, qz). Inserting this expression in our
general formula for the mutual information density eq. (2.24):

lim
p→∞

ip =
ρv
4∆

+

extr
qv,{q̂l,ql}l

[
1

4∆
q2
v +

1

2α

L∑
l=1

αlq̂lql −
1

α

L∑
l=2

αlΨout (q̂l, ql−1)−Ψout

(qv
∆
, qL

)
− 1

α
Ψz (q̂1)

]
.

(2.39)

Taking the extremization over qv and (q̂l, ql)1≤l≤L in eq. (2.39), we obtain the following system of
coupled fixed point equations:



qv = Λx
(
qv
∆ , qL

)
qL = Λx (q̂L, qL−1)

...
ql = Λx (q̂l, ql−1)

...
qz = Λz (q̂z)



q̂L = α̃LΛout
(
qv
∆ , qL

)
q̂L−1 = α̃L−1Λout (q̂L, qL−1)

...
q̂l = α̃lΛout (q̂l+1, ql)

...
q̂z = α̃1Λout (q̂2, qz)

(2.40)

where we have defined the update functions Λx(x, y) ≡ ∂xΨout(x, y) and Λout(x, y) ≡ ∂yΨout(x, y)
and the layer-wise aspect ratios α̃l = kl+1/kl = αl+1/αl.

An important first question that can be answered from eqs. (2.40) is when does the Bayes-optimal
estimator performs better than a random guess from the prior distribution Pv. For instance, we
intuitively expect that when the prior is not biased towards a particular direction in Rp and for
very high noise ∆ � 1 better-than-random estimation is not possible. In terms of fixed points of
eqs. (2.40), this situation corresponds to the existence of the non-informative fixed point q?v = 0 (i.e.
maximum MSEv = ρv , or zero overlap with the spike). Evaluating the right-hand side of eqs. (2.40)
at qv = 0, we can see that q?v = 0 is a fixed point if

EPz [z] = 0 and E
Q

(l),0
out

[v] = 0 , (2.41)

where Q(l),0
out (v, x) ≡ Q

(l)
out(v, x; 0, 0, 0, ρl) from eq. (10). Note that for multi-layer network with

deterministic channels and ϕ(l) ≡ ϕ for all l, the second condition is equivalent to ϕ being an odd
function.

When the condition (2.41) holds, (qv, qL, q̂L, . . . , q̂z, qz) = (0, 0, 0, . . . , 0, 0) is a fixed point of
eq. (2.40). The numerical stability of this fixed point determines a phase transition point ∆c, defined
as the noise below which the fixed point 0 ∈ RL+1 becomes unstable. The transition will then
correspond to the value of ∆ for which the largest eigenvalue of the Jacobian of the eqs. (2.40) at 0
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becomes greater than one. This Jacobian is given explicitly by

qv q̂L qL q̂L−1 qL−1 · · · q̂l+1 ql+1 q̂l ql · · · q̂z qz



1
∆m

(L)
vv 0 1

ρ2
L
m

(L)
vx 0 0 · · · 0 0 0 0 · · · 0 0 qv

α̃L
∆ m

(L)
vx 0 α̃L

ρ2
L
m

(L)
xx 0 0 · · · 0 0 0 0 · · · 0 0 q̂L

0 m
(L−1)
vv 0 0 1

ρ2
L−1

m
(L−1)
vx · · · 0 0 0 0 · · · 0 0 qL

0 α̃L−1m
(L−1)
vx 0 0 α̃L−1

ρ2
L−1

m
(L−1)
xx · · · 0 0 0 0 · · · 0 0 q̂L−1

0 0 0 m
(L−2)
vv 0 · · · 0 0 0 0 · · · 0 0 qL−1

0 0 0 α̃L−2m
(L−2)
vx 0 · · · 0 0 0 0 · · · 0 0 q̂L−2

...
...

...
...

...
0 0 0 0 0 · · · m

(l)
vv 0 0 1

ρ2
l
m

(l)
vx · · · 0 0 ql+1

0 0 0 0 0 · · · α̃lm
(l)
vx 0 0 α̃l

ρ2
l
m

(l)
xx · · · 0 0 q̂l

...
...

...
...

...
0 0 0 0 0 · · · 0 0 0 0 · · · mzz 0 qz

(2.42)

where we have defined the following shorthand for the second moments of Q(l),0
out (v, x):

m(l)
vv =

(
E
Q

(l),0
out

v2
)2

, m(l)
vx =

(
E
Q

(l),0
out

vx
)2

, m(l)
xx =

(
E
Q

(l),0
out

x2 − ρl
)2

, mzz =
(
EPzz2

)2
(2.43)

This result is given in full generality, and it is instructive to compute ∆c in specific cases. Consider
Pz(z) = Nz(0, 1) and layer-wise constant activation P (l)

out (v|x) = δ(v−ϕ(x)). For the previous odd
activation functions discussed, we find that

Linear activation: For ϕ(x) = x the leading eigenvalue of the Jacobian becomes one at

∆c = 1 +

L∑
l=1

α

αl
. (2.44)

Note in particular that for L = 1 and in the limit α = 0 we recover the phase transition
∆c = 1 known from the case with separable prior [1]. For α > 0, we have ∆c > 1 meaning
the spike can be estimated more efficiently when its structure is accounted for. In particular,
the deeper the generative network for the spike, the easier estimation becomes.

Sign activation: For ϕ(x) = sgn(x) the leading eigenvalue of the Jacobian becomes one at

∆c = 1 +

L∑
l=1

(
4

π2

)l
α

αl
. (2.45)

For L = 1 and α = 0, Pv = Bern(1/2), and the transition ∆c = 1 agrees with the one
found for a separable prior distribution [1]. As in the linear case, for α > 0, we can estimate
the spike for larger values of noise than in the separable case, and depth also improves
estimation.
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3 Proof of the mutual information for the vvᵀ case

In this section, we present a proof of the theorem 1 in the main part, for the mutual information of
Wigner model eq. (1.1) with structured prior

Y =
1√
p

v?v?ᵀ +
√

∆ξ , (3.1)

where the spike v? ∈ Rp is drawn from Pv .

3.1 Notations, free energies, and Gibbs average

The mutual information being invariant to reparametrization, we shall work instead inside this section
with the following notations:

Y =

√
λ

p
v?v?ᵀ + ξ , (3.2)

where λ is the signal to noise ratio. Up to the reparametrization, it corresponds to our model with
λ = ∆−1. We thus aim to compute I(Y ;v)

p for this model.

While the information theoretic notation is convenient in stating the theorem, it is more convinient to
use statistical physics notation and "free energies" for the proof, that relies heavily on concepts from
mathematical physics. Let us first translate one into the other. The mutual information between the
observation Y and the unknown v is defined using the entropy as I(Y ; v) = H(Y )−H(Y |v). Using
Bayes theorem one obtains H(Y ) = EY {logEPvPY (Y |v)} and a straightforward computation
shows that the mutual information per variable is then expressed as

I(Y ; v)

p
= fp + λ

E[vᵀv]

4p
, (3.3)

where, using again statistical physics terms, fp = −EY [logZp(Y )] /p is the so called free energy
density and Zp(Y ) the partition function defined by

Zp(Y ) ≡
∫
Rp

dv Pv(v) exp

∑
i<j

(
−λ

v2
i v

2
j

2p
+
√
λ
vivjYij√

p

) . (3.4)

Correspondingly, we define the Hamiltonian:

−H(v) ≡
∑
i<j

√
λ

p
Yijvivj −

λ

2p
v2
i v

2
j =

∑
i<j

√
λ

p
ξijvivj +

λ

p
vivjv

?
i v
?
j −

λ

2p
v2
i v

2
j .

so that the partition function (3.4) is associated with the Gibbs-Boltzmann measure e−H/Zp(Y ).

Consider now the term I
(
v; v + z/

√
qvλ
)

that enters the expression to be proven eq. (6). This is the
mutual information for another denoising problem, in which we assume one observes a noisy version
of the vector v?, denoted ỹ such that

ỹ =
1

σ
v∗ + z, (3.5)

where z ∼ N (0p, Ip) and σ = 1/
√
qvλ, where we shall assume that the limit exists. Again, it is

easier to work with free energies. We thus write the corresponding posterior distribution as

P (v|ỹ) =
1

Z0(ỹ, σ)
Pv(v) exp

(
−‖v‖

2
2

2σ2
+

vᵀỹ
σ

)
, (3.6)

where Z0(ỹ) is the normalization factor. For this denoising problem, the averaged free energy per
variables reads

f0
p (σ) ≡ −1

p
Eỹ[logZ0(ỹ, σ)], (3.7)
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and a short computation shows that

I

(
v; v +

1√
qvλ

z
)

= f0
p

(
1√
λqv

)
+
ρvλqv

2

Putting all the pieces together, this means that we need to prove the following statement on the free
energy fp: the free energy fp = −EY [logZp(Y )] /p is given, as p→∞ by

lim
p→∞

fp = minφRS

(
1√
qvλ

)
with φRS (r) ≡ lim

p→∞
f0
p (r) +

λq2
v

4
. (3.8)

This statement is equivalent to theorem 1, and we shall present a proof for the case where the prior
over v has a "good" limit: we shall assume that the limiting free energy exists and concentrates over
the disorder, and that the distribution over each vi is bounded. To do so, it will be useful to consider
Gibbs averages, and to work with r copies of the same system. For any g : (Rp)r+1 7→ R, we define
the Gibbs average as〈

g(v(1), · · · , v(r), v?)
〉
≡
∫
g(v(1), · · · , v(r), v?)

∏r
l=1 e

−H(v(l))dPv(v(l))(∫
e−H(v(l))dPv(v(l))

)r . (3.9)

This is the average of g with respect to the posterior distribution of r copies v(1), · · · , v(r) of v?. The
variables {vl}l=1...r are called replicas, and are interpreted as random variables independently drawn
from the posterior. When r = 1 we simply write g(v, v?) instead of g(v(1), v?). Finally we shall
denote the overlaps between two replicas as follows: for l, l′ = 1...r, we let

Rl,l′ ≡ v(l) · v(l′) =
1

p

p∑
i=1

v
(l)
i v

(l′)
i . (3.10)

A simple but useful consequence of Bayes rule is that the (r + 1)-tuples (v(1), · · · , v(r+1)) and
(v(1), ..., v(r), v∗) are the same law under E〈·〉 (see [5] or proposition 16 in [6]). This bears the name
of the Nishimori property in the spin glass literature [2].

3.2 Guerra Interpolation for the upper bound

We start by using the Guerra interpolation to prove an exact formula for the free energy. Here the
proof is a verbatim reproduction of the argument of [5] for non-factorized prior based on Guerra’s
interpolation [7].

Let t ∈ [0, 1] and let qv be a non-negative variable. We now consider an interpolating Hamiltonian

−Ht(v) ≡
∑
i<j

√
tλ

p
ξijvivj +

tλ

p
viv

?
i vjv

?
j −

tλ

2p
v2
i v

2
j

+

p∑
i=1

√
(1− t)λqvzivi + (1− t)λqvviv?i −

(1− t)λqv
2

v2
i .

The Gibbs states associated with this Hamiltonian −Ht correspond to an estimation problem given
an augmented set of observations{

Yij =
√

tλ
p v

?
i v
?
j + ξij , 1 ≤ i ≤ j ≤ p,

ỹi =
√

(1− t)λqvv?i + zi, 1 ≤ i ≤ p.
Reproducing the argument of [5], we prove using Guerra’s interpolation [7] and the Nishimori
property that

fp ≤ φRS(λ) +
K

p
. (3.11)

for some constant K. We define

ϕ(t) ≡ −1

p
E log

∫
e−Ht(v)dPv(v). (3.12)
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A simple calculation based on Gaussian integration by parts (in technical terms, Stein’s lemma) shows
that

ϕ′(t) =
λ

4
E
〈
(R1,2 − qv)2

〉
t
− λ

4
q2v −

λ

4p2

p∑
i=1

E
〈
v
(1)
i

2
v
(2)
i

2
〉
t

− λ

2
E
〈
(R1,∗ − qv)2

〉
t
+
λ

2
q2v +

λ

2p2

p∑
i=1

E
〈
vi

2v∗i
2
〉
t
,

We now use the Nishimori property, and the expressions involving the pairs (v, v?) and (v(1), v(2))
become equal. We thus obtain

ϕ′(t) = −λ
4
E
〈
(R1,∗ − qv)2

〉
t

+
λ

4
q2
v +

λ

4p2

p∑
i=1

E
〈
vi

2v∗i
2
〉
t
. (3.13)

Observe that the last term is O (1/p) since the variables vi are bounded. Moreover, the first term is
always non-negative so we obtain

ϕ′(t) ≤ λ

4
q2
v +

K

p
. (3.14)

Since ϕ(1) = fp and ϕ(0) = f0
p (1/
√
λqv), integrating over t, we obtain for all qv ≥ 0, fp ≤

φRS(λ, qv) + K
p , and this yields the upper bound:

Proposition 3.1 (Upper bound on the Free energy). : There exists K > 0 such that for all qv ∈ R
we have

fp ≤ f0
p (1/

√
λqv) +

λq2
v

4
+
K

p
. (3.15)

3.3 A bound of the Franz-Parisi Potential

To attack the lower bound, we shall adapt the argument of [8], that uses the Franz-Parisi potential
[9], and this will require additional concentration properties on the prior model. For v? ∈ Rp fixed,
m ∈ R and ε > 0 we follow [8] and define

Φpε (m, v
?) ≡ −1

p
E log

∫
Rp
1{R1,∗ ∈ [m,m+ ε)}e−H(v)dPv(v) . (3.16)

This is simply the free energy with configurations forced to be at a distance m (to precision ε) from
the ground truth. Note that since the measure is limited to a subset of configurations, it is clear that
Ev?Φpε (m, v?) ≥ fp.

We are now going to prove an interpolating bound for the Franz-Parisi Potential. Let t ∈ [0, 1] and
consider a slightly different interpolating Hamiltonian

−Ht(v) ≡
∑
i<j

√
tλ

p
ξijvivj +

tλ

p
viv

?
i vjv

?
j −

tλ

2p
v2
i v

2
j

+

p∑
i=1

√
(1− t)λqvzivi + (1− t)λmviv?i −

(1− t)λqv
2

v2
i ,

Notice the subtle change: in front of the term (1− t)viv?i we replace the qv from the former section
by m. We define now

ϕε,m(t) ≡ −1

p
E log

∫
Rp
e−Ht(v)1{R1,∗ ∈ [m,m+ ε)}dPv(v). (3.17)

Denoting now the Gibbs average with the additional constraint 1{R1,∗ ∈ [m,m+ ε)} as 〈〉m,εt , we
find when we repeat the former computation:

ϕ′ε,m(t) =
λ

4
E
〈
(R1,2 − qv)2

〉m,ε
t
− λ

4
q2v +

λ

2
m2 − λ

2
E
〈
(R1,∗ −m)2

〉m,ε
t

+ o (1)
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The trick is now to notice that, by construction, the E
〈
(R1,∗ −m)2

〉m,ε
t
≤ ε2 given the overlap

restriction, and therefore

ϕ′ε,m(t) ≥λ
4
E
〈
(R1,2 − qv)2

〉m,ε
t
− λ

4
q2v +

λ

2
m2 − λε2

2
+ o (1) ,

and

ϕ′ε,m(t) ≥ −λ
4
q2v +

λ

2
m2 − λε2

2
+ o (1) .

We now denote

f0
p (σ, v?) ≡ − 1

N
Ez[logZ0(ỹ, σ)], (3.18)

with the previous f0
p being the expectation f0

p (σ) ≡ Ev? [f0
p (σ, v?)]. Then, since ϕε,m(1) =

Φpε (m, v?) and ϕε,m(0) ≤ f0
p (1/
√
λqv) (again, this is an obvious consequence of the restriction in

the sum) integrating over t, we obtain a bound for the Parisi-Franz potential for any qv and m. Using,
in particular, the value m = qv , this yields yields the following result:
Proposition 3.2 (Lower bound on the Franz-Parisi potential). : There exists K > 0 such that for any
m = qv and ε > 0 we have

Φpε (m = qv, v?) ≥ f0
p

(
1/
√
λqv, v?

)
+
λq2
v

4
− λ

2
ε2 +

K

p
. (3.19)

3.4 From the Potential to a Lower bound on the free energy

It remains to connect the Franz-Parisi potential to the actual free energy. This is done by proving
a Laplace-like result between the free energy and the Franz-Parisi free energy, again following the
separable case in [8]:
Proposition 3.3. There exists K > 0 such that for all ε > 0, we have

fp ≥ Ev?
[

min
l∈Z,|l|≤K/ε

Φpε (lε, v
?)
]
− log(K/ε)√

p
. (3.20)

Combining this proposition with the bound on the Franz-Parisi potential, we see that

fp ≥ Ev?
[

min
qv=lε
|l|≤K/ε

f0
p

(
1/
√
λqv, v?

)
+
λq2
v

4

]
− λ

2
ε2 − log(K/ε)√

p
. (3.21)

At this point, we need to push the expectation with respect to the spike inside the minimum. This
is the only assumption that we are going to require over the generative model: that its free energy
concentrates over the distribution of spikes. This finally leads to following result:
Proposition 3.4 (Laplace principle). Assume that the free energy f0

p (v?) concentrates such that

E
[∣∣∣f0

p ( 1√
λqv

, v?)− E
[
f0
p ( 1√

λqv
, v?)

]∣∣∣] < C/
√
p for some constant C for all qv in [0, ρv), then:

fp ≥ min
qv

[
f0
p

(
1/
√
λqv

)
+
λq2
v

4

]
+ o

(
log p√
p

)
. (3.22)

which gives us the needed converse bound. To conclude this section, let us prove these propositions.
Proof of Proposition 3.3. Let ε > 0. Since the prior Pv has bounded support, we can grid the set of
the overlap values R1,∗ by 2K/ε many intervals of size ε for some K > 0. This allows the following
discretisation, where l runs over the finite range {−K/ε, · · · ,K/ε}:

−fp =
1

p
E log

∑
l

∫
Rp
1{R1,∗ ∈ [lε, (l + 1)ε)}e−H(v)dPv(v)

≤ 1

p
E log

2K

ε
max
l

∫
Rp
1{R1,∗ ∈ [lε, (l + 1)ε)}e−H(v)dPv(v)

=
1

p
Emax

l
log

∫
Rp
1{R1,∗ ∈ [lε, (l + 1)ε)}e−H(v)dPv(v) +

log(2K/ε)

p
. (3.23)
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Note that in the above, the expectation E is taken with respect to both the noise matrix ξ and the spike
v?. We shall now use concentration of measure to push the expectation over ξ to the other side of the
maximum in order to recover the Franz-Parisi potential as defined in the previous section.

Let
Zl ≡

∫
Rp
1{R1,∗ ∈ [lε, (l + 1)ε)}e−H(v)dPv(v). (3.24)

One can show that each term Xl = 1
p logZl individually concentrates around its expectation with

respect to the random variable ξ. This follows from the following lemma
Lemma 3.1. [from [8]] There exists a constant K > 0 such that for all γ ≥ 0 and all l,

Eξeγ(Xl−Eξ[Xl]) ≤ Kγ√
p
eKγ

2/p. (3.25)

that is a direct consequence of the Tsirelson-Ibragimov-Sudakov inequality [10], see [8], Lemma 7.

Given that all Xl concentrates, the expectation of the maximum concentrates as well:

Eξ max
l

(Xl − Eξ[Xl]) ≤
1

γ
logEξ exp

(
γmax

l
(Xl − Eξ[Xl])

)
=

1

γ
logEξ max

l
eγ(Xl−E′[Xl])

≤ 1

γ
logEξ

∑
l

eγ(Xl−Eξ[Xl])

≤ 1

γ
log

(
2K

ε

γK√
p
eγ

2K/p

)
=

log(2K/ε)

γ
+

1

γ
log

γK√
p

+
γK

p
.

We set γ =
√
p and obtain

Eξ max
l

(Xl − Eξ[Xl]) ≤
log(K/ε)√

p
. (3.26)

Therefore, inserting the above estimates into (3.23), we obtain

−fp ≤ Ev? max
l

EξXl +
log(K/ε)√

p
+

log(K/ε)

p
≤ Ev? max

l
Φε(lε, v?) + 2

log(K/ε)√
p

so that finally

fp ≥ Ev? min
l

Φε(lε, v?)−
log(K/ε)√

p
,

for some constant K.

Proof of Proposition 3.4. We now wish to push the expectation with respect to v? inside the minimum.
We start by using again qv = lε and defining the following random (in v? variable):

X̃l = −
(
f0
p

(
1/
√
λlε, v?

)
+
λq2
v

4

)
(3.27)

and start from Proposition 3.3:

− fp ≤ Ev?
[

max
qv=lε
|l|≤K/ε

X̃l

]
+
λ

2
ε2 +

log(K/ε)√
p

. (3.28)

We now wish to push the max inside. We proceed as follow:

Ev?
[
|max

l

(
X̃l − E[X̃l]

)
|
]
≤ Ev?

[∑
l

|
(
X̃l − E[X̃l]

)
|
]

(3.29)

=
∑
l

Ev?
[
|
(
X̃l − E[X̃l]

)
|
]

(3.30)

≤
∑
l

C√
p

=
K

ε
√
p

(3.31)
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Inserting this in eq.(3.28) we find that

− fp ≤ max
qv=lε
|l|≤K/ε

[
Ev?X̃l

]
+
λ

2
ε2 +

K ′

ε
√
p

+
log(K/ε)√

p
, (3.32)

and therefore,

fp ≥ min
qv=lε
|l|≤K/ε

[
− Ev?X̃l

]
− λ

2
ε2 − K ′

ε
√
p
− log(K/ε)√

p
, (3.33)

so that choosing finally ε = p−1/4 we reach

fp ≥ min
qv=lε
|l|≤K/ε

[
f0
p

(
1/
√
λqv

)
+
λq2
v

4

]
+ o

(
log p√
p

)
. (3.34)

3.5 Main theorem

We can now combine the upper and lower bound to reach the statement of the main theorem, presented
in the main as theorem 1:
Theorem 3.1. [Mutual information and MMSE for the spiked Wigner model with structured spike]
Assume the spikes v? come from a sequence (of growing dimension) of generic structured prior Pv on
Rp, such that

1. The free energy f0
p (λqv) = − 1

NEỹ[logZ0(ỹ, 1/
√
λqv)] has a limit f0(λqv) for all qv ∈

[0, ρv] as p→∞.

2. The free energy f0
p (v?) concentrates such that E

[
|f0
p (1/
√
λqv, v?)− E

[
f0
p (1/
√
λqv, v?)

]
|
]
<

C/
√
p for some constant C for all qv ∈ [0, ρv] as p→∞:

then

lim
p→∞

ip ≡ lim
p→∞

I(Y ; v?)
p

= inf
ρv≥qv≥0

iRS(∆, qv), (3.35)

with

iRS(∆, qv) =
(ρv − qv)2

4∆
+ lim
p→∞

I
(

v; v +
√

∆
qv

z
)

p
(3.36)

with z being a Gaussian vector with zero mean, unit diagonal variance and ρv = lim
p→∞

EPv [vᵀv]/p.

3.6 Mean-squared errors

It remains to deduce the optimal mean squared errors from the mutual information. These are actually
simple application of known results which we reproduce here briefly for completeness. It is instructive
to distinguish between the reconstruction of the spike and the reconstruction of the rank-one matrix.

Let us first focus on the denoising problem, where one aim to reconstruct the rank-one matrix
X? = v?v?ᵀ. In this case the mean squared error between an estimate X̂(Y ) and the hidden one X?

reads
Matrix−mse(X̂, Y ) =

1

p2
‖v?v?ᵀ − X̂(Y )‖22 (3.37)

It is well-known [11] that the mean squared error is minimized by using the conditional expectation
of the signal given the observation, that is the posterior mean. The minimal mean square error is thus
given by

Matrix−MMSE(Y ) =
1

p2
‖v?v?ᵀ − E[vvᵀ|Y ]‖2F (3.38)

We can now state the result:
Theorem 3.2. [Matrix MMSE, from [12, 13, 14]] The matrix-MMSE is asymptotically given by

lim
p→∞

Matrix−MMSE(Y ) = ρ2
v − (q?v)2 (3.39)

where q?v is the optimizer of the function iRS (∆, qv).
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Proof. This is a simple application of the I-MMSE theorem [15], that has been used in this context
multiple-times (see e.g [12, 13, 14]). Indeed, the I-MMSE theorem states that, denoting λ = ∆−1:

d

dλ

I

p
=

1

4
Matrix−MMSE(Y ) (3.40)

We thus need to compute the derivative of the mutual information:

d

dλ
iRS(q?v ,∆ = 1/λ) = ∂λiRS(q?v ,∆ = 1/λ) + ∂qv iRS(qv,∆ = 1/λ)|q?v∂λ(q?v) (3.41)

= ∂λiRS(q?v ,∆ = 1/λ) (3.42)

where we used ∂qv iRS(q,∆ = 1/λ)|q?v = 0. Denoting then I(λv, qv) = lim
p→∞

I
(

v;v+
√

1
λqv

z
)

p we find

∂λiRS(q?v ,∆ = 1/λ) =
(ρv − qv)2

4
+ ∂λI(λv, qv)|q?v (3.43)

We now use the fact that the derivate of the replica mutual information is zero at q?. This implies

λ

2
(ρv − q?v) = ∂qvI(λv, qv)|q?v =

λ

q?v
∂λI(λv, qv)|q?v (3.44)

so that

∂λiRS(q?v ,∆ = 1/λ) =
(ρv − qv)2

4
+

1

2
(ρv − q?v)q?v =

1

4

(
ρ2
v − (q?v)2

)
(3.45)

which proves the claim. �

We now consider the problem of reconstruction the spike itself. In this case the mean square error
reads

Vector−mse(X̂, Y ) =
1

p
‖v− v̂(Y )‖22 (3.46)

Vector−MMSE(Y ) =
1

p
‖v− E[v|Y ]‖22 (3.47)

(3.48)

Taking the square and averaging, we thus find that the asymptotic vector MMSE reads

Vector−MMSE(Y ) = ρv +
‖E[v|Y ]‖22

p
− 2

E[vᵀv?|Y ]

p
= ρv −

E[vᵀv?|Y ]

p
(3.49)

where we have use the Nishimori identity. In order to show that the MMSE is given by ρv − q?v , we
thus needs to show that q?v is indeed equal to E[vᵀv?|Y ]

p .

Fortunately, this is easy done by using Theorem 7 in [16], which apply in our case since it only
depends on the free energy and the Franz-Parisi bound, that we have reproduced in the coupled cases
in the present section. This proposition states the convergence in probability of the overlaps:
Theorem 3.3 (Convergence in probability of the overlap, from [16]). Informally, for the Wigner-
Spikel model:

lim
p→∞

E〈1(|R1,∗| − q?v | ≥ ε)〉 → 0 (3.50)

Note that the absolute value is necessary here, because if the prior is symmetric, is it impossible
to distinguish between v? and −v?. If the prior is not symmetric, then the absolute value can be
removed.
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4 Heuristic derivation of AMP from the two simples AMP algorithms

In this section we present the derivation of the AMP algorithm described in sec. 3 of the main part.
The idea is to simplify the Belief Propagation (BP) equations by expanding them in the large n, p, k
limits. Together with a Gaussian ansatz for the distribution of BP messages, this yields a set of
O
(
k2
)

simplified equations known as relaxed BP (rBP) equations. The last step to get the AMP
algorithm is to remove the target dependency of the messages that further reduces the number of
iterative equations to O (k).

Our derivation is closely related to the derivation of AMP for a series of statistical inference problems
with factorised priors, see for example [1] and references therein. In the interest of the reader, instead
of repeating these steps in detail here we describe how two AMP algorithms derived for independent
inference problems can be composed into a single AMP for a structured inference problem. In
particular, this is illustrated for the case of interest in this manuscript, namely a spiked-matrix
estimation with single-layer generative model prior. In this case, the underlying inference problems
are the rank-one matrix factorization (MF) [1] and the generalized linear model (GLM)[3]. We focus
the derivation on the more general Wishart model (uvᵀ) as the result for the Wigner model (vvᵀ)
flows directly from it.

Factor graph: In order to compose AMP algorithms, the idea is to replace the separable prior Pv
of the variable v in the low-rank MF model by a non-separable prior coming from a GLM model
with channel Pout (see definition in eq. (1.3)), while keeping separable distributions Pu and Pz for
the variables u ∈ Rn and z ∈ Rk.1 Hence to obtain the factor graph of the uvᵀ model, we connect
the factor graphs of the MF (in green) and GLM (in red) models together by means of Pout (in black)
(See Fig. 1).

Pu(uµ) uµ P
(
Yµi| 1√

puµvi

)
vi Pout

(
vi| 1√

k
Wᵀ
i z
)

zl Pz(zl)

Figure 1: Factor graph corresponding to a low-rank matrix factorization layer (green) with a prior
coming from a GLM (red). We stress that in the classical low-rank layer, red part does not exist and
black nodes Pout(vi|.) are replaced by separable prior Pv(vi).

4.1 Heuristic Derivation

We recall the AMP equations for the two modules and we will explain how to plug them together.

AMP equations for the MF layer (variables v and u): Consider the low-rank matrix factorization
model eq. (1.2) with separable priors Pu and Pv for the variables u and v. The corresponding non-

1Note that differently from the replica calculation in sec. 2, to write down the factor graph and derive the
associated AMP algorithm we need to fix beforehand the structure of the prior distribution.
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Bayes-optimal AMP equations, given in [1], read:

ût+1 = fu(Btu, Atu) ,

ĉt+1
u = ∂Bfu(Btu, Atu) ,

v̂t+1 = fv(Btv, Atv) ,

ĉt+1
v = ∂Bfv(Btv, Atv) ,

and



Btv = 1√
pS

ᵀût − 1
p (S2)ᵀĉtuIpv̂t−1 ,

Atv =
[

1
p (S2)ᵀ(ût)2 − 1

pR
ᵀ
(
ĉtu + (ût)2

)]
Ip ,

Btu = 1√
pSv̂t − 1

pS
2ĉtvInût−1 ,

Atu =
[

1
pS

2(v̂t)2 − 1
pR
(
ĉtv + (v̂t)2

)]
In ,

(4.1)

with matrices S and R defined as

Sµi =
Yµi
∆

and Rµi = − 1

∆
+ S2

µi , (4.2)

and the operation (·)2 is taken component-wise. The update function fu is the mean of Qu, defined

in sec. 1.3, and fv is the mean of the distribution Qv(v;B,A) ≡ 1

Zv(B,A)
Pv(v)e−

1
2Av

2+Bv.

AMP equations for the GLM layer (variable z): On the other hand, the non-Bayes-optimal AMP
equations for the GLM model in eq. (1.3), given in [3], read

ẑt+1 = fz(γ
t,Λt)

ĉt+1
z = ∂γfz(γ

t,Λt)

gt = fout (v?,ωt, V t)

and


Λt = − 1

k (W 2)ᵀ∂ωgtIk and γt = 1√
k
W ᵀgt + Λtẑt

V t = 1
k (W 2)ĉtzIp and ωt = 1√

k
W ẑt − V tgt−1

(4.3)
where fz is the mean of Qz defined in SM. 1.3 and fout is the mean of V −1(x− ω) with respect to
Qout (x; v?, ω, V ) = Pout(v

?|x)
Zout(v?,ω,V )e

− 1
2V
−1(x−ω)2

.

Plug and play: In principle composing the AMP equations for the inference problems above is
complicated, and require analyzing the BP equations on the composed factor graph in Fig. 1. However,
the upshot of this cumbersome computation is rather simple: the AMP equations for the composed
model are equivalent to coupling the MF eqs.(4.1) and the GLM eqs.(4.3) by replacing Qv(v;B,A)
and Qout(x;ω, V ) with the following joint distribution:

Qout(v, x;B,A, ω, V ) ≡ 1

Zout(B,A, ω, V )
e−

1
2Av

2+BvPout (v|x) e−
1
2V
−1(x−ω)2

. (4.4)

The associated update functions fv, fout are thus replaced by the mean of v and V −1(x− ω) with
respect to this new joint distribution Qout. Replacing this distribution in both AMP algorithms
eq. (4.1)-(4.3), we obtain the AMP algorithm of the structured model, summarized in the next section.

4.2 Summary of the AMP algorithms - vvᵀ and uvᵀ

Replacing the separable distributionsQu andQout by the joint distribution eq. (4.4) and corresponding
update functions as described above, we obtain the following AMP algorithm for the Wishart model:

4.2.1 Wishart model (uvᵀ):
Input: vector Y ∈ Rn×p and matrix W ∈ Rp×k:
Initialize to zero: (g, û, v̂,Bu, Au,Bv, Av)t=0

Initialize with: ût=1 = N (0, σ2), v̂t=1 = N (0, σ2), ẑt=1 = N (0, σ2),
ĉt=1
u = 1n, ĉt=1

v = 1p, ĉt=1
z = 1k. t = 1

repeat
Spiked layer:
Btu = 1√

pSv̂t − 1
pS

2ĉtvInût−1 and Atu =
[

1
pS

2(v̂t)2 − 1
pR
(
ĉtv + (v̂t)2

)]
In
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Btv = 1√
pS

ᵀût − 1
p (S2)ᵀĉtuIpv̂t−1 and Atv =

[
1
p (S2)ᵀ(ût)2 − 1

pR
ᵀ
(
ĉtu + (ût)2

)]
Ip

Generative layer:
V t = 1

k (W 2)ĉtzIp and ωt = 1√
k
W ẑt − V tgt−1 and gt = fout

(
Btv, Atv,ωt, V t

)
Λt = − 1

k (W 2)ᵀ∂ωgtIk and γt = 1√
k
W ᵀgt + Λtẑt

Update of the estimated marginals:
ût+1 = fu(Btu, Atu) and ĉt+1

u = ∂Bfu(Btu, Atu)

v̂t+1 = fv(Btv, Atv,ωt, V t) and ĉt+1
v = ∂Bfv(Btv, Atv,ωt, V t)

ẑt+1 = fz(γ
t,Λt) and ĉt+1

z = ∂γfz(γ
t,Λt)

t = t+ 1
until Convergence
Output: û, v̂, ẑ

4.2.2 Wigner model (vvᵀ):

The AMP algorithm for the Wigner model can be easily obtained from the one above by simply
taking taking ut = vt, and removing redundant equations:

Input: vector Y ∈ Rp×p and matrix W ∈ Rp×k:
Initialize to zero: (g, v̂,Bv, Av)t=0

Initialize with: v̂t=1 = N (0, σ2), ẑt=1 = N (0, σ2),
ĉt=1
v = 1p, ĉt=1

z = 1k. t = 1
repeat

Spiked layer:
Btv = 1√

pSv̂t − 1
pS

2ĉtvIpv̂t−1 and Atv =
[

1
pS

2(v̂t)2 − 1
pR
(
ĉtv + (v̂t)2

)]
Ip

Generative layer:
V t = 1

k (W 2)ĉtzIp and ωt = 1√
k
W ẑt − V tgt−1 and gt = fout

(
Btv, Atv,ωt, V t

)
Λt = − 1

k (W 2)ᵀ∂ωgtIk and γt = 1√
k
W ᵀgt + Λtẑt

Update of the estimated marginals:
v̂t+1 = fv(Btv, Atv,ωt, V t) and ĉt+1

v = ∂Bfv(Btv, Atv,ωt, V t)

ẑt+1 = fz(γ
t,Λt) and ĉt+1

z = ∂γfz(γ
t,Λt)

t = t+ 1
until Convergence
Output: û, v̂, ẑ

4.3 Simplified algorithms in the Bayes-optimal setting

In the Bayes-optimal setting, it can be shown using Nishimori property (See sec. 3 of [1]) that:

〈R〉 = 0 ⇐⇒ 〈S2〉 =
1

∆
, 〈∂ωgt〉 = −〈(gt)2〉 (4.5)

where 〈·〉 denotes the average with respect to the posterior distribution in eq. (1.8).

Note that the AMP algorithm derived above is also valid for arbitrary weight matrix W ∈ Rp×k. In
the case of interest where Wil ∼

i.i.d.
N (0, 1), we can further simplify E

[
W 2
il

]
= 1. Together, these

simplifications give:

4.3.1 Wishart model (uvᵀ) - Bayes-optimal
Input: vector Y ∈ Rn×p and matrix W ∈ Rp×k:
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Initialize to zero: (g, û, v̂,Bv, Av,Bu, Au)t=0

Initialize with: ût=1 = N (0, σ2), v̂t=1 = N (0, σ2), ẑt=1 = N (0, σ2),
ĉt=1
u = 1n, ĉt=1

v = 1p, ĉt=1
z = 1k. t = 1

repeat
Spiked layer:

Btu = 1
∆

Y√
p v̂t − 1

∆

1ᵀ
p ĉtv
p Inût−1 and Atu = 1

∆
‖v̂t‖22
p In

Btv = 1
∆
Y ᵀ
√
p ût − 1

∆
1ᵀ
n ĉtu
p Ipv̂t−1 and Atv = 1

∆
‖ût‖22
p Ip

Generative layer:
V t = 1

k

(
1
ᵀ
k ĉtz
)

Ip and ωt = 1√
k
W ẑt − V tgt−1 and gt = fout

(
Btv, Atv,ωt, V t

)
Λt = 1

k‖gt‖22Ik and γt = 1√
k
W ᵀgt + Λtẑt

Update of the estimated marginals:
ût+1 = fu(Btu, Atu) and ĉt+1

u = ∂Bfu(Btu, Atu)

v̂t+1 = fv(Btv, Atv,ωt, V t) and ĉt+1
v = ∂Bfv(Btv, Atv,ωt, V t)

ẑt+1 = fz(γ
t,Λt) and ĉt+1

z = ∂γfz(γ
t,Λt)

t = t+ 1
until Convergence
Output: û, v̂, ẑ

4.3.2 Wigner model (vvᵀ) - Bayes-optimal
Input: vector Y ∈ Rp×p and matrix W ∈ Rp×k:
Initialize to zero: (g, v̂,Bv, Av)t=0

Initialize with: v̂t=1 = N (0, σ2), ẑt=1 = N (0, σ2),
ĉt=1
v = 1p, ĉt=1

z = 1k. t = 1
repeat

Spiked layer:

Btv = 1
∆

Y√
p v̂t − 1

∆

1ᵀ
p ĉtv
p v̂t−1 and Atv = 1

∆
‖v̂t‖22
p Ip

Generative layer:
V t = 1

k

(
1
ᵀ
k ĉtz
)

Ip and ωt = 1√
k
W ẑt − V tgt−1 and gt = fout

(
Btv, Atv,ωt, V t

)
Λt = 1

k‖ĝ
t‖22Ik and γt = 1√

k
W ᵀgt + Λtẑt

Update of the estimated marginals:
v̂t+1 = fv(Btv, Atv,ωt, V t) and ĉt+1

v = ∂Bfv(Btv, Atv,ωt, V t)

ẑt+1 = fz(γ
t,Λt) and ĉt+1

z = ∂γfz(γ
t,Λt)

t = t+ 1
until Convergence
Output: v̂, ẑ

4.4 Derivation of the state evolution equations

The AMP algorithms above are valid for any large but finite sizes k, n, p. A central object of interest
are the state evolution equations (SE) that predict the algorithm’s behaviour in the infinite size limit
k → ∞. We show in this section the derivation of these equations, directly from the algorithm to
explicitly show that it provides the same set of equations as the saddle point equations obtained from
the replica free entropy eq. (2.36). As before, we focus on the derivation of the more general Wishart
model uvᵀ, and quote the result for the symmetric vvᵀ. We first derive the SE equations without loss
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of generality in the non-Bayes-optimal case, and we will state them in their simplified formulation in
the Bayes-optimal case.

The idea is to compute the average distributions of the messages involved in the AMP algorithm
updates in sec. (4.2), namely Bu, Au,Bv, Av,ω, V,γ and V . The usual derivation starts with rBP
equations that we did not present here, see [1]. However this equations are roughly equivalent to
AMP messages if we remove the Onsager terms containing messages with delayed time indices
(·)t−1.

Definition of the overlap parameters: We first define the order parameters, called overlaps in the
physics literature, that will measure the correlation of the Bayesian estimator with the ground truth
signals

mt
u ≡ Eu? lim

n→∞

(ût)ᵀu?

n
, qtu ≡ Eu? lim

n→∞

(ût)ᵀût

n
, Σtu ≡ Eu? lim

n→∞

1ᵀ
nĉu,t

n
,

mt
v ≡ Ev? lim

p→∞

(v̂t)ᵀv?

p
, qtv ≡ Ev? lim

p→∞

(v̂t)ᵀv̂t

p
, Σtv ≡ Ev? lim

p→∞

1ᵀ
p ĉv,t

p
, (4.6)

mt
z ≡ Ez? lim

k→∞

(ẑt)ᵀz?

k
, qtz ≡ Ez? lim

k→∞

(ẑt)ᵀẑt

k
, Σtz ≡ Ez? lim

k→∞

1
ᵀ
k ĉz,t

k
.

As the algorithm performance, such as the mean squared error or the generalization error, can be
computed directly from these overlap parameters, our goal is to derive the their average distribution
in the infinite size limit.

Messages distributions: As stressed above, we compute the average distribution of the messages,
taking the average over variables W , ξ, the planted solutions v?,u?, z? and taking the limit k →∞.
Note that we use the BP independence assumption over the messages and keep only dominant terms
in the 1/p expansion.

• Bu, Au: Starting with (4.2.1), we obtain

E
[
Btu
]

=
1√
p∆

E
[
Y v̂t

]
=

1√
p∆

E
[(

u?(v?)ᵀ√
p

+
√

∆ξ

)
v̂t
]
−→
p→∞

mt
v

∆
u? , (4.7)

E
[
Btu(Btu)ᵀ

]
=

1

p∆2
E
[
Y v̂t(v̂t)ᵀY ᵀ

]
=

1

∆

1

p
E
[
ξv̂t(v̂t)ᵀξᵀ

]
+ o (1/p) −→

p→∞

qtv
∆

In , (4.8)

E
[
Atu
]

= E
[

1

p
S2(v̂t)2 − 1

p
R
(
ĉtv + (v̂t)2

)]
In −→

p→∞

qtv
∆

In − R̄ΣtvIn . (4.9)

where we defined, see [1],

R̄ = EP (Y |ω)

[
∂2
ωg + (∂ωg)

2
]
ω=0

=

∫ ∏
1≤i≤p,1≤µ≤n

dYµi eg
?(Yµi,0)

[
∂2
ωg + (∂ωg)

2
]
Y,ω=0

with P (Y |ω), g defined in sec. 2.1 and g? the ground truth channel function. Note that in the
Bayes-optimal case, g? = g that yields R̄ = 0 as mentioned in eq. (2.8).

• Bv, Av: Similarly,

E
[
Btv
]

=
1√
p∆

E
[
Y ᵀût

]
=

1√
p∆

E
[(

u?(v?)ᵀ√
p

+
√

∆ξ

)ᵀ

ût
]
−→
p→∞

β
mt
u

∆
v? , (4.10)

E
[
Btv(Btv)

ᵀ
]

=
1

p∆2
E
[
Y ᵀût(ût)ᵀY

]
−→
p→∞

β
qtu
∆

Ip , (4.11)

E
[
Atv
]

= E
[

1

p
(Sᵀ)2(ût)2 − 1

p
R
(
ĉtu + (ût)2

)]
Ip −→

p→∞
β

(
qtu
∆
− R̄Σtu

)
Ip . (4.12)
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• ω, V :

E
[
ωt
]

= E
[

1√
k
W ẑt

]
= 0p , (4.13)

E
[
ωt(ωt)ᵀ

]
= E

[
1

k
W ẑt(ẑt)ᵀW ᵀ

]
−→
n→∞

qtzIp , (4.14)

E [V ] = E
[

1

k
(W 2)ĉtzIp

]
−→
k→∞

ΣtzIp . (4.15)

Conclusion: Finally we conclude that to leading order:

Bu ∼
mt
v

∆
u? +

√
qtv
∆
ξu , Atu ∼

qtv
∆

In − R̄ΣtvIn , (4.16)

Bv ∼ β
mt
u

∆
v? +

√
β
qtu
∆
ξv , Atv ∼ β

(
qtu
∆
− R̄Σtu

)
Ip , (4.17)

ω ∼
√
qtzη , V ∼ ΣtzIp , (4.18)

with ξu ∼ N (0n, In) , ξv ∼ N (0n, In) ,η ∼ N (0p, Ip).

4.4.1 State evolution - Non Bayes-optimal case

With the averaged limiting distributions of all the messages, we can now compute the state evolution
of the overlaps. Using the definition of the overlaps eq. (4.7) and distributions in eq. (4.18), we
obtain:

Variable u:

qt+1
u ≡ Eu? lim

n→∞

1

n
(ût+1)ᵀût+1 = Eu? lim

n→∞

1

n
fu(Btu, A

t
u)ᵀfu(Btu, A

t
u) (4.19)

= Eu?,ξ

fu(mt
v

∆
u? +

√
qtv
∆
ξ,
qtv
∆
− R̄Σtv

)2


mt+1
u ≡ Eu? lim

n→∞

1

n
(ût+1)ᵀu? = Eu? lim

n→∞

1

n
fu(Btu, A

t
u)ᵀu? (4.20)

= Eu?,ξ

[
fu

(
mt
v

∆
u? +

√
qtv
∆
ξ,
qtv
∆
− R̄Σtv

)
u?

]

Σt+1
u ≡ Eu? lim

n→∞

1

n
1ᵀ
nĉu,t+1 = Eu? lim

n→∞

1

n
∂Bfu(Btu, A

t
u)ᵀ1n (4.21)

= Eu?,ξ

∂Bfu(mt
v

∆
u? +

√
qtv
∆
ξ,
qtv
∆
− R̄Σtv

)2

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Variable v:

qt+1
v = Ev? lim

p→∞

1

p
(v̂t+1)ᵀv̂t+1 = Ev? lim

p→∞

1

p
fv(Btv, A

t
v,ω

t, V t)ᵀfv(Btv, A
t
v,ω

t, V t) (4.22)

= Ev?,ξ,η

fv (βmt
u

∆
v? +

√
βqtu
∆

ξ, β

(
qtu
∆
− R̄Σtu

)
,
√
qtzη,Σ

t
z

)2


mt+1
v = Ev? lim

p→∞

1

p
(v̂t+1)ᵀv̂t+1 = Ev? lim

p→∞

1

p
fv(Btv, A

t
v,ω

t, V t)ᵀv? (4.23)

= Ev?,ξ,η

[
fv

(
βmt

u

∆
v? +

√
βqtu
∆

ξ, β

(
qtu
∆
− R̄Σtu

)
,
√
qtzη,Σ

t
z

)
v?

]

Σt+1
v = Ev? lim

p→∞

1

p
1ᵀ
p ĉz,t+1 = Ev? lim

p→∞

1

p
∂γfv(Btv, A

t
v,ω

t, V t)ᵀ1p (4.24)

= Ev?,ξ,η

∂γfv (βmt
u

∆
v? +

√
βqtu
∆

ξ, β

(
qtu
∆
− R̄Σtu

)
,
√
qtzη,Σ

t
z

)2


Variable ẑ: We define intermediate hat overlap parameters2 that will be useful in the following.
The hat overlaps don’t have as much physical meaning as the standard overlaps that quantify the
reconstruction performances. Though we might notice anyway that all the overlap parameters are
built similarly as function of the update functions fu, fv, fz and fout (See eq. (1.23)

q̂tz ≡ αEv?,ξ,η

fout

(
βmt

u

∆
v? +

√
βqtu
∆

ξ, β

(
qtu
∆
− R̄Σtu

)
,
√
qtzη,Σ

t
z

)2
 (4.25)

m̂t
z ≡ αEv?,ξ,η

[
∂xfout

(
βmt

u

∆
v? +

√
βqtu
∆

ξ, β

(
qtu
∆
− R̄Σtu

)
,
√
qtzη,Σ

t
z

)
v?

]
(4.26)

Σ̂tz ≡ αEv?,ξ,η
[
−∂ωfout

(
βmt

u

∆
v? +

√
βqtu
∆

ξ, β

(
qtu
∆
− R̄Σtu

)
,
√
qtzη,Σ

t
z

)]
(4.27)

Variable z: Averages are explicitly expressed as a function of the hat overlaps introduced just
above:

E
[
γt
]
∼ m̂t

zz? (4.28)

E
[
γt(γt)ᵀ

]
∼ q̂tzIk (4.29)

E
[
Λt
]
∼ Σ̂tzIk (4.30)

And we conclude that at the leading order:

γt ∼ m̂t
zz? +

√
q̂tzξ , Λt ∼ Σ̂tzIk . (4.31)

with ξ ∼ N (0k, Ik).

2These variables appear as well in the replica computation through Dirac delta Fourier representation.
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From these later equations, we obtain

qt+1
z = Ez? lim

k→∞

1

k
(ẑt+1)ᵀẑt+1 = Ez? lim

k→∞

1

k
fz(γ

t,Λt)ᵀfz(γ
t,Λt) (4.32)

= Ez?,ξ
[
fz

(
m̂t
zz
? +

√
q̂tzξ, Σ̂

t
z

)2
]

mt+1
z = Ez? lim

k→∞

1

k
(ẑt+1)ᵀz? = Ez? lim

k→∞

1

k
fz(γ

t,Λt)ᵀz? (4.33)

= Ez?,ξ
[
fz

(
m̂t
zz
? +

√
q̂tzξ, Σ̂

t
z

)
z?
]

Σt+1
z = Ez? lim

k→∞

1

k
1
ᵀ
k ĉz,t+1 = Ez? lim

k→∞

1

k
1
ᵀ
k∂γfz(γ

t,Λt) (4.34)

= Ez?,ξ
[
∂γfz

(
m̂t
zz
? +

√
q̂tzξ, Σ̂

t
z

)]

Equations (4.19- 4.27, 4.32-4.34) constitute the closed set of AMP state evolution equations in the
non-Bayes-optimal case.

4.4.2 State evolution - Bayes-optimal case

In the Bayes-optimal case, the Nishimori property (See sec. 1.1) implies mu = qu, mz = qz ,
mv = qv and m̂z = q̂z , R̄ = 0 and we also note that Σtz = ρz − qtz , Σ̂tz = q̂tz . The set of twelve state
evolution equations reduce to only four, and they can be rewritten using a change of variable.

Wishart model

qt+1
u = Eξ

Zu(√qtv
∆
ξ,
qtv
∆

)
fu

(√
qtv
∆
ξ,
qtv
∆

)2
 (4.35)

= 2∂qvΨu

(
qtv
)
,

qt+1
z = Eξ

[
Zz
(√

q̂tzξ, q̂
t
z

)
fz

(√
q̂zξ, q̂

t
z

)2
]

(4.36)

= 2∂q̂zΨz

(
q̂tz
)
,

q̂tz = αEξ,η

Zout

(√
βqtu
∆

ξ, β
qtu
∆
,
√
qtzη, ρz − qtz

)
fout

(√
βqtu
∆

ξ, β
qtu
∆
,
√
qtzη, ρz − qtz

)2


(4.37)

= 2α∂qzΨout

(
βqtu
∆

, qtz

)
,

qt+1
v = Eξ,η

Zout

(√
βqtu
∆

ξ, β
qtu
∆
,
√
qtzη, ρz − qtz

)
fv

(√
βqtu
∆

ξ, β
qtu
∆
,
√
qtzη, ρz − qtz

)2

(4.38)

= 2∂quΨout

(
βqtu
∆

, qtz

)
.
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Wigner model

The state evolution for the Wigner model (vvᵀ) is a particular case of the state evolution of the
Wishart model discussed above, obtained by simply restricting qu = qv and β = 1. It finally reads

qt+1
z = Eξ

[
Zz
(√

q̂tzξ, q̂
t
z

)
fz

(√
q̂tzξ, q̂

t
z

)2
]

(4.39)

= 2∂q̂zΨz

(
q̂tz
)
,

q̂tz = αEξ,η

Zout

(√
qtv
∆
ξ,
qtv
∆
,
√
qtzη, ρz − qtz

)
fout

(√
qtv
∆
ξ,
qtv
∆
,
√
qtzη, ρz − qtz

)2
 (4.40)

= 2α∂qzΨout

(
qtv
∆
, qtz

)
,

qt+1
v = Eξ,η

Zout

(√
qtv
∆
ξ,
qtv
∆
,
√
qtzη, ρz − qtz

)
fv

(√
qtv
∆
ξ,
qtv
∆
,
√
qtzη, ρz − qtz

)2
 (4.41)

= 2∂qvΨout

(
qtv
∆
, qtz

)
,

which are precisely the state evolution equations derived from the replica trick in sec. 2, eq. (2.36),
except that the algorithm provides the correct time indices in which the iterations should be taken.
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5 Heuristic derivation of LAMP

We present in this section the derivation of the linearized-AMP (LAMP) spectral algorithm. This
method, pioneered in [17], relies on the existence of the non-informative fixed point of the SE
equations eq. (2.40), qv = 0 that translates to v̂ = 0 in the AMP equations. Linearizing the Bayes-
optimal AMP equations for the Wigner and Wishart models eq. (4.3.2)-(4.3.1) around this trivial
fixed point will lead to the LAMP spectral method. First, we detail the calculation for the simpler
Wigner model, and then generalize the spectral algorithm in the Wishart case. Finally, we derive the
state evolution associated to spectral method in the case of linear activation function.

5.1 Wigner model: vvᵀ

We start deriving the existence conditions of the trivial non-informative fixed point in the Wigner
model eq. (1.1), that refers to eq. (2.41) in the main part. These conditions can be alternatively
derived from the SE eqs. (6.8)-(6.9) - see sec. 6.

Existence of the uninformative fixed point: Consider v̂ = 0. We obtain easily from the algorithm
(4.3.2), (Bv, Av) = (0, 0), leading to g = fout (0, 0,ω, V ) = EQ0

out
[(x − ω)] = 0, and (γ,Λ) =

(0, 0). Finally, inserting these values in the update functions fout and fv, defined in eq. (1.23), we
obtain sufficient conditions to get the trivial fixed point in the Wigner model:

(v̂, ẑ) = (0, 0) if C ≡
{

EQ0
out

[v] = 0 and EPv [z] = 0
}
. (5.1)

Linearization: To lighten notation, we denote with |? quantities that are evaluated at
(Bv, Av,ω, V,γ,Λ) = (0, 0, 0, ρzIp, 0, 0), and we linearize the equations of the AMP algorithm
4.3.2 around the fixed point

(v̂, ĉv) = (0, ρvIp), (ẑ, ĉz) = (0, ρzIk), (5.2)
(Bv, Av) = (0, 0), (γ,Λ) = (0, 0), (ω, V, g) = (0, ρzIp, 0) . (5.3)

In a scalar formulation, the linearization yields

δv̂t+1
i = ∂Bfv|?δBv,ti + ∂Afv|?δAv,ti + ∂ωfv|?δωti + ∂V fv|?δV ti , (5.4)

δĉv,t+1
i = ∂2

B,Bfv|?δBv,ti + ∂2
A,Bfv|?δAv,ti + ∂2

ω,Bfv|?δωti + ∂2
V,Bfv|?δV ti , (5.5)

δẑt+1
l = ∂γfz|?δγtl + ∂Λfz|?δΛtl , (5.6)

δĉz,t+1
i = ∂2

γ,γfz|?δγtl + ∂2
Λ,γfz|?δΛtl , (5.7)

δgti = ∂Bfout|?δBv,ti + ∂Afout|?δAv,ti + ∂ωfout|?δωti + ∂V fout|?δV ti , (5.8)

with

δBv,ti =
1

∆

p∑
j=1

Yji√
p
δv̂tj −

1

∆

 p∑
j=1

ĉv,tj |?
p

 δv̂t−1
i − 1

∆

 p∑
j=1

δĉv,tj
p

 v̂t−1
i |? , (5.9)

δAv,t =
2

∆

p∑
j=1

v̂tj |?δv̂tj
p

= 0 , (5.10)

δωti =
1√
k

k∑
l=1

Wilδẑtl − δV ti gt−1
i |? − V ti |?δgt−1

i , (5.11)

δV t =
1

k

k∑
l=1

δĉz,tl , (5.12)

δΛt =
2

k

p∑
i=1

gti|?δgti = 0 , (5.13)

δγtl =
1√
k

p∑
i=1

Wilδgti + δΛtl ẑ
t
l |? + Λtl |?δẑtl . (5.14)
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These equations can be simplified and closed over three vectorial variables v̂ ∈ Rp, ẑ ∈ Rk and
ω ∈ Rp, where we used the existence condition C that leads to ∂ωfout|? = ∂V fout|? = 0. Finally,
injecting eq. (5.9)-(5.14) in (5.4), (5.6), (5.11) we obtain

δv̂t+1 =
1

∆
∂Bfv|?

(
Y√
p
δv̂t − ∂Bfv|?Ipδv̂t−1

)
+ ∂ωfv|?Ipδωt +

∂V fv|?∂2
γ,γfz|?

∂γfz|?
1p1

ᵀ
k

k
δẑt ,

(5.15)

δẑt+1 =
1

∆
∂γfz|?∂Bfout|?

W ᵀ

√
k

[
Y√
p
δv̂t − ∂Bfv|?Ipδv̂t−1

]
, (5.16)

δωt+1 =
1

∆

(
∂γfz|?∂Bfout|?

WW ᵀ

k

[
Y√
p
δv̂t − ∂Bfv|?Ipδv̂t−1

])
− (5.17)

∂γfz|?∂Bfout|?
[
Y√
p
δv̂t−1 − ∂Bfv|?Ipδv̂t−2

]
.

Conclusion: This set of equations involves partial derivatives of fv, fz and fout that can be
simplified using the condition C, and rewritten as moments of the distributions Pz and Qout:

∂γfz|? = EPz
[
z2
]

= ρz ,

∂2
γ,γfz|? = −2∂Λfz|? = EPz

[
z3
]
,

∂ωfout|? = ∂V fout|? = 0 ,

and



∂Bfv|? = EQ0
out

[v2] = ρv ,

∂ωfv|? = ∂Bfout|? = ρ−1
z EQ0

out
[vx] ,

∂V fv|? = 1
2ρ
−2
z EQ0

out
[vx2] .

(5.18)

Injecting eq. (5.17)-(5.16) in (5.15), we finally obtain a closed equation over v̂. Forgetting time
indices, it leads the definition of the LAMP operator as

Γvvp =
1

∆

(
(a− b)Ip + b

WW ᵀ

k
+ c

1p1
ᵀ
k

k

W ᵀ

√
k

)
×
(
Y√
p
− aIp

)
, (5.19)

with

a ≡ EQ0
out

[v2] = ρv , b ≡ ρ−1
z EQ0

out
[vx]2 , c ≡ 1

2
ρ−3
z EPz

[
z3
]
EQ0

out
[vx2]EQ0

out
[vx] . (5.20)

Note that in most of the cases we studied, the parameter c, taking into account the skewness of
the variable z, is zero, simplifying considerably the structured matrix as discussed in the main part.
Taking the leading eigenvector of the operator Γvvp leads to the LAMP algorithm.

Applications: Consider a gaussian Pz = Nz (0, 1) or binary Pz = 1
2 (δ(z − 1) + δ(z + 1)) prior,

for which ρz = 1. Taking a noiseless channel Pout(v|x) = δ (v − ϕ(x)), condition C is verified, and
we obtain simple and explicit coefficients

• Linear activation (ϕ(x) = x): (a, b, c) = (1, 1, 0) .
• Sign activation (ϕ(x) = sgn(x)): (a, b, c) = (1, 2/π, 0) .

5.2 Wishart model: uvᵀ

In this section, we generalize the previous derivation of the LAMP spectral algorithm for the Wishart
model in eq. (1.2). The strategy is exactly the same: it follows from linearizing the AMP algorithm
4.3.1 in its Bayes-optimal version around the trivial fixed point. Except that in this case there are
more equations to deal with.

Existence of the uninformative fixed point: Consider (û, v̂) = (0, 0). Injecting this condition in
the algorithm’s equations, we simply obtain (Bu, Au,Bv, Av) = (0, 0, 0, 0). However, we now need
EPu [u] = 0 for this to be consistent with the update equation for ût+1. Besides, this also implies
g = fout (0, 0,ω, V ) = EQ0

out
[(x − ω)] = 0, and (γ,Λ) = (0, 0). Finally, putting all conditions
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together in the update equations involving fv, fu and fout, defined in eq. (1.23), we arrive at the
following sufficient conditions for the existence of the uninformative fixed point in the Wishart model:

(v̂, ẑ) = (0, 0) if C ≡
{

EQ0
out

[v] = 0 , EPv [z] = 0 and EPu [u] = 0
}
. (5.21)

Linearization: As previously, to lighten notations we denote |? quantities that are evaluated at
(Bu, Au,Bv, Av,ω, V,γ,Λ) = (0, 0, 0, 0, 0, ρzIp, 0, 0). We linearize AMP equations algorithm
4.3.1 around the fixed point

(û, ĉu) = (0, ρuIn), (v̂, ĉv) = (0, ρvIp), (ẑ, ĉz) = (0, ρzIk), (5.22)
(Bu, Au) = (0, 0), (Bv, Av) = (0, 0), (γ,Λ) = (0, 0), (ω, V, g) = (0, ρzIp, 0) . (5.23)

In a scalar formulation, linearization yields four additional equations over the u variable:

δût+1
µ = ∂Bfu|?δBu,tµ + ∂Afu|?δAu,tµ , (5.24)

δĉu,t+1
µ = ∂2

B,Bfu|?δBu,tµ + ∂2
A,Bfu|?δAu,tµ , (5.25)

δv̂t+1
i = ∂Bfv|?δBv,ti + ∂Afv|?δAv,ti + ∂ωfv|?δωti + ∂V fv|?δV ti , (5.26)

δĉv,t+1
i = ∂2

B,Bfv|?δBv,ti + ∂2
A,Bfv|?δAv,ti + ∂2

ω,Bfv|?δωti + ∂2
V,Bfv|?δV ti , (5.27)

δẑt+1
l = ∂γfz|?δγtl + ∂Λfz|?δΛtl , (5.28)

δĉz,t+1
i = ∂2

γ,γfz|?δγtl + ∂2
Λ,γfz|?δΛtl , (5.29)

δgti = ∂Bfout|?δBv,ti + ∂Afout|?δAv,ti + ∂ωfout|?δωti + ∂V fout|?δV ti , (5.30)

and

δBu,tµ =
1

∆

p∑
i=1

Yµi√
p
δv̂ti −

1

∆

(
p∑
i=1

ĉv,ti |?
p

)
δût−1
µ − 1

∆

(
p∑
i=1

δĉv,ti
p

)
ût−1
µ |? , (5.31)

δAu,t =
2

∆

p∑
i=1

v̂ti|?δv̂ti
p

= 0 , (5.32)

δBv,ti =
1

∆

n∑
µ=1

Yµi√
p
δûtµ −

1

∆

(
n∑
µ=1

ĉu,tµ |?
p

)
δv̂t−1
i − 1

∆

(
n∑
µ=1

δĉu,tµ
p

)
v̂t−1
i |? , (5.33)

δAv,t =
2

∆

n∑
µ=1

ûtµ|?δûtµ
p

= 0 , (5.34)

δωti =
1√
k

k∑
l=1

Wilδẑtl − δV ti gt−1
i |? − V ti |?δgt−1

i , (5.35)

δV t =
1

k

k∑
l=1

δĉz,tl , (5.36)

δΛt =
2

k

p∑
i=1

gti |?δgti = 0 , (5.37)

δγtl =
1√
k

p∑
i=1

Wilδgti + δΛtl ẑ
t
l |? + Λtl |?δẑtl . (5.38)

These equations can be closed over four vectorial variables û ∈ Rn, v̂ ∈ Rp, ẑ ∈ Rk and ω ∈ Rp,
where we used the existence condition C leading again to ∂ωfout|? = ∂V fout|? = 0. Finally, injecting
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eq. (5.31)-(5.38) in (5.24), (5.26), (5.28), (5.35) we obtain:

δût+1 =
1

∆
∂Bfu|?

(
Y√
p
δv̂t − ∂Bfv|?Inδût−1

)
, (5.39)

δv̂t+1 =
1

∆
∂Bfv|?

(
Y ᵀ

√
p
δût − β∂Bfu|?Ipδv̂t−1

)
+ ∂ωfv|?Ipδωt +

∂V fv|?∂2
γ,γfz|?

∂γfz|?
1p1

ᵀ
k

k
δẑt ,

(5.40)

δẑt+1 =
1

∆
∂γfz|?∂Bfout|?

W ᵀ

√
k

[
Y ᵀ

√
p
δût − β∂Bfu|?Ipδv̂t−1

]
, (5.41)

δωt+1 =
1

∆

(
∂γfz|?∂Bfout|?

W ᵀ

√
k

[
Y ᵀ

√
p
δût − β∂Bfu|?Ipδv̂t−1

])
− (5.42)

∂γfz|?∂Bfout|?
[
Y ᵀ

√
p
δût−1 − β∂Bfu|?Ipδv̂t−2

]
.

Conclusion: This set of equations involves partial derivatives of fu, fv , fout that can be simplified
using the condition C and rewritten as moments of distributions Pu, Pz and Qout:

∂γfz|? = EPz
[
z2
]

= ρz ,

∂2
γ,γfz|? = −2∂Λfz|? = EPz

[
z3
]
,

∂ωfout|? = ∂V fout|? = 0 ,

∂Bfu|? = EPu [u2] = ρu ,

and



∂Bfv|? = EQ0
out

[v2] = ρv ,

∂ωfv|? = ∂Bfout|? = ρ−1
z EQ0

out
[vx] ,

∂V fv|? = 1
2ρ
−2
z EQ0

out
[vx2] .

(5.43)

Injecting eq. (5.42),(5.41)-(5.39) in (5.40), we finally obtain a self-consistent equation over v̂ that,
forgetting time indices, leads to define the following LAMP structured matrix, from which we need
to compute the top eigenvector:

Γuvp =
1

∆

(
(a− b)Ip + b

WW ᵀ

k
+ c

1p1
ᵀ
k

k

W ᵀ

√
k

)
×
(

1

a+ ∆
d

Y ᵀY

p
− dβIp

)
, (5.44)

with

a ≡ ρv , c ≡ 1

2
ρ−3
z EPz

[
z3
]
EQ0

out
[vx2]EQ0

out
[vx], b ≡ ρ−1

z EQ0
out

[vx]2 , d ≡ ρu . (5.45)

Applications: Consider a gaussian Pz, Pu = N (0, 1) or binary Pz, Pu = 1
2 (δ(z − 1) + δ(z + 1))

prior, for which ρz = ρu = 1. For a noiseless channel Pout(v|x) = δ (v − ϕ(x)), we obtain the
following simple and explicit coefficients:

• Linear, ϕ(x) = x: (a, b, c, d) = (1, 1, 0, 1)

• Sign, ϕ(x) = sgn(x): (a, b, c, d) = (1, 2/π, 0, 1)

5.3 State evolution equations of LAMP and PCA - linear case

In this section we describe how to obtain the limiting behaviour of the LAMP spectral method for
the Wigner model in the large size limit p→∞. We will show that in the linear case, mean squared
errors of LAMP and PCA are directly obtained from the optimal overlap performed by AMP or its
state evolution. Recall that the numerical simulations of LAMP and PCA are compared with their
state evolution in Fig. 3, with green and red lines respectively.

LAMP: For the noiseless linear channel Pout(v|x) = δ (v − x), the set of eqs. (5.15-5.17) are
already linear, and do not require linearizing as above. Hence the LAMP spectral method flows
directly from the AMP eqs. (4.3.2). As a consequence, this means that the state evolution equations
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associated to the spectral method are simply dictated by the set of AMP state evolution equations
from sec. 5.1. However, it is worth stressing that the LAMP MSE is not given by the AMP mean
squared error, as LAMP returns a normalized estimator. We now compute the overlaps and mean
squared error performed by this spectral algorithm.

Recall that mv and qv are the parameters defined in eq. (4.7), that respectively measure the overlap
between the ground truth v? and the estimator v̂, and the norm of the estimator. In eq. (3.49), the
MSE is given by:

MSEv = ρv + Ev? lim
p→∞

1

p
‖v̂‖22 − 2Ev? lim

p→∞

1

p
v̂ᵀv? (5.46)

= ρv + qv − 2mv , (5.47)

However the LAMP spectral method computes the normalized top eigenvector of the structured matrix
Γp. Hence the norm of the LAMP estimator is ‖v̂‖2LAMP = qv,LAMP = 1, while the Bayes-optimal
AMP estimator is not normalized with ‖v̂‖2AMP = q?v,AMP = m?

v,AMP 6= 1, solutions of eq. (5.1). As
the non-normalized LAMP estimator follows AMP state evolutions in the linear case, the overlap
with the ground truth is thus given by:

mv,LAMP ≡ Ev? lim
p→∞

1

p
v̂ᵀLAMPv? = Ev? lim

p→∞

1

p

(
v̂AMP

‖v̂‖AMP

)ᵀ

v? (5.48)

=
m?
v,AMP(

q?v,AMP

)1/2
=
(
m?
v,AMP

)1/2
. (5.49)

Finally the mean squared error performed by the LAMP method is easily obtained from the optimal
overlap reached by the AMP algorithm and yields

MSEv,LAMP = ρv + 1− 2
(
q?v,AMP

)1/2
. (5.50)

PCA: Similarly, in the noiseless linear channel case, we note that at α = 0, LAMP reduces exactly
to PCA, i.e. it consists in finding the top eigenvector of Y , instead Γp. As LAMP follows AMP in
this case, we can simply state that the mean squared error performed by PCA is computed using the
optimal overlap reached by AMP at α = 0:

MSEv,PCA = ρv + 1− 2
(
q?v,AMP|α=0

)1/2
. (5.51)
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6 Transition from state evolution - stability

In this section we derive sufficient conditions for the existence of the uninformative fixed point
(qv, q̂z, qz) = (0, 0, 0) from the state evolution eqs. (15). In the case (0, 0, 0) is a fixed point, we
derive its stability, obtaining the Jacobian in eq. (2.42). Its eigenvalues determine the regions for
which (0, 0, 0) is stable and unstable, and therefore the critical point ∆c where the transition occurs.

For the purpose of our analysis we define the following shorthand notation for the update functions,

f (r, t, s) ≡
(
f1 (r, s)
f2 (r, s)
f3 (t)

)
(6.1)

where (f1, f2, f3) are explicitly given by

f1(r, s) = 2∂rΨout(r, s) = Eξ,η


(∫

dv e−
r
2 v

2+
√
rvξ
∫ dx√

2π(ρz−s)
e−

1
2

(x−
√
sη)2

ρz−s Pout(v|x)v

)2

∫
dv e−

r
2 v

2+
√
rvξ
∫ dx√

2π(ρz−s)
e−

1
2

(x−
√
sη)2

ρz−s Pout(v|x)



f2(r, s) = 2α∂sΨout(r, s) = αEξ,η


(∫

dv e−
r
2 v

2+
√
rvξ
∫ dx√

2π(ρz−s)
e−

1
2

(x−
√
sη)2

ρz−s Pout(v|x)(x−√sη)

)2

∫
dv e−

r
2 v

2+
√
rvξ
∫ dx√

2π(ρz−s)
e−

1
2

(x−
√
sη)2

ρz−s Pout(v|x)


f3(t) = 2∂tΨz(t) = Eξ


(∫

dx Pz(z)e−
t
2 z

2+
√
tzξz

)2

∫
dx Pz(z)e−

t
2 z

2+
√
tξz

 (6.2)

In terms of these, the right-hand side of the state evolution equations is given by evaluating (r, t, s) =(
qv
∆ , q̂z, qz

)
.

6.1 Conditions for fixed point

Note that the denominator in the first two state evolution equations is actually constant at r = 0,∫
dv
∫

dx√
2πρz

e−
1

2ρz
x2

Pout(v|x) =

∫
dx√
2πρz

e−
1

2ρz
x2

(∫
dv Pout(v|x) =

∫
dx√
2πρz

e−
1

2ρz
x2

)
= 1.

(6.3)

And in particular, this means that

f2(0, s) = Eξ,η
(∫

dv
∫

dx√
2πρz

e−
1

2ρz
x2

Pout(v|x)
(
x−√sη

))2

= Eξ,η
(∫

dx√
2πρz

e−
1

2ρz
x2 (

x−√sη
) ∫

dv Pout(v|x)

)2

= Eξ,η
(∫

dx√
2πρz

e−
1

2ρz
x2 (

x−√sη
))2

= 0 (6.4)

for any value of s ∈ R. In terms of the overlaps, this means that if qu is a fixed point, we necessarily
have q̂z = 0. What is the implication for qz? We need to look at f3(q̂z = 0), which is simply given
by

f3(0) = Eξ
(∫

dx Pzz
)2

. (6.5)

This means that if qu = 0 and Pz has zero mean, then qz = 0. It remains to check what is a sufficient
condition for qu = 0 to be a fixed point. This is the case if

f1(0, 0) = Eξ,η
(∫

dv
∫

dx√
2πρz

e−
1

2ρz
x2

Pout(v|x)v

)2
!
= 0 (6.6)
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implying∫
dv
∫

dx√
2πρz

e−
1

2ρz
x2

Pout(v|x)v =

∫
dx√
2πρz

e−
1

2ρz
x2

(∫
dv Pout(v|x)v

)
!
= 0 (6.7)

Therefore a set of sufficient conditions for (qu, q̂z, qz) = (0, 0, 0) to be a fixed point of the state
evolution equations are

EPzz =

∫
dx Pz(z)z = 0 (6.8)

EQ0
out
v =

∫
dv
∫

dx√
2πρz

e−
1

2ρz
x2

Pout(v|x)v = 0 (6.9)

note that the last condition is equivalent to requiring the function m(x) = EPoutv to be odd.

6.2 Stability analysis

We now study the stability of the fixed point (r, t, s) = (0, 0, 0), which is determined by the
linearisation of the state evolution equations. But before, to help in the analysis we introduce notation.

Some notation It will be useful to introduce the following notation for the denoising functions in
eq. (1.16) evaluated at the overlaps:

Q
(r,s)
out (v, x; ξ, η) =

1

Z(r,s)
out (ξ, η)

e−
r
2u

2+
√
rξu 1√

2π(ρz − s)
e−

1
2

(x−
√
sη)2

ρz−s Pout(v|x) (6.10)

Qtz(z; ξ) =
1

Ztz(ξ)
e−

t
2 z

2+
√
tξzPz(z) (6.11)

where Z(r,s)
out and Zz are the normalisation of the distributions, given explicitly by

Z(r,s)
out (ξ, η) =

∫
dv e−

r
2 v

2+
√
rvξ

∫
dx√

2π(ρz − s)
e−

1
2

(x−
√
sη)2

ρz−s Pout(v|x)

Ztz(ξ) =

∫
dx Qtz(z; ξ) =

∫
dx Pz(z)e−

t
2 z

2+
√
tξz (6.12)

Note that Qout is a family of joint distributions over (v, x), indexed by r, s ∈ [0, 1]. It will be useful
to have in mind the following particular cases,

Q
(0,s)
out (v, x; η) =

1√
2π(ρz − s)

e−
1
2

(x−
√
sη)2

ρz−s Pout(v|x) (6.13)

Q
(r,0)
out (v, x; ξ) =

1

Z(r,0)
out (ξ, η)

e−
r
2 v

2+
√
rvξ 1√

2πρz
e−

1
2ρz

x2

(6.14)

where we have used that Z(0,s)
out (η, ξ) = 1 (as shown above). It is also useful to define short hands to

the associated distributions when we evaluate both (r, s) = (0, 0),

Q0
out(v, x) = Q

(0,0)
out (v, x; ξ, η) =

1√
2πρz

e−
1

2ρz
x2

Pout(v|x) (6.15)

while Q0
z(z; ξ) = Pz(z). Note that they are indeed independent of the noises, and that in particular

we have Z0
z (ξ) = 1.

In this notation the condition in eq. (6.9) simply reads that v has mean zero with respect to the Q0
out,

EQ0
out
v = 0 (6.16)

Expansion around the fixed point

We now suppose (r, t, s) = (0, 0, 0) is a fixed point of the state evolution equations, i.e. that the
conditions in eqs. (6.8) and (6.9) hold. We are interested in the leading order expansion of the update
functions (f1, f2, f3) around this point.
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Expansion of f1: Since (f1, f2) are functions of (r, s) only, we look them separately first. Instead
of expanding around (r, s) = (0, 0) together, we first expand around r = 0 keeping s fixed. This
allow us to take the average over ξ explicitly simplifying the expansion considerably,

f1(r, s) =
r�1

Eη
{(

E
Q

(0,s)
out

v
)2

+

[(
E
Q

(0,s)
out

v
)4

+
(
E
Q

(0,s)
out

v2
)2

− 2
(
E
Q

(0,s)
out

v
)2

E
Q

(0,s)
out

v2

]
r +O

(
r3/2

)}
(6.17)

We can now focus on the leading order expansion around s = 0. Note we have,

E
Q

(0,s)
out

v =

∫
dv
∫

dx√
2π(ρz − s)

e−
1
2

(x−
√
sη)2

ρz−s Pout(v|x) v

=
s�1

Eρv0v +

√
sη

ρz
EQ0

out
vx− s

2

η2 − 1

ρ2
z

(
ρzEQ0

out
v − EQ0

out
x2v
)

+O
(
s3/2

)
(6.18)

=

√
sη

ρz
EQ0

out
vx+

s

2

η2 − 1

ρ2
z

EQ0
out
x2v +O

(
s3/2

)
(6.19)

where we used the consistency condition in eq. (6.16) that ensures (r, s) = (0, 0) is indeed a
fixed point. Moreover, the leading order term in the expansion of E

Q
(0,s)
out

v is O(s1/2), therefore(
E
Q

(0,s)
out

v
)2

∼ O(s) and
(
E
Q

(0,s)
out

v
)4

∼ O
(
s2
)
. Expanding now eq. (6.17) to leading order in y

gives

f1(r, s) =
r,s�1

Eη
[
s

ρ2
z

η2
(
EQ0

out
vx
)2

+ r
(
Eρv0v

2
)2

+O
(
r3/2, s3/2

)]
=

s

ρ2
z

(
EQ0

out
vx
)2

+ r
(
Eρv0v

2
)2

+O
(
r3/2, s3/2

)
(6.20)

From this expansion we read the first two entries of the Jacobian,

∂rf1|(0,0) =
(
EQ0

out
v2
)2

∂sf1|(0,0) =
1

ρ2
z

(
EQ0

out
vx
)2

(6.21)

Expansion of f2: For f2, we start by expanding with respect to s, allowing us to take the average
with respect to η explicitly,

f2(r, s) =
s�1

αEξ
{(

E
Q

(r,0)
out

x
)2

+
s

2ρ2
z

[
2
(
E
Q

(r,0)
out

x
)4

− 4
(
E
Q

(r,0)
out

x
)2

E
Q

(r,0)
out

x2 + 2
(
E
Q

(r,0)
out

x2 − ρz
)2
]}

(6.22)

We can now focus on the leading order expansion around r = 0. Note that

E
Q

(r,0)
out

x =
r�1

EQ0
out
x+
√
rξEQ0

out
xv +

r

2
(ξ2 − 1)EQ0

out
xv2 +O

(
r3/2

)
(6.23)

=
√
rξEQ0

out
xv +

r

2
(ξ2 − 1)EQ0

out
xv2 +O

(
r3/2

)
(6.24)

since

EQ0
out
x =

∫
dv
∫

dx√
2πρz

e−
1

2ρz
x2

Pout(v|x)x =

∫
dx√
2πρz

e−
1

2ρz
x2

x = 0. (6.25)

Therefore the leading order term is of order O(r1/2), and
(
EQ0

out
x
)2 ∼ O(s),

(
EQ0

out
x
)4 ∼ O(s2).

Expanding now eq. (6.22) in r � 1,

f2(r, s) =
x,s�1

αEξ
[
xξ2

(
EQ0

out
vx
)2

+
s

ρ2
z

(
EQ0

out
x2 − ρz

)2]
+O

(
r3/2, s3/2

)
(6.26)

= rα
(
EQ0

out
vx
)2

+
s

ρ2
z

α
(
EQ0

out
x2 − ρz

)2
+O

(
r3/2, s3/2

)
(6.27)

From this expansion we can read the second two entries of the Jacobian,

∂rf2|(0,0) = α
(
EQ0

out
vx
)2

∂sf2|(0,0) =
α

ρ2
z

(
EQ0

out
x2 − ρz

)2
(6.28)
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Expansion of f3: Note that f3 is independent of (r, s), so it can be treated separately. Expanding
in t� 1 gives

f3(t) = Eξ

[
1

Ztz

(∫
dx Pz(z)e−

t
2 z

2+
√
tzξz

)2
]

=
t�1

(
EPzz2

)2
t+O(t3/2) (6.29)

where we have used the consistency condition in eq. (6.8). Therefore

∂tf3|t=0 =
(
EPzz2

)2
(6.30)

Bringing the overlaps back

In our problem, we have

r =
qu
∆

t = q̂z s = qz (6.31)

and therefore the partial derivatives have to be re-scaled,
∂r = ∆∂qu ∂t = ∂q̂z ∂s = ∂qz (6.32)

And therefore the Jacobian of the problem is

df(0, 0, 0) =


1
∆

(
EQ0

out
v2
)2

0 1
ρ2
z

(
EQ0

out
vx
)2

α
∆

(
EQ0

out
vx
)2

0 α
ρ2
z

(
EQ0

out
x2 − ρz

)2
0

(
EPzz2

)2
0

 (6.33)

6.3 Jacobian for the uvᵀ model

The main difference in the Wishart model is that the state evolution is given in terms of four variables
(p, r, t, s) ≡

(
qu
∆ , β

qv
∆ , qz, q̂z

)
, with the update functions given by

f(p, r, t, s) =

 f0(r)
f1(p, s)
f2(p, s)
f3(t)

 = 2

 ∂rΨu(r)
∂pΨout(p, s)
α∂sΨout(p, s)
∂tΨz(t)

 . (6.34)

Note that (f1, f2, f3) are exactly as before, with the only difference that (f1, f2) are now evaluated
at p instead of r. The only new function is f0, which depends only on r. This means that the new
column in the Jacobian is orthogonal to all the other columns, with a single non-zero entry given by
∂rf0|r=0. An easy expansion of f0 to first order together with the definitions of (p, r, t, s) yield

df(0, 0, 0, 0) =


0 1

∆

(
EPuu2

)2
0 0

β
∆

(
EQ0

out
v2
)2

0 0 1
ρ2
z

(
EQ0

out
vx
)2

βα
∆

(
EQ0

out
vx
)2

0 0 α
ρ2
z

(
EQ0

out
x2 − ρz

)2
0 0

(
EPzz2

)2
0

 . (6.35)

6.4 Transition points for specific activations

The transition point ∆c is defined as the point in which the uninformative point goes from being
stable to unstable. The stability is determined in terms of the eigenvalues of the Jacobian: a fixed
point is stable when the eigenvalues are smaller than one, and is unstable when the leading eigenvalue
becomes greater than one.

It is instructive to look at ∆c in specific cases. We let Pu = Pz = N (0, 1) together with Pout(v|x) =
δ (v − ϕ(x)) and look at different (odd) activation functions ϕ.

Linear activation: Let ϕ(x) = x. In this case the transition is ∆c = α+ 1 in the Wigner model
(vvᵀ) and ∆c =

√
β(α+ 1) in the Wishart model (uvᵀ)

Sign activation: Let ϕ(x) = sgn(x). In this case the transition is ∆c = 1 + 4
π2α in the Wigner

model (vvᵀ) and ∆c =
√
β
(
1 + 4

π2α
)

in the Wishart model (uvᵀ).
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7 Random matrix analysis of the transition

In this section, we describe how we can derive the value ∆c at which a transition appears in the
recovery for a linear activation function, for both the symmetric vvᵀ and non-symmetric uvᵀ case,
purely from a random matrix theory analysis. This transition is in essence similar to the celebrated
Baik-Ben Arous-Péché (BBP) transition of the largest eigenvalue of a spiked Wishart (or Wigner)
matrix [18].

7.1 A reminder on the Stieltjes transform

Let C+ = {z ∈ C, Im z > 0}. For any probability measure ν on R, and any z ∈ C\supp ν, we can
define the Stieltjes transform of ν as:

gν(z) ≡ Eν
1

X − z .

Note that gν(z) is a one-to-one mapping of C+ on itself. The Stieltjes transform has proven to be
a very useful tool from random matrix theory. One of its important features, that we will use to
compute the bulk density (see Fig. (3) of the main material) is the Stieltjes-Perron inversion formula,
that we state here (see Theorem X.6.1 of [19]):
Theorem 7.1 (Stieltjes-Perron). Assume that ν has a continuous density on R with respect to the
Lebesgue measure. Then:

∀x ∈ R,
dν

dx
= lim
ε→0+

1

π
Im gν(x+ iε).

Informally, one has to think that the knowledge of the Stieltjes transform above the real line uniquely
determines the measure ν. The Stieltjes transform is particulaly useful in random matrix theory.
Consider a (random) symmetric matrix M of size n, with real eigenvalues {λi}. Then the empirical
spectral measure of M is defined as:

νn ≡
1

n

n∑
i=1

δλi . (7.1)

For some random matrix ensembles, the (random) probability measure νn will converge almost surely
and in the weak sense to a deterministic probability measure ν as n→∞. In this case, we will call ν
the asymptotic spectral measure of M .

7.2 The symmetric vvᵀ linear case

In this setting, the stationary AMP equations can be reduced on the vector v̂ as:

v̂ =

[
1

k
WW ᵀ

] [
1√
∆p

ξ +
1

∆

vvᵀ

p
− 1

∆
Ip

]
v̂. (7.2)

We assume in the following that ρv = 1 to simplify the analysis (in this linear problem, it does not
imply any loss of generality). Here ξ/

√
p is a matrix from the Gaussian Orthogonal Ensemble, i.e. ξ

is a real symmetric matrix with entries drawn independently from a Gaussian distribution with zero
mean and variance E ξ2

ij = (1 + δij). We denote:

Γvvp ≡
[

1

k
WW ᵀ

] [
1√
∆p

ξ +
1

∆

vvᵀ

p
− 1

∆
Ip

]
. (7.3)

From the state evolution analysis we expect that the eigenvector of Γvvp associated to its largest
eigenvalue has a non-zero overlap with v in the large p limit as soon as ∆ < ∆c(α) ≡ 1 + α. In this
section, we show this fact using only random matrix theory.

Informally, we first demonstrate that the supremum of the support of the asymptotic spectral measure
of Γvvp touches 1 exactly for ∆ = ∆c(α). Then, for ∆ ≤ ∆c(α), the largest eigenvalue of Γvvp will
converge to 1, which is separated from the bulk of the asymptotic spectral density. The corresponding
eigenvector is also positively correlated with v. This gives more detail to the mechanisms of the
transition. We show first the following characterization of the asymptotic spectral density of Γvvp :
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Theorem 7.2. For any α,∆ > 0, as p→ +∞, the spectral measure of Γvvp converges almost surely
and in the weak sense to a well-defined and compactly supported probability measure µ(α,∆), and
we denote suppµ its support. We separate two cases:

(i) If ∆ ≤ 1
4 , then suppµ ⊆ R−.

(ii) Assume now ∆ > 1
4 and denote z1(∆) ≡ −∆−1 + 2∆−1/2 > 0. Let ρ∆ be the probability

measure on R with density

ρ∆(dt) =

√
∆

2π

√
4−∆

(
t+

1

∆

)2

1

{∣∣∣∣t+
1

∆

∣∣∣∣ ≤ 2√
∆

}
dt. (7.4)

Note that the supremum of the support of ρ∆ is z1(∆). The following equation admits a
unique solution for s ∈ (−z1(∆)−1, 0):

α

∫
ρ∆(dt)

(
st

1 + st

)2

= 1. (7.5)

We denote this solution as sedge(α,∆) (or simply sedge). The supremum of the support of
µ(α,∆) is denoted λmax(α,∆) (or simply λmax). It is given by:

λmax =


− 1

sedge
+ α

∫
ρ∆(dt)

t

1 + sedget
if α ≤ 1,

max

(
0,− 1

sedge
+ α

∫
ρ∆(dt)

t

1 + sedget

)
if α > 1.

(7.6)

Before proving Theorem 7.2, we state a very interesting corollary:
Corollary 7.1. Let α > 0. As a function of ∆, λmax (see Theorem 7.2) has a unique global maximum,
reached exactly at the point ∆ = ∆c(α) = 1 + α. Moreover, λmax(α,∆c(α)) = 1.

We can then state the transition result. Its method of proof is very much inspired by [20] 3.
Theorem 7.3. Let α,∆ > 0. Let us denote λ1 ≥ λ2 the first and second eigenvalues of Γvvp . Then
we have:

• If ∆ ≥ ∆c(α), then as p→∞ we have λ1 →
a.s.

λmax and λ2 →
a.s.

λmax.

• If ∆ ≤ ∆c(α), then as p→∞ we have λ1 →
a.s.

1 and λ2 →
a.s.

λmax.

Moreover, let us denote ṽ an eigenvector of Γvvp with eigenvalue λ1, normalized such that ‖ṽ‖2 = p.
Then:

1

p2
|ṽᵀv|2 →

a.s.
ε(∆). (7.7)

The function ε(∆) satisfies the following properties: ε(∆) = 0 for all ∆ ≥ ∆c(α), ε(∆) > 0 for all
∆ < ∆c(α) and lim∆→0 ε(∆) = 1.

Our method of proof for Theorem 7.3 allows us to compute numerically the squared correlation ε(∆).
It is given, for all ∆ < ∆c(α), as

ε(∆) =
1

α

[
S(2)(1)

]2
S(1,2)(1)

.

The S(1,2) and S(2) functions are defined in Lemma 7.2, and formulas are also given that allow to
compute them numerically. A non-trivial consistency check is to verify that ε(∆) coincides with the
variable qv given by the mutual information analysis of Theorem 1 of the main material. We show
numerically that they indeed coincide in Fig. 2.

3Note that while all the calculations are justified, refinements would be needed in order to be completely
rigorous. These refinements would follow exactly some proofs of [21] and [20], so we will refer to them when
necessary.
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Figure 2: The function ε(∆) computed in the linear case by Theorem 1 of the main material
(information theoretic analysis) and Theorem 7.3 (random matrix analysis) (α = 2).

Remark (The nature of the transition). As was already noticed in some previous works (see for
instance a related remark in [20]), the existence of a transition in the largest eigenvalue and the
corresponding eigenvector for a large matrix of the type M + θP (with P of finite rank and θ > 0)
depends on the decay of the asymptotic spectral density of M at the right edge of its bulk. For a
power-law decay, there can be either no transition, a transition in the largest eigenvalue and the
corresponding eigenvector, or a transition in the largest eigenvalue but not in the corresponding
eigenvector. The situation in our setting is somewhat more involved, as both the bulk and the spike
depend on the parameter ∆, and they are not independent (they are correlated via the matrix W ).
However, this intuition remains true: if we do not show and use it explicitely, the decay of the
density of µ(α,∆) at the right edge is of the type (λmax − λ)1/2, which is the hidden feature that is
responsible for a transition both in the largest eigenvalue and the corresponding eigenvector, which is
what we show in Theorem 7.2.

7.3 The non-symmetric uvᵀ linear case

The analysis is very similar to the one of the symmetric case of Section 7.2. The counterpart to the
matrix of eq. (7.3) is here:

Γuvp ≡
1

∆

WW ᵀ

k
×
(

1

1 + ∆

yᵀy

p
− β Ip

)
∈ Rp×p. (7.8)

Recall that we have here α = p
k and β = n

p . W ∈ Rp×k is an i.i.d. standard Gaussian matrix, and
the matrix y ∈ Rn×p is constructed as:

y =
√

∆ξ +
uvᵀ

√
p
. (7.9)

Here, ξ ∈ Rn×p is also an i.i.d. standard Gaussian matrix, independent of W . As it will be useful for
stating the theorem, we recall the Marchenko-Pastur probability measure with ratio β, denoted ρMP,β

[22]: 

λ+(β) =

(
1 +

1√
β

)2

, (7.10a)

λ−(β) =

(
1− 1√

β

)2

, (7.10b)

dρMP,β

dt
≡ (1− β) δ(t) +

β

2π

√
[λ+(β)− t] [t− λ−(β)]

t
1t∈(λ−(β),λ+(β)). (7.10c)

We can now state the couterpart to Theorem 7.2 in the uvᵀ setting:

Theorem 7.4. For any α, β,∆ > 0, the spectral measure of Γuvp converges almost surely and in the
weak sense to a well-defined and compactly supported measure µ(∆, α, β). We denote suppµ its
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support. We introduce a function z1 and a probability measure ρβ,∆ as follows:

z1(β,∆) ≡ −β + ∆ + 2∆
√
β

∆(1 + ∆)
,

dρβ,∆
dt

≡ 1 + ∆

β

dρMP,β

dt

(
1 + ∆

β
t+

1 + ∆

∆

)
. (7.11)

Note that z1(β,∆) is the supremum of the support of ρβ,∆. Let finally

∆pos(β) ≡ β

1 + 2
√
β
. (7.12)

We separate two cases:

(i) If ∆ ≤ ∆pos(β), then z1(β,∆) ≤ 0 and suppµ ⊆ R−.

(ii) Assume now ∆ > ∆pos(β). Then z1(β,∆) > 0. The following equation admits a unique
solution for s ∈ (−z1(β,∆)−1, 0):

α

∫
ρβ,∆(dt)

(
st

1 + st

)2

= 1. (7.13)

We denote this solution as sedge(α, β,∆) (or simply sedge). We denote λmax(α, β,∆) (or
only λmax) the supremum of the support of µ(∆, α, β). Then we have:

λmax =


− 1

sedge
+ α

∫
ρβ,∆(dt)

t

1 + sedget
if α ≤ 1,

max

(
0,− 1

sedge
+ α

∫
ρβ,∆(dt)

t

1 + sedget

)
if α > 1.

(7.14)

We can state the corresponding corollary to this theorem:
Corollary 7.2. Let α, β > 0. Seen as a function of ∆, λmax (see Theorem 7.2) has a unique global
maximum, attained exactly at the point ∆c(α, β) ≡

√
β(1 + α). Moreover,

λmax(α, β,∆c(α, β)) = 1.

We can then describe the complete transition. Proving this transition would follow the same main
lines as the proof of the transition in the vvᵀ case (Theorem 7.3), but would be significantly heavier.
This is left for future work, so we state the transition in this setting as a conjecture:
Conjecture 7.1. Let α, β,∆ > 0. Let us denote λ1 ≥ λ2 the first and second eigenvalues of Γuvp .
Then we have:

• If ∆ ≥ ∆c(α, β), then as p→∞ we have λ1 →
a.s.

λmax and λ2 →
a.s.

λmax.

• If ∆ ≤ ∆c(α, β), then as p→∞ we have λ1 →
a.s.

1 and λ2 →
a.s.

λmax.

Let us denote ṽ an eigenvector of Γuvp with eigenvalue λ1, normalized such that ‖ṽ‖2 = p. Then:

1

p2
|ṽᵀv|2 →

a.s.
ε(∆). (7.15)

It satisfies ε(∆) = 0 for all ∆ ≥ ∆c(α, β), ε(∆) > 0 for all ∆ < ∆c(α, β) and lim∆→0 ε(∆) = 1.

7.4 Proof of Theorem 7.2 and Corollary 7.1

7.4.1 Proof of Theorem 7.2

Proof of Theorem 7.2 (ii). We begin by treating the more involved case (ii), that is we assume
∆ > 1

4 . Note first that by basic linear algebra, the spectrum of Γvvp is, up to 0 eigenvalues, the same
as the spectrum of the following matrix Γvvk :

Γvvk ≡
1

k
W ᵀ

[
1√
∆p

ξ +
1

∆

vvᵀ

p
− 1

∆
Ip

]
W ∈ Rk×k, (7.16)
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More precisely, if p ≥ k (so α ≥ 1) we have Sp (Γvvp ) = Sp (Γvvk )∪{0}p−k, and conversely if k > p.
These additional zero eigenvalues in the case α > 1 explain the max(0, ·) term in the conclusion of
Theorem 7.2.

For the remainder of the proof we can thus consider Γvvk instead of Γvvp given the remark above.
Moreover, for simplicity we will drop the vv exponent in those matrices, and just denote them Γk,Γp.
The bulk of Γk can be studied using standard random matrix theory results. Such matrices were first
studied by Marchenko and Pastur in a seminal work [22], which was generalized (and made rigorous)
later in [21]. Note finally that by the celebrated results of Wigner [23], the spectral distribution of the
matrix ξ/

√
∆p − Ip/∆ converges in law (and almost surely) as p → ∞ to ρ∆, given by eq. (7.4).

We can then use Theorem 1.1 of [21], that we recall here for our setting:

Theorem 7.5 (Silverstein-Bai). Let p, k → ∞ with p/k → α > 0. Let W ∈ Rp×k be an i.i.d.
Gaussian matrix, whose elements come from the standard Gaussian distribution N (0, 1). Let
Tp ∈ Rp×p be a random symmetric matrix, independent of W , such that the empirical spectral
distribution of Tp converges (almost surely) in law to a measure ρT . Then, almost surely, the empirical
spectral distribution of Bk ≡ 1

kW
ᵀTpW converges in law to a (nonrandom) measure µB , whose

Stieltjes transform satisfies, for every z ∈ C+:

gµB (z) = −
[
z − α

∫
νT (dt)

t

1 + tgµB (z)

]−1

. (7.17)

Moreover, for every z ∈ C+, there is a unique solution to eq. (7.17) such that gµB (z) ∈ C+. This
equation thus characterizes unambiguously the measure µB .

Applying Theorem 7.5 to our setting shows that we can define ν(α,∆) as the limit eigenvalue
distribution of Γk, and we denote gν(z) its Stieltjes transform. From the remarks above, µ(α,∆) and
ν(α,∆) only differ by the addition of a delta distribution. For instance, if α ≥ 1:

µ(α,∆) = αν(α,∆) + (1− α)δ0. (7.18)

The main quantity of interest to us is zedge, defined as the supremum of the support of ν(α,∆). If
zedge ≥ 0, then it will also be the supremum of the support of µ(α,∆), and thus equal to λmax.
Theorem 7.5 shows that for every z ∈ C+ ∪ (R\supp ν), gν(z) is the only solution in C+ ∪R to the
following equation:

gν(z) = −
[
z − α

∫
ρ∆(dt)

t

1 + tgν(z)

]−1

. (7.19)

The validity of the equation for R\supp ν (and not only on C+) follows from the continuity of gν(z)
on C+ ∪ (R\supp ν), a generic property of the Stieltjes transform. It is easy to see that gν induces a
strictly increasing diffeomorphism gν : (zedge,+∞)→ (limz→z

+
edge

gν(z), 0), so that we can define

its inverse g−1
ν and from eq. (7.19), it satisfies for every s ∈ (limz→z

+
edge

gµ(z), 0):

g−1
ν (s) = −1

s
+ α

∫
ρ∆(dt)

t

1 + st
. (7.20)

Remark Note that this can be written in terms of the R-transform of ν (an useful tool of free
probability):

Rν(s) ≡ g−1
ν (−s)− 1

s
= α

∫
ρ∆(dt)

t

1− st .

In order to compute zedge from eq. (7.19), we use a result of Section 4 of [21], also stated for instance
in [24], that describes the form of the support of ν(α,∆). It can be stated in the following way.
Recall that since ∆ > 1

4 , z1(∆) > 0 is the maximum of the support of ρ∆. Let sedge be the unique
solution in (−z1(∆)−1, 0) of the equation (g−1

ν )′(s) = 0, that is by eq. (7.20):

α

∫
ρ∆(dt)

(
st

1 + st

)2

= 1. (7.21)
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Indeed, it is straighforward to show that the left-hand side of eq. (7.21) tends to 0 as s→ 0−, tends
to +∞ as s→ −z1(∆)−1, and is a strictly decreasing and continuous function of s. Then (see for
instance eq. (2.13) and eq. (2.14) of [24]) zedge is given by

zedge = lim
s→s+edge

g−1
ν (s),

= − 1

sedge
+ α

∫
ρ∆(dt)

t

1 + sedget
. (7.22)

This ends the proof of (ii). �

Let us make a final remark that will be useful in our future analysis. Note that z1(∆) > 1 for all
∆ > 1. Moreover, for all ∆ > 1, we have by an explicit computation:

α

∫
ρ∆(dt)

(
t

1− t

)2

=
α

∆− 1
.

By the argument above, this yields the following result, that we state as a lemma:

Lemma 7.1. Assume ∆ > 1. Then:

(i) If ∆ < ∆c(α), then sedge > −1.

(ii) If ∆ = ∆c(α), then sedge = −1.

(iii) If ∆ > ∆c(α), then sedge < −1.

Proof of Theorem 7.2, (i). Assume now ∆ ≤ 1
4 . Then the support of ρ∆ is a subset of R−. Since

0 ∈ R−, we can use again the remark we made in the proof of (ii) to study Γk instead of Γp.
Moreover, Theorem 7.5 still applies here so that we have the Silverstein equation (7.20) for every
s ∈ C+:

g−1
ν (s) = −1

s
+ α

∫
ρ∆(dt)

t

1 + st
.

By the Stieltjes-Perron inversion Theorem 7.1, it is enough to check that for every z > 0, there
exists a unique s < 0 such that g−1

ν (s) = z. Indeed, this will yield s = gν(z) ∈ R. In particular,
limε→0+ Im gν(z + iε) = 0 for every z > 0, which will imply supp(ν) ⊆ R− and thus supp(µ) ⊆
R−.

Therefore, let z > 0. From eq. (7.20) and the fact that supp(ρ∆) ⊆ R−, we easily obtain:

lim
s→−∞

g−1
ν (s) = 0,

lim
s→0−

g−1
ν (s) = +∞.

Moreover, g−1
ν (s) is a strictly increasing continuous function of s, so that the existence and unicity

of s = gν(z) < 0 is immediate, which ends the proof. �

7.4.2 Proof of Corollary 7.1

Proof. Let us make a few remarks:

• By Theorem 7.2, we know that if ∆ ≤ 1
4 , then λmax ≤ 0.

• It is trivial by the form of Γp that, as ∆→ +∞, λmax → 0.

Let zedge = − 1
sedge

+ α
∫
ρ∆(dt) t

1+sedget
. Then we know that λmax = zedge if α ≤ 1 and

λmax = max(0, zedge) if α > 1. In particular, by the remark above, zedge ≤ 0 for ∆ = 1
4 and
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zedge → 0+ as ∆→∞. It is easy to see that zedge is a continuous and differentiable function of ∆,
so that if we show the two following facts for any ∆ ≥ 1

4 :

dzedge

d∆
= 0⇔ ∆ = ∆c(α) = 1 + α, (7.23)

zedge(∆c(α)) = 1, (7.24)
this would end the proof as zedge would necessarily have a unique global maximum, located in
∆ = ∆c(α), in which we have λmax = 1. We thus prove eq. (7.23) and eq. (7.24) in the following.

Proof of eq. (7.23) By the chain rule:
dzedge

d∆
=
∂zedge

∂∆
+
∂sedge

∂∆

∂zedge

∂sedge
,

=
∂zedge

∂∆
,

using the very definition of sedge, eq. (7.21), as zedge = g−1
ν (sedge). Given the explicit form of ρ∆,

one can compute easily:

∂zedge

∂∆
= −α

sedge + 2s2
edge −∆ +

√
s2

edge − 2sedge(1 + 2sedge)∆ + ∆2

2s3
edge

√
s2

edge − 2sedge(1 + 2sedge)∆ + ∆2
.

It is then simple analysis to see that since sedge < 0, ∂zedge

∂∆ = 0 is equivalent to sedge = −1 and
∆ > 1. Recall that sedge is originally defined as a solution to eq. (7.21):

α

∫
ρ∆(dt)

(
sedget

1 + sedget

)2

= 1.

Inserting sedge = −1 into this equation and using the explicit form of ρ∆ given by eq. (7.4), and
using moreover that ∆ > 1, this reduces to:

α

∆− 1
= 1,

which is equivalent to ∆ = ∆c(α) = 1 + α.

Proof of eq. (7.24) By Lemma 7.1, we know that for ∆ = ∆c(α) we have sedge = −1. Given
eq. (7.4), it is then straightforward to compute:

zedge(∆c(α)) = −1 + α

∫
ρ∆c(α)(dt)

t

1− t ,

= 1.

�

7.5 Proof of Theorem 7.3

7.5.1 Transition of the largest eigenvalue

This part is a detailed outline of the proof. Some parts of the calculation are not fully rigorous,
however they can be justified more precisely by following exactly the lines of [20] and [25]. We will
emphasize when such refinements have to be made. Recall that we have by eq. (7.3) the following
decomposition of Γvvp (that we denote Γp for simplicity):

Γp =

[
1

k
WW ᵀ

] [
1√
∆p

ξ − 1

∆
Ip

]
︸ ︷︷ ︸

Γ
(0)
p

+
1

∆

WW ᵀ

k

vvᵀ

p︸ ︷︷ ︸
rank 1 perturbation

. (7.25)

Theorem 7.2 and Corollary. 7.1, along with their respective proofs, already describe in great detail
the limit eigenvalue distribution of Γ

(0)
p . We first note that for any λ ∈ R that is not an eigenvalue of

Γ
(0)
p one can write:

det (λIp − Γp) = det
(
λIp − Γ(0)

p

)
det

(
Ip −

(
λIp − Γ(0)

p

)−1 1

∆

WW ᵀ

k

vvᵀ

p

)
.
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In particular, this implies immediately that λ is an eigenvalue of Γp and not an eigenvalue of Γ
(0)
p

if and only if 1 is an eigenvalue of
(
λIp − Γ

(0)
p

)−1
1
∆
WWᵀ

k
vvᵀ
p . Since this is a rank-one matrix, its

only non-zero eigenvalue is equal to its trace, so it is equivalent to:

1 = Tr

[(
λIp − Γ(0)

p

)−1 1

∆

WW ᵀ

k

vvᵀ

p

]
. (7.26)

Recall that by definition, v is constructed as v = W z/
√
k, with z a standard Gaussian i.i.d. vector in

Rk, independent of W . For any matrix A, we have the classical concentration 1
k zᵀAz = 1

kTrA with
high probability as k →∞. In eq. (7.26), this yields at leading order as p→∞:

∆ =
1

p
Tr

[(
λIp − Γ(0)

p

)−1
(
WW ᵀ

k

)2
]
. (7.27)

We will prefer to use k × k matrices. We use the simple linear algebra identity, for any p × p
symmetric matrix A, and any integer q ≥ 1:

Tr

[(
λIp −

WW ᵀ

k
A

)−1(
WW ᵀ

k

)q]
= Tr

[(
λIk −

1

k
W ᵀAW

)−1(
W ᵀW

k

)q]
.

This can be derived for instance by expanding both sides in powers of λ−1 and using the cyclicity
of the trace. Finally, we can state that the eigenvalues of Γp that are outside of the spectrum of Γ

(0)
p

must satisfy, as k →∞:

α∆ =
1

k
Tr

[(
λIk − Γ

(0)
k

)−1
(
W ᵀW

k

)2
]
, (7.28)

with

Γ
(0)
k ≡

1

k
W ᵀ

[
1√
∆p

ξ − 1

∆
Ip

]
W.

We will now make use of two important lemmas, at the core of our analysis. They will also prove to
be useful in the eigenvector correlation analysis.

Lemma 7.2. Recall that ν is the limit eigenvalue distribution of Γ
(0)
k , that the supremum of its

support is λmax, and its Stieltjes transform is gν . For every integer r ≥ 0, we define:

S
(r)
k (λ) ≡ 1

k
Tr

[(
Γ

(0)
k − λIk

)−1
(
W ᵀW

k

)r]
.

For r ∈ {0, 1, 2, 3}4 and every λ > λmax, as k → ∞ S
(r)
k (λ) converges almost surely to a well

defined limit S(r)(λ). This limit is given by:

S(0)(λ) = gν(λ),

S(1)(λ) = gν(λ) [α− (1 + λgν(λ))] ,

S(2)(λ) = gν(λ)
[
α(1 + α)− (1 + 2α)(1 + λgν(λ)) + (1 + λgν(λ))2

]
,

S(3)(λ) = gν(λ)
[
(α+ 3α2 + α3)− (1 + 5α+ 3α2)(1 + λgν(λ))

+(2 + 3α)(1 + λgν(λ))2 − (1 + λgν(λ))3
]
.

(7.29)

We define similarly for every integer r, q ≥ 0:

S
(r,q)
k (λ) ≡ 1

k
Tr

[(
Γ

(0)
k − λIk

)−1
(
W ᵀW

k

)r (
Γ

(0)
k − λIk

)−1
(
W ᵀW

k

)q]
.

4The almost sure convergence could probably be extended to all r ∈ N? but we will only use these values of
r in the following.
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Note that S(r,q)
k = S

(q,r)
k and that S(r,0)

k (λ) = ∂zS
(r)
k (λ). For every λ > λmax, S(1,1)

k (λ) and
S

(1,2)
k (λ) converge almost surely (as k → ∞) to well-defined limits, that satisfy the following

equations:

S(1,1)(λ) = gν(λ)S(2)(λ)− [1 + λgν(λ)] ∂λS
(1)(λ)

+ αgν(λ)
[
gν(λ) + S(1)(λ)

] ∫ ρ∆(dt)t

(1 + tgν(λ))
2

[
t ∂λS

(1)(λ)− gν(λ)
]
,

S(1,2)(λ) = gν(λ)S(3)(λ)− [1 + λgν(λ)]
[
S(1,1)(λ) + (1 + α)∂λS

(1)(λ)
]

+ αgν(λ)
[
(1 + α)gν(λ) + S(1)(λ) + S(2)(λ)

] ∫ ρ∆(dt)t

(1 + tgν(λ))
2

[
t ∂λS

(1)(λ)− gν(λ)
]
.

Lemma 7.3. Let α,∆ > 0. We focus mainly on S(2)(λ). We have:

(i) For every r, S(r)(λ) is a strictly increasing function of λ, and limλ→∞ S(r)(λ) = 0.

(ii) For every λ > λmax, S(2)(λ) = −α∆ if and only if ∆ ≤ ∆c(α) and λ = 1.

(iii) For every ∆ > ∆c(α), limλ→λmax S
(2)(λ) ∈ (−α∆, 0) (it is well defined by monotonicity

of S(2)(λ)).

Let us see how item (ii) of Lemma 7.3 and eq. (7.28) end the proof of the eigenvalue transition. First,
note that by the celebrated Weyl’s interlacing inequalities [26], we have:

lim inf
p→∞

λ1 ≥ λmax,

lim sup
p→∞

λ2 ≤ λmax.

This implies that because the perturbation of the matrix is of rank one, at most one outlier eigenvalue
will exist in the limit p→∞. By eq. (7.28), this outlier λ1 exists if and only if it satisfies, in the large
p→∞ limit, the equation S(2)(λ1) = −α∆. By item (ii) of Lemma 7.3, this is the case only for
λ1 = 1 and ∆ ≤ ∆c(α), which ends the proof. A completely rigorous treatement of these arguments
requires to state more precisely concentration results. Such a treatment has been made in [20] in a
very close case (from which all the arguments transpose), and we refer to it for more details. We
finally describe the proofs of the lemmas in the following.

Proof of Lemma. 7.2. The essence of the computation originates from the derivation of Theorem 7.5
in [21]. Note that S(0)

k (λ) converges a.s. to the Stieljtes transform gν(λ) as k →∞ by Theorem 7.5.
For every 1 ≤ i ≤ p, wi denotes the i-th row of W . We denote y = 1√

∆p
ξ − 1

∆ Ip. Since W is
independent of y, we can denote y1, · · · , yp the eigenvalues of y, and their empirical distribution
converges a.s. to ρ∆ as we know. We have in distribution:

Γ
(0)
k =

1

k
W ᵀ yW

d
=
α

p

p∑
i=1

yi wi w
ᵀ
i .

For every i, we denote:

Γ
(0)
k,i ≡=

α

p

p∑
j(6=i)

yj wj w
ᵀ
j .

Note that Γ
(0)
k,i is independent of wi. We start from the (trivial) decomposition, for every λ:

− 1

λ
=
(

Γ
(0)
k − λIk

)−1

− 1

λ

W ᵀ yW

k

(
Γ

(0)
k − λIk

)−1

. (7.30)

We will make use of the Sherman-Morrison formula that gives the inverse of a matrix perturbed by a
rank-one change:

(B + τωωᵀ)
−1

= B−1 − 1

1 + τωᵀB−1ω
B−1ωωᵀB−1, (7.31)

ωᵀ (B + τωωᵀ)
−1

=
1

1 + τωᵀB−1ω
ωᵀB−1. (7.32)
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Using it in eq. (7.30) yields:

− 1

λ
=
(

Γ
(0)
k − λIk

)−1

− α

λ

1

p

p∑
i=1

yi
wi

1 + yi
k w

ᵀ
i (Γ

(0)
k,i − λIk)−1wi

wᵀ
i

(
Γ

(0)
k,i − λIk

)−1

. (7.33)

Taking the trace of eq. (7.33), using the independence of wi and Γ
(0)
k,i , and the concentration

1
kw

ᵀ
i Awi = 1

kTrA with high probability for large k, we obtain the following equation:

− 1

λ
= gν(λ)− gν(λ)

α

λ

∫
ρ∆(dt)

t

1 + tgν(λ)
. (7.34)

This is exactly the identity in Theorem 7.5 ! In the following, we will use very similar identities.
A completely rigorous derivation of these would, however, require many technicalities to ensure in
particular the concentration of all the involved quantities. It would exactly follow the proof of [21],
and thus we do not repeat all the technicalities here. We can multiply eq. (7.33) by WᵀW

k , and take
the trace:

− 1

λ

1

k
Tr

[
WW ᵀ

k

]
= S

(1)
k (λ)− α

λ

1

p

∑
i

yi

wᵀ
i√
k

(
Γ

(0)
k,i − λIk

)−1 (
1
k

∑
j(6=i) wjw

ᵀ
j + 1

kwiw
ᵀ
i

)
wi√
k

1 + yi
k w

ᵀ
i (Γ

(0)
k,i − λIk)−1wi

.

In the large p, k limit, this implies that S(1)
k (λ) converges to a well-defined limit S(1)(λ), and this

limit satisfies:

−α
λ

= S(1)(λ)− α

λ

[∫
ρ∆(dt)

t

1 + tgν(λ)

](
gν(λ) + S(1)(λ)

)
Using finally eq. (7.34), it is equivalent to:

S(1)(λ) = gν(λ) [α− (1 + λgν(λ))] .

Multiplying eq. (7.33) by
(
WᵀW
k

)2
or
(
WᵀW
k

)3
yields, by the same analysis:

S(2)(λ) = gν(λ)
[
α(1 + α)− (1 + 2α)(1 + λgν(λ)) + (1 + λgν(λ))2

]
,

S(3)(λ) = gν(λ)
[
(α+ 3α2 + α3)− (1 + 5α+ 3α2)(1 + λgν(λ))

+(2 + 3α)(1 + λgν(λ))2 − (1 + λgν(λ))3
]
.

The convergence of S(1,1)
k (λ) and S(1,2)

k (λ) follows from the same analysis, as well as the equations
they satisfy. We detail the derivation of the equation on S(1,1)(λ) and leave the derivation of the
second equation for the reader. We multiply eq. (7.33) by WᵀW

k . To simplify the calculations, we
make use of concentrations, and denote Fi ≡ WᵀW

k − 1
kwiw

ᵀ
i , which is independent of wi. We

obtain at leading order as p→∞:

−W
ᵀW

kλ
=
(

Γ
(0)
k − λIk

)−1 W ᵀW

k
− α

λ

1

p

p∑
i=1

yi
1 + yigν(λ)

wiw
ᵀ
i

(
Γ

(0)
k,i − λIk

)−1

Fi

− α

λ

1

p

p∑
i=1

yigν(λ)

1 + yigν(λ)
wiw

ᵀ
i .

We multiply this equation by (Γ
(0)
k − λIk)−1 and we use Sherman-Morrison formula eq. (7.31):(

Γ
(0)
k − λIk

)−1

=
(

Γ
(0)
k,i − λIk

)−1

−
(

Γ
(0)
k,i − λIk

)−1 yiwiw
ᵀ
i

1 + yigν(λ)

(
Γ

(0)
k,i − λIk

)−1

.
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Using again the concentration of 1
kw

ᵀAw on 1
kTr[A], this yields the cumbersome expression:

−W
ᵀW

kλ

(
Γ

(0)
k − λIk

)−1

=
(

Γ
(0)
k − λIk

)−1 W ᵀW

k

(
Γ

(0)
k − λIk

)−1

(7.35)

− α

λ

1

p

p∑
i=1

yi
1 + yigν(λ)

wiw
ᵀ
i

(
Γ

(0)
k,i − λIk

)−1

Fi

(
Γ

(0)
k,i − λIk

)−1

+
∂λS

(1)(λ)

λ

α

p

p∑
i=1

y2
i

(1 + yigν(λ))2
wiw

ᵀ
i

(
Γ

(0)
k,i − λIk

)−1

− α

λ

1

p

p∑
i=1

yigν(λ)

(1 + yigν(λ))2
wiw

ᵀ
i

(
Γ

(0)
k,i − λIk

)−1

.

We finally multiply this equation by WᵀW
k and take its trace. Using again the concentrations, we

reach:

−S
(2)(λ)

λ
= S(11)(λ)− α

λp

p∑
i=1

yi
1 + yigν(λ)

[
S(11)(λ) + ∂λS

(1)(λ)
]

+
∂λS

(1)(λ)

λ

α

p

p∑
i=1

y2
i

(1 + yigν(λ))2

[
gν(λ) + S(1)(λ)

]
− α

λ

1

p

p∑
i=1

yigν(λ)

(1 + yigν(λ))2

[
gν(λ) + S(1)(λ)

]
.

We now take the limit p→∞ in the sum over i and use Theorem 7.5 in the form:

α

λ

∫
ρ∆(dt)

t

1 + tgν(λ)
= 1 +

1

λgν(λ)
.

Inserting this into eq. (7.35) along with some trivial algebra yields:

S(1,1)(λ) = gν(λ)S(2)(λ)− [1 + λgν(λ)] ∂λS
(1)(λ)

+ αgν(λ)
[
gν(λ) + S(1)(λ)

] ∫ ρ∆(dt)t

(1 + tgν(λ))
2

[
t ∂λS

(1)(λ)− gν(λ)
]
,

which is what we aimed to show. Performing the same analysis for S(1,2)(λ) ends the proof. �

Proof of Lemma 7.3. Point (i) is trivial by definition of S(r)
k (λ) and the almost sure convergence

proven in Lemma 7.2. We turn to points (ii) and (iii). Let us denote the following function:

T (2)(s) ≡ s
[
α(1 + α)− (1 + 2α)

(
1 + sg−1

ν (s)
)

+
(
1 + sg−1

ν (s)
)2]

.

By Lemma 7.2, we have T (2)(s) = S(2)(g−1
ν (s)) so T (2)(s) < 0 for s ∈ (sedge, 0) by negativity of

S(2)(λ) (as the trace of a negative matrix). Therefore, point (ii) is equivalent to:

∀s ∈ (sedge, 0), T (2)(s) = −α∆⇔ s = gν(1) and ∆ ≤ ∆c(α), (7.36)

while point (iii) means that for every ∆ > ∆c(α),

∀s ∈ (sedge, 0), T (2)(s) > −α∆. (7.37)

The condition s > sedge arises naturally as the counterpart of z ≥ λmax. Recall that by Corollary 7.1,
we have λmax ≤ 1 for all ∆. As g−1

ν (s) is here completely explicit by eq. (7.20), and recalling the
form of ρ∆ in eq. (7.4), it is easy to show by an explicit computation the following identity:

∀s 6= −1, T (2)(s) = −α∆ + α
[
g−1
ν (s)− 1

] s−∆− 2s∆ +
√
s2 − 2s(1 + s)∆ + ∆2

2(1 + s)
,

T (2)(−1) =

{−α(1 + α) if ∆ ≥ 1,

−α∆(1 + α∆) if ∆ ≤ 1.
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It is then easy to see that the only possible solution to T (s) = −α∆ with s ∈ (sedge, 0) is s = gν(1),
if gν(1) 6= −1. However, by Lemma 7.1, for any ∆ > ∆c(α) we have sedge < −1. Moreover, in
this case, one computes very easily (all expressions are explicit) g−1

ν (−1) = 1. Given the identity
above, there is therefore no solution to T (2)(s) = −α∆ in (sedge, 0). By continuity of T (2)(s), and
since lims→0 T

(2)(s) = 0, this implies T (2)(s) > −α∆ for s ∈ (sedge, 0), which proves point (iii).

Assume now ∆ ≤ ∆c(α). Note that the case ∆ = ∆c(α) is easy, as sedge = −1 is the unique
solution to T (2)(s) = −α(1 + α). For ∆ < ∆c(α), by Lemma 7.1 we obtain −1 < sedge. In
particular, gν(1) > sedge > −1, and we thus have that s = gν(1) is a solution (and the only one) to
T (2)(s) = −α∆ by the identity shown above. This shows (ii) and ends the proof of Lemma 7.3. �

7.5.2 Correlation of the leading eigenvector

We now turn to the study of the leading eigenvector. Let ṽ be an eigenvector associated with the
largest eigenvalue λ1, normalized such that ‖ṽ‖2 = p. Then we have:

(λ1Ip − Γ(0)
p )ṽ =

1

∆

WW ᵀ

k

vᵀṽ
p

v. (7.38)

By normalization of ṽ, we obtain:

ṽ =
√
p

(
λ1Ip − Γ

(0)
p

)−1
WWᵀ

k v√
vᵀWWᵀ

k

(
λ1Ip −

(
Γ

(0)
p

)ᵀ)−1 (
λ1Ip − Γ

(0)
p

)−1
WWᵀ

k v
,

and therefore:

1

p2

∣∣∣ṽT v
∣∣∣2 =

1

p

[
vᵀ
(
λ1Ip − Γ

(0)
p

)−1
WWᵀ

k v
]2

vᵀWWᵀ

k

(
λ1Ip −

(
Γ

(0)
p

)ᵀ)−1 (
λ1Ip − Γ

(0)
p

)−1
WWᵀ

k v
. (7.39)

Using v = W√
k

z and the concentration of 1
k zᵀAz on 1

kTrA, we reach that as p, k →∞, we have:

1

p2

∣∣∣ṽT v
∣∣∣2 ∼

[
1
pTr

{(
λ1Ip − Γ

(0)
p

)−1 (
WWᵀ

k

)2}]2

1
pTr

{(
λ1Ip −

(
Γ

(0)
p

)ᵀ)−1 (
λ1Ip − Γ

(0)
p

)−1 (
WWᵀ

k

)3} . (7.40)

The numerator is equal to [α−1S
(2)
k (λ1)]2, using the S(r) functions that we introduced in Lemma 7.2.

Let us compute the denominator. Recall that we can write Γ
(0)
p = WW ᵀM/k, with a symmetric

matrix M that is independent of W . For any z large enough, we can expand:

Tr

{(
zIp −

(
Γ(0)
p

)ᵀ)−1 (
zIp − Γ(0)

p

)−1
(
WW ᵀ

k

)3
}
,

=

∞∑
a=0

∞∑
b=0

z−a−b−2 Tr

{(
M
WW ᵀ

k

)a(
WW ᵀ

k
M)

)b(
WW ᵀ

k

)3
}
,

(a)
=

∞∑
a=0

∞∑
b=0

z−a−b−2 Tr

{(
W ᵀMW

k

)a
W ᵀW

k

(
W ᵀMW

k

)b(
W ᵀW

k

)2
}
,

= Tr

{(
zIk − Γ

(0)
k

)−1 W ᵀW

k

(
zIk − Γ

(0)
k

)−1
(
W ᵀW

k

)2
}
,

= kS
(1,2)
k (z),
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where in (a) we used the cyclicity of the trace. Given Corollary 7.1, we know lim infp→∞ λ1 ≥ λmax,
so we can use the above calculation to write:

ε(∆) = lim
λ→λ1

lim
k→∞

1

α

[
S

(2)
k (λ)

]2
S

(1,2)
k (λ)

. (7.41)

As in the eigenvalue transition proof, to make this fully rigorous one would need to use more precisely
the concentration results, and follow exactly the lines of [20]. We now use the transition of the leading
eigenvalue (Corollary 7.1), that gives us the value of λ1.

• For ∆ < ∆c(α), we know that λ1 converges almost surely to 1. Consequently, we have in this
case:

ε(∆) =
1

α

[
S(2)(1)

]2
S(1,2)(1)

.

By Lemma 7.3, we know that S(2)(1) = −α∆. Moreover, by Corollary 7.1 λmax < 1. This
implies that S(1,2)(1) ∈ (0,+∞). Indeed, 1 is out of the bulk of ν(α,∆), so gν(1) ∈ (−∞, 0) and
by the relations shown in Lemma 7.2, all the transforms S(r)(1) and S(r,q)(1) will be finite. Note
that S(1,2)(1) > 0 by positivity of the matrices involved. This implies that for every ∆ < ∆c(α),
ε(∆) > 0.

• For ∆ = ∆c(α), we have λmax = 1 and limλ→1 S
(2)(λ) = −α∆ as we have shown. For every r, q,

let us define the functions T (r) and T (r,q) by S(r)(λ) = T (r)[gν(λ)] and S(r,q)(λ) = T (r,q)[gν(λ)].
By Lemma 7.2 and the chain rule, we have:

∀s ∈ (sedge, 0), (7.42)

T (1,2)(s) = sT (3)(s)−
[
1 + sg−1

ν (s)
] [
T (1,1)(s) + (1 + α)

∂sT
(1)(s)

∂sg
−1
ν (s)

]
+ αs

[
(1 + α)s+ T (1)(s) + T (2)(s)

] ∫ ρ∆(dt)t

(1 + ts)
2

[
t
∂sT

(1)(s)

∂sg
−1
ν (s)

− s
]
.

Recall that g−1
ν (s) is explicit by eq. (7.20) and sedge = limλ→λmax

gν(λ). It moreover satisfies (cf
Theorem 7.2) ∂sg−1

ν (sedge) = 0. For ∆ = ∆c(α), by Lemma 7.1 we have gν(1) = −1 = sedge.
It is then only trivial algebra to verify from eq. (7.42) and the remaining relations of Lemma 7.2
that T (1,2)(−1) = +∞, which implies ε(∆c(α)) = 0.

• We investigate here the ∆→ 0 limit. In this limit, we know from eq. (7.41) and the analysis in the
case ∆ < ∆c(α) above that

lim
∆→0

ε(∆) = lim
∆→0

α∆2

S(1,2)(1)
.

It is again heavy but straightforward algebra to verify from eq. (7.42) and the remaining relations
of Lemma 7.2 that as ∆→ 0 and for any s ∈ (sedge, 0):

T (1,2)(s) = α∆2 +O(∆3).

This yields lim∆→0 ε(∆) = 1.

• Finally, we consider ∆ > ∆c(α). By eq. (7.41) and item (iii) of Lemma 7.3, to obtain
ε(∆) = 0 we only need to prove that limλ→λmax

S(1,2)(λ) = +∞. Equivalently, we must
show lims→sedge

T (1,2)(s) = +∞. Recall that ∂sg−1
ν (sedge) = 0 and that since sedge is finite, all

T (r)(sedge) for r = 0, 1, 2, 3 are finite as well by Lemma 7.2. It thus only remains to check that
lims→sedge

T (1,2)(s)∂s g
−1
ν (s) > 0. This would imply that lims→sedge

T (1,2)(s) = +∞. We put
this statement as a lemma, actually stronger than what we need:

Lemma 7.4. For every α > 0 and ∆ > 1, we have

lim inf
s→sedge

T (1,2)(s)∂sg
−1
ν (s) > 0.
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We prove this for every ∆ > 1, while only the case ∆ > 1 + α is needed in our analysis. As
already argued, this lemma ends the proof.

Proof of Lemma 7.4. The idea is to lower bound S(1,2)(λ) by ∂λgν(λ), for every λ > λmax. We
separate three cases:

– First, assume α > 1. Then W ᵀW/k is full rank. In particular, by the classical results of [22],
its lowest eigenvalue, denoted ζmin converges almost surely to (1− α−1/2)2, the left edge of
the Marchenko-Pastur distribution. Moreover, for any two symmetric positive square matrices
A and B, we know that Tr [AB] ≥ 0. Indeed, there exists a positive square root of A, and
Tr [AB] = Tr[A1/2BA1/2] ≥ 0. This implies immediately that if a0 is the smallest eigenvalue
of A, then Tr [AB] ≥ a0Tr [B], as A − a0I is positive. We can use this to write, for any
λ > λmax:

S
(1,2)
k (λ) =

1

k
Tr

[(
Γ

(0)
k − λIk

)−1
(
W ᵀW

k

)(
Γ

(0)
k − λIk

)−1
(
W ᵀW

k

)2
]
,

≥ ζ2
min

1

k
Tr

[(
Γ

(0)
k − λIk

)−1
(
W ᵀW

k

)(
Γ

(0)
k − λIk

)−1
]
,

≥ ζ3
min

1

k
Tr

[(
Γ

(0)
k − λIk

)−2
]
.

Taking the limit k →∞ in this last inequality, we obtain:

S(1,2)(λ) ≥
(

1− α−1/2
)6

∂λgν(λ). (7.43)

Taking the limit λ→ λmax (or equivalently s→ sedge) yields

lim inf
s→sedge

T (1,2)(s)∂sg
−1
ν (s) ≥

(
1− α−1/2

)6

> 0. (7.44)

– Now assume α < 1. We do the same reasoning, as WW ᵀ/k is now full rank, and it smallest
eigenvalue, also denoted ζmin, converges a.s. as k → ∞ to (1 − √α)2. We know (see the
beginning of the current proof of the eigenvector correlation) that we can rewrite S(1,2)

k (λ) as
the trace of a p× p matrix:

S
(1,2)
k (λ) =

1

k
Tr

[((
Γ

(0)
k

)ᵀ
− λIk

)−1 (
Γ

(0)
k − λIk

)−1
(
WW ᵀ

k

)3
]
,

≥ ζ3
min

1

k
Tr

[((
Γ

(0)
k

)ᵀ
− λIk

)−1 (
Γ

(0)
k − λIk

)−1
]
,

≥ ζ3
min

1

k
Tr

[(
Γ

(0)
k − λIk

)−2
]
,

in which the last inequality comes from Tr [AAᵀ] ≥ Tr [A2] for any positive square matrix A.
Once again, taking the limit k →∞, and then the limit λ→ λmax, this yields

lim inf
s→sedge

T (1,2)(s)∂sg
−1
ν (s) ≥

(
1− α1/2

)6

> 0. (7.45)

– Finally, we treat the α = 1 case. In this case, we can not use easy bounds as in the two
previous cases as the support of the Marchenko-Pastur distribution touches 0. However, recall
that everything is explicit here : ρ∆ is given by eq. (7.4), g−1

ν (s) is given by eq. (7.20) and
Lemma 7.2 gives all the T (r) and T (r,q) in terms of g−1

ν and ρ∆. We can moreover use what
we proved in Theorem 7.2:

∂sg
−1
ν (sedge) =

1

s2
− α

∫
ρ∆(dt)

t2

(1 + tsedge)2
= 0.
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This can be used to simplify the term ∂sT
(1)(s) and the term

∫
ρ∆(dt) t2

(1+ts)2 . Some heavy
but straightforward algebra yields from these relations that the following limit is finite, and is
given by:

lim
s→sedge

T (1,2)(s) ∂sg
−1
ν (s) = h(sedge),

with

h(s) =
h1(s)2 × h2(s)

4s6
,

h1(s) = −∆ +
√

∆2 + s2 − 2∆(2s+ 1)s+ s,

h2(s) = 3∆− 3
√

∆2 + s2 − 2∆(2s+ 1)s+ s(4s− 3),

It is then very simple algebra (solving quadratic equations and using ∆ > 1) to see that there is
no real negative solution to h(s) = 0, and that h(s) > 0 for all s ∈ (−∞, 0). This implies that
h(sedge) > 0, which ends the proof.

�

All together, this ends the proof of Theorem 7.3.

7.6 Proof of Theorem 7.4 and Corollary 7.2

7.6.1 Proof of Theorem 7.4

Proof. The proof is very similar to the proof of Theorem 7.2, and we will only point out the main
differences. The proof of (i) is exactly the same as the proof of the point (i) of Theorem 7.2, once
one notices that for ∆ ≤ ∆pos(β), the support of ρβ,∆ is a subset of R−. We thus turn to the proof of
(ii). Again, the spectrum of Γuvp , given by eq. (7.8) is, up to 0 eigenvalues, the same as the spectrum
of Γuvk , defined as follows:

Γuvk ≡
1

∆

1

k
W ᵀ

(
1

1 + ∆

yᵀy

p
− β Ip

)
W ∈ Rk×k. (7.46)

We drop for simplicity the uv exponents in these matrices. Once again, we can apply the Silverstein
equation of Theorem 7.5 and the same arguments that we used in the proof of Theorem 7.2 com-
pletely transpose here. One notices that, by the classical Marchenko-Pastur results [22], the spectral
distribution of yᵀy/(p∆(1 + ∆)) − (β/∆) Ip converges almost surely and in law to ρβ,∆, before
repeating the exact arguments of the proof of Theorem 7.2. This ends the proof of Thm. 7.4. �

7.6.2 Proof of Corollary 7.2

Proof. Let α, β > 0. We note:

• By Theorem 7.4, we know that if ∆ = ∆pos(β), then λmax ≤ 0.

• It is trivial by the form of Γp, see eq. (7.8), that as ∆→ +∞, λmax → 0.

Let zedge = − 1
sedge

+ α
∫
ρβ,∆(dt) t

1+sedget
. Then we know that λmax = zedge if α ≤ 1 and

λmax = max(0, zedge) if α > 1. In particular, by the remark above, zedge ≤ 0 for ∆ ≤ ∆pos(β) and
zedge → 0+ as ∆→∞. It is easy to see that zedge is a continuous and derivable function of ∆, so
that if we show the two following facts for any ∆ ≥ ∆pos(β):

dzedge

d∆
= 0⇔ ∆ = ∆c(α, β) =

√
β(1 + α) (7.47)

zedge(∆c(α, β)) = 1, (7.48)

this would end the proof as zedge would necessarily have a unique local maximum, located in
∆c(α, β), in which we have λmax = 1. We thus prove eq. (7.47) and eq. (7.48) in the following.
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Proof of eq. (7.47): By the chain rule,

dzedge

d∆
=
∂zedge

∂∆
+
∂sedge

∂∆

∂zedge

∂sedge
,

=
∂zedge

∂∆
,

by the very definition of sedge, c.f. Theorem 7.4, since zedge = g−1
ν (sedge). Given the explicit form

of ρβ,∆, c.f. eq. (7.11), one can compute zedge as a function of sedge. Its expression is cumbersome,
but nevertheless explicit (we write s instead of sedge to avoid too heavy expressions):

zedge =
−α∆(∆ + 1) + α

√
∆2(∆ + 1)2 + s2 (β2 − 2β∆(2∆ + 1) + ∆2)− 2∆(∆ + 1)s(β −∆)

2s2(βs−∆)

+
2(α− 1)βs2 + αs(β −∆) + 2∆s

2s2(βs−∆)
.

From this expression, it is simple analysis to verify that the only sedge ∈ (−z1(β,∆)−1, 0) that
satisfies ∂zedge

∂∆ = 0 is sedge = −1, and only if ∆ >
√
β. Recall that sedge is defined as the solution

to:

α

∫
ρβ,∆(dt)

(
sedget

1 + sedget

)2

= 1.

Inserting sedge = −1 into this equation and using the explicit form of ρβ,∆ of eq. (7.11) and that
∆ >

√
β, this reduces to:

αβ

∆2 − β = 1,

which is equivalent to ∆ = ∆c(α, β) =
√
β(1 + α).

Proof of eq. (7.48): Given the computation above, we know that for ∆ = ∆c(α, β) we have
sedge = −1. Given eq. (7.11), it is straightforward to compute:

zedge(∆c(α, β)) = −1 + α

∫
ρ∆c(α,β)(dt)

t

1− t ,

= 1.

�

7.7 A note on non-linear activation functions

We consider here a non-linear activation function, in the spiked Wigner model or the spiked Wishart
model. In these models, the spectral method with a non-linear activation function consists in taking
the largest eigenvalue and the corresponding eigenvector of the matrix Γuup (for the spiked Wigner
model) or Γuvp (for the spiked Wishart model). These matrices are given by:

Γuup =
1

∆

(
(a− b)Ip + b

WW ᵀ

k
+ c

1p1
ᵀ
k

k

W ᵀ

√
k

)
×
(
Y√
p
− a1M

)
,

Γuvp =
1

∆

(
(a− b)Ip + b

WW ᵀ

k
+ c

1p1
ᵀ
k

k

W ᵀ

√
k

)
×
(

1

a+ ∆
d

Y ᵀY

p
− dβIp

)
In these equations, a, b, c are coefficients that depend on the non-linearity. In the linear case, c = 0
and a = b = 1. Let us now assume for instance a non-linearity such that a, b 6= 0 and c = 0. Both
Γuvp and Γuup can be represented as

Γp =

[
(a− b)Ip + b

WW ᵀ

k

]
M, (7.49)
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in which M is a symmetric (non necessarily positive or negative) matrix, independent of W . In order
to perform the same analysis we made in the case of a linear activation function, we need in particular
to be able to characterize the bulk of such matrices. Although this might be doable with more refined
techniques, this does not seem to come as a direct consequence of the analysis of Silverstein and Bai
[22, 25]. Indeed, one cannot write that the eigenvalues of Γp are identical, up to 0 eigenvalues, to the
ones of a matrix of the type

1

k
W ᵀM ′W,

which are the types of matrices covered by the analysis of Bai and Silverstein. Moreover, it is not
immediate to use results of free probability [27] in this context. Indeed, Γp in eq. (7.49) is the product
of two matrices that are asymptotically free, but M is not positive, which prevents a priori the use of
the classical results on the S-transform of a product of two asymptotically free matrices. Writing Γp
as the sum of (a− b)M and b(WW ᵀ)M/k does not yield any obvious results either, as these two
matrices are not asymptotically free. For this reason, and although there might exist techniques to
study the bulk of the matrix of eq. (7.49) and the transition in its largest eigenvalue, this is left for
future work.
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8 Phase diagrams of the Wishart model

Despite we illustrated the main part mostly with the Wigner model, in this section we present phase
diagrams for the Wishart model. We show in particular a heat map of MMSEv as a function of the
noise to signal ratio ∆/ρ2

v for linear, sign and relu activation functions in Fig. 3. The white dashed
line marks the critical threshold ∆c, given in the Wishart model by eq. (6.4), while the the dotted line
shows the critical threshold of reconstruction for PCA.

Besides we show also the mean squared error as a function of the noise variance for larger values
of α in Fig. 4. The MMSEv has been obtained solving the state evolution equations eq. (4.39), that
show as well an unique stable fixed point for the large range of values that we studied, initializing
with either informative or random conditions.
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Figure 3: Spiked Wishart model: MMSEv on the spike as a function of noise to signal ratio ∆/ρ2
v,

and generative prior (4) with compression ratio α for linear (left), sign (center), and relu (right)
activations at β = 1. Dashed white lines mark the phase transitions ∆c, matched by both the AMP
and LAMP algorithms. Dotted white line marks the phase transition of canonical PCA.
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Figure 4: Spiked Wishart model: MMSEv as a function of noise ∆ for a wide range of compression
ratios α = 0, 1, 10, 100, 1000, for linear (left), sign (center), and relu (right) activations, at β = 1.

55



References
[1] Thibault Lesieur, Florent Krzakala, and Lenka Zdeborová. Constrained low-rank matrix

estimation: phase transitions, approximate message passing and applications. Journal of
Statistical Mechanics: Theory and Experiment, 2017(7):073403, 2017.

[2] Hidetoshi Nishimori. Statistical physics of spin glasses and information processing: an
introduction, volume 111. Clarendon Press, 2001.

[3] Jean Barbier, Florent Krzakala, Nicolas Macris, Léo Miolane, and Lenka Zdeborová. Optimal
errors and phase transitions in high-dimensional generalized linear models. Proceedings of the
National Academy of Sciences, 116(12):5451–5460, 2019.

[4] Andre Manoel, Florent Krzakala, Marc Mézard, and Lenka Zdeborová. Multi-layer generalized
linear estimation. In 2017 IEEE International Symposium on Information Theory (ISIT), pages
2098–2102. IEEE, 2017.

[5] Florent Krzakala, Jiaming Xu, and Lenka Zdeborová. Mutual Information in Rank-One Matrix
Estimation. 2016 IEEE Information Theory Workshop (ITW), pages 71–75, September 2016.
arXiv: 1603.08447.

[6] Marc Lelarge and Léo Miolane. Fundamental limits of symmetric low-rank matrix estimation.
Probability Theory and Related Fields, 173(3-4):859–929, 2019.

[7] Francesco Guerra. Broken replica symmetry bounds in the mean field spin glass model.
Communications in Mathematical Physics, 233(1):1–12, Feb 2003.

[8] Ahmed El Alaoui and Florent Krzakala. Estimation in the spiked Wigner model: A short proof
of the replica formula. In 2018 IEEE International Symposium on Information Theory (ISIT),
pages 1874–1878, June 2018.

[9] Silvio Franz and Giorgio Parisi. Recipes for metastable states in spin glasses. Journal de
Physique I, 5(11):1401–1415, 1995.

[10] Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. Concentration inequalities: A
nonasymptotic theory of independence. Oxford university press, 2013.

[11] Thomas M Cover and Joy A Thomas. Elements of information theory. John Wiley & Sons,
2012.

[12] Yash Deshpande and Andrea Montanari. Information-theoretically optimal sparse PCA. In
2014 IEEE International Symposium on Information Theory, pages 2197–2201. IEEE, 2014.

[13] Yash Deshpande, Emmanuel Abbe, and Andrea Montanari. Asymptotic mutual information for
the balanced binary stochastic block model. Information and Inference: A Journal of the IMA,
6(2):125–170, 2016.

[14] Jean Barbier, Mohamad Dia, Nicolas Macris, Florent Krzakala, Thibault Lesieur, and Lenka
Zdeborová. Mutual information for symmetric rank-one matrix estimation: A proof of the
replica formula. In Advances in Neural Information Processing Systems, pages 424–432, 2016.

[15] Dongning Guo, S. Shamai, and S. Verdú. Mutual information and minimum mean-square error
in gaussian channels. IEEE Transactions on Information Theory, 51(4):1261–1282, April 2005.

[16] Ahmed El Alaoui, Florent Krzakala, and Michael I Jordan. Finite size corrections and likelihood
ratio fluctuations in the spiked Wigner model. arXiv preprint arXiv:1710.02903, 2017.

[17] F. Krzakala, C. Moore, E. Mossel, J. Neeman, A. Sly, L. Zdeborová, and P. Zhang. Spectral
redemption in clustering sparse networks. Proceedings of the National Academy of Sciences,
110(52):20935–20940, December 2013.

[18] Jinho Baik, Gérard Ben Arous, Sandrine Péché, et al. Phase transition of the largest eigenvalue
for nonnull complex sample covariance matrices. The Annals of Probability, 33(5):1643–1697,
2005.

56



[19] Nelson Dunford and Jacob T Schwartz. Linear operators. 2. Spectral theory: self adjoint
operators in Hilbert Space. Interscience Publ., 1967.

[20] Florent Benaych-Georges and Raj Rao Nadakuditi. The eigenvalues and eigenvectors of finite,
low rank perturbations of large random matrices. Advances in Mathematics, 227(1):494–521,
2011.

[21] Jack W Silverstein and ZD Bai. On the empirical distribution of eigenvalues of a class of large
dimensional random matrices. Journal of Multivariate analysis, 54(2):175–192, 1995.
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