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Abstract

In multi-task learning, a major challenge springs from a notorious issue known as
negative transfer, which refers to the phenomenon that sharing the knowledge with
dissimilar and hard tasks often results in a worsened performance. To circumvent
this issue, we propose a novel multi-task learning method, which simultaneously
learns latent task representations and a block-diagonal Latent Task Assignment
Matrix (LTAM). Different from most of the previous work, pursuing the Block-
Diagonal structure of LTAM (assigning latent tasks to output tasks) alleviates
negative transfer via punishing inter-group knowledge transfer and sharing. This
goal is challenging since our notion of Block-Diagonal Property extends the tradi-
tional notion for homogeneous and square matrices. In this paper, we propose a
spectral regularizer which is proven to leverage the expected structure. Practically,
we provide a relaxation scheme which improves the flexibility of the model. With
the objective function given, we then propose an alternating optimization method,
which reveals an interesting connection between our method and the optimal trans-
port problem. Finally, the method is demonstrated on a simulation dataset, three
real-world benchmark datasets and further applied to two personalized attribute
learning datasets.

1 Introduction

Multi-Task Learning (MTL) is a learning paradigm whose aim is to leverage useful information
contained in multiple related tasks to help improve the generalization performance of all the tasks
[Caruana, 1997]. Nowadays, MTL has emerged as a fundamental building block for a wide range of
applications ranging from scene parsing [Xu et al., 2018], attribute learning [Cao et al., 2018, Yang
et al., 2019a, 2018], text classification [Liu et al., 2017], sequence labeling [Lin et al., 2018], to travel
time estimation [Li et al., 2018], etc.

The fundamental belief of MTL lies in that sharing knowledge among multiple tasks often results
in an improvement in generalization performance, which is especially of great significance in the
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presence of insufficient data annotations [Heskes, 1998]. Based on the belief, a great number of
studies have been carried out to explore the problem of how to share valuable knowledge across
different tasks. The early studies of MTL (e.g.[Argyriou et al., 2008a]) hold that all the tasks share
common and sparse features. However, [Kang et al., 2011] later points out that if not all the tasks
are indeed related, then sharing common features with dissimilar and hard tasks often results in
performance degradation, which is termed as negative transfer.

To address this issue, recent studies in the odyssey against negative transfer fall in two major
directions. One line of the researches leverages the grouping effect based on the latent-task-agnostic
idea which develops structural regularizers where only the original per-task parameters are utilized.
[Kang et al., 2011, Kshirsagar et al., 2017] directly formulate the tasking grouping as a mixed integer
programming (or a relaxation [Frecon et al., 2018]), which simultaneously learns the group index
and the model parameters. [Argyriou et al., 2008b, Zhou et al., 2011a, Jacob et al., 2009, Lee et al.,
2016, Liu and Pan, 2017, McDonald et al., 2014] leverage the tasking grouping via enforcing a
specific structure, hopefully block-diagonal, on the task correlation matrix. As an extension of this
formulation [Zhong and Kwok, 2012] resorts to feature-specific task clustering. The other line of
researches formulates the MTL based on the latent task, where the model parameter is represented as
a linear combination of latent task basis. [Kumar and III, 2012] gives an early trial of this formulation
in search of a more flexible MTL model. Similarly, in the work of [Maurer et al., 2013], a sparse
coding model is proposed for MTL, where the dictionary is set as the latent task basis and the code is
set as the linear combination coefficients of such basis. Recently, [Lee et al., 2018] also provides an
asymmetric learning framework based on the latent task representation where transferring knowledge
from unreliable tasks to reliable tasks is explicitly punished.

The two aforementioned directions, i.e., learning grouped model structure and latent task represen-
tation provide complementary functions in a sense that the former one avoids inter-group negative
transfer, while the latter one focuses on learning a more flexible model. However, the related studies
on how to bridge the efforts of these two directions are sparse. To the best of our knowledge, the only
two studies along this direction are [Crammer and Mansour, 2012, Barzilai and Crammer, 2015].
However, both studies adopt a strong assumption that each group of tasks is only assigned with one
latent task basis.

To leverage a flexible grouping structure with latent task representations, we should allow each task
cluster to have multiple latent tasks. Motivated by this, we study the structural learning problem of
how to learn a block-diagonal Latent Task Assignment Matrix (LATM). With the block-diagonal
structure, tasks within each group share a subset (not necessarily one) of the latent task basis. Since
LATM is not a squared matrix and marginal constraints are also necessary to avoid isolated tasks/latent
tasks, our notion of block-diagonality generalizes the one adopted in the self-expression scenario
[Lu et al., 2019, Lee et al., 2016, Liu and Pan, 2017] , which makes traditional structural regularizers
not available to solve our problem. Our first contribution then comes as an equivalent spectral
condition that realizes our pursuit of the generalized block-diagonal structure. Then we propose a
new MTL method named Generalized Block-Diagonal Structural Pursuit (GBDSP), which utilizes
the spectral condition as a novel regularizer with a relaxation scheme. In our optimization method,
the intermediate solution produced provides new insights into how negative transfer is alleviated in
our model. Theoretical studies show how the proposed regularizer guarantees the expected structure.
Finally, empirical studies demonstrate the effectiveness of the proposed method.

2 Generalized Block-Diagonal Structure Pursuit

Notations The notations adopted in this paper are enumerated as follows. Sm denotes the set of
all symmetric matrices in Rm×m. The eigenvalues of a symmetric matrix A ∈ Sm are denoted as
λ1(A), · · · , λm(A) such that λ1(A) ≥ λ2(A) ≥ · · · ≥ λm(A). 〈·, ·〉 denotes the inner product for
two matrices or two vectors. Given two vectors a and b, a⊕ b denotes the outter sum a1> + 1b>.

Given two matricesA andB,A⊕B denotes the direct sum of two matrices, i.e.,A⊕B =

[
A 0
0 B

]
,

and we say A � B, if A −B is positive semi-definite. For distributions, N (µ, σ2) denotes the
normal distribution. Pm denotes the set of all permutation matrices in Rm×m. For two matrices
A and B having the same size, d(A,B) = ‖A − B‖2F . Given an event A, δ(A) denotes the
corresponding indicator function. Moreover, let us note two notations in our paper that are prone
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to be confused. k denotes the dimension of the latent task representation. K(K ≤ k) denotes the
number of given groups.

2.1 Model Formulation

Before entering our new method, we first provide a brief introduction of the multi-task learning
setting we adopted in this paper. Here we adopt the latent task representation framework proposed
in [Kumar and III, 2012]. Given T tasks to be learned simultaneously, we denote the training data
as:
{

(X(1),Y (1)), · · · , (X(T ),Y (T ))
}

. Here X(i) = [X
(i)
1 , · · · ,X(i)

ni ]>, where X(i)
j ∈ Rd×1 is

the input feature for the j-th sample of the i-th task, ni denotes the number of instances and d
represents the feature dimension. Similarly Y (i) = [Y

(i)
1 , · · · , Y (i)

ni ]> ∈ Rni×1, where Y (i)
j is the

corresponding response for the j-th sample of the i-th task. Following the standard multi-task learning
paradigm, we learn a model Ŷ (i)(x) = W (i)>x to estimate the output response for each task i. Here
we call W = [W (1), · · · ,W (T )] ∈ Rd×T the per-task parameter matrix. Furthermore, to model
the relationship among the tasks, we assume that the per-task parameters lie in a low dimensional
subspace. To this end, we introduce a set of latent task basisL ∈ Rd×k, where k < T . For each given
task i, its parameter is then represented as a linear combination of the basis by lettingW (i) = LS(i),
where S(i) ∈ Rk×1 is the combination coefficients. Given a loss function `(y, ŷ), the empirical risk
for the i-th task is defined as J (i) =

∑ni

j=1 `(Y
(i)
j , Ŷ

(i)
j ). Given proper regularizers Ω(L), Ω(S),

[Kumar and III, 2012] learnsL,S from the problem argminL,S

∑T
i=1 J (i) +α1 ·Ω(L)+α2 ·Ω(S).

In this paper, we adopt the F -norm penalty for L, i.e., we set Ω(L) = ‖L‖2F . And we seek new
solutions against negative transfer from Ω(S). In this setting, we must deal with both the latent task
representations and the true tasks. To differentiate the two, we refer the former ones to latent tasks
(l1, · · · , lk) and the latter ones to output tasks (o1, · · · ,oT ).

With the latent task formulationW = LS, S then captures the importance of the latent tasks to the
output tasks. In a natural sense, we regard Si,j as P(l = i|o = j), namely the possibility of choosing
li to represent oj . In this probabilistic view, LS(i) now becomes El|o=i(L), i.e., the expectation of
the latent tasks representations assigned to task oi. We then call S the Latent Task Assignment Matrix
(LTAM), since the conditional possibility could be considered as a soft assignment score. Before
developing a proper regularizer, we must first answer the question that can we choose S arbitrarily?
Unfortunately, we will immediately see that the answer is negative. Let us denote S‡ ∈ Rk×T by
S‡i,j = P(l = i,o = j), the joint distribution of l and o. Note that S‡1 and S‡>1 are marginal
distributions on l and o, we come to two extreme cases that must be ruled out from consideration.
If (S‡1T )i = 0 then li becomes an isolated latent task which is irrelevant with all the output task.
Similarly, if (S‡

>
1k)j = 0 then oj becomes isolated with no latent tasks assigned to it. To remove

extreme cases of such kinds, we then pose normalization constraints on S‡ for each row and column
in the form: S‡1T = a > 0k, S‡>1k = b > 0T . To maintain fairness, we do not expect to introduce
extra bias from the choice of marginal distribution. Such a spirit guides us to put out a = 1k/k,
b = 1T /T . Moreover, this also simplifies the relation between S and S‡ with S = TS‡. From all
above, we adopt the transportation polytopes Π(a,b) =

{
S‡ ∈ Rk×T+ : S‡1 = a, S‡

>
1 = b

}
as

the feasible set for the parameter S‡.

So far we have known that S must satisfy the marginal constraints to make the solution non-trivial.
Now let us step further to seek out what else we should pose on S to suppress inter-group transfer.
In this paper, we adopt a basic assumption that the latent tasks and output tasks could be clustered
into K independent groups. In order to avoid negative transfer, we hope the possibility to assign
li to oj is nonzero if and only if (i, j) belongs to the same group. This leads to a block-diagonal
structure of S‡ up to row and column permutations. Next, we give a formal definition of the desired
block-diagonal structure with S‡ ∈ Π(a,b), based on the following simple idea. If the columns and
rows of S‡ could be partitioned into K groups, S‡ could then be expressed as a direct sum of K
blocks up to proper column and row permutations. The maximum of such K then implies the number
of groups in the matrix.1 This motivates the following definition of the grouping structure, which is
termed as the Generalized K Block Diagonal Property (GKBDP) in our paper.

1If K is not the maximum of such numbers, we can always find out more disjoint blocks.
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Definition 1 (Generalized K Block Diagonal Property). Given a matrix S‡ ∈ Π(a,b), if there
exists a permutation matrix over rows Pr ∈ Pk and a permutation matrix over columns Pc ∈ PT
such that: PrS‡Pc =

⊕K
i=1 Ŝ

(i) where Ŝ(i) 6= 0, Ŝ(i) ∈ Rki×Ti ,
∑
i ki = k,

∑
i Ti = T ,

then we define χS‡(Pr,Pc) = K. Moreover, we say S‡ is Generalized K Block Diagonal if
χS‡ = max

Pr∈Pd,Pc∈PT

χS‡(Pr,Pc) = K.

Note that GKBDP extends the notion of block-diagonal property deployed in self-expression [Lee
et al., 2016, Liu and Pan, 2017, Lu et al., 2019, Jiang et al., 2018, 2019, Yang et al., 2019b] which is
only available for square matrices. Furthermore, the traditional self-expression-based block-diagonal
property requires Pr = P>c [Lu et al., 2019], i.e., a simultaneous permutation on columns and rows
(the i-th row and the i-th column represent the same object) . However, this is not the case in our
notion of GKBDP since the columns and rows here represent heterogeneous concepts (the i-th row
is for li, i-th column is for oi). Moreover we also consider the marginal constraints S‡1 = a, and
S‡
>

1 = b to avoid isolated l or o. Based on the aforementioned facts, traditional regularization
schemes are thus not directly applicable to leverage the GKBDP.

Next, we derive an equivalent condition for GKBDP, which directly leads to the formulation of
our method. First, we define an auxiliary bipartite graph Gl∪o = (Vl∪o, El∪o,Al∪o). The vertices
of Gl∪o include all l and o. Denote Vo as the set of all output tasks and Vl as the set of all latent
tasks, the vertex set Vl∪o is then defined as Vl∪o = Vl ∪ V o. To define the edge set, we first define

an affinity matrix Al∪o in the form Al∪o =

[
0 S‡

S‡
>

0

]
, where the (i, j) ∈ El∪o if and only if

Al∪oij 6= 0. Then the well-known graph Laplacian follows as ∆(S‡) = diag(Al∪o1) − Al∪o.
With the definition of Gl∪o, we could derive the following theorem.

Theorem 1. If S‡ ∈ Π(a,b), χS = K holds if and only if dim(Null(∆(S‡))) = K, i.e, the 0
eigenvalue of ∆(S‡) has multiplicity K. Moreover, denote A(i) as the set of latent and output tasks
belonging to the i-th block of S, the eigenspace of 0 is spanned by ιA(1) , ιA(2) , · · · , ιA(K) , where
ιA(i) ∈ R(k+T )×1, [ιA(i) ]j = 1 if j ∈ A(i), otherwise [ιA(i) ]j = 0.

The proof can be found in Appendix B.1. With the theorem, we can now step further to seek a suitable
regularizer realizing GKBDP. It becomes straightforward that leveraging GKBDP requires the sum of
bottom K eigenvalues to be as small as possible. Let N = k+ T denote the total number of nodes in
Gl∪o, we then need to minimize

∑N
N−K+1 λi(∆(S‡)) with the constraint S‡ ∈ Π(a,b). Following

the variational characterization of eigenvalues, we could reformulate eigenvalue calculation as an
optimization problem with the following theorem.

Theorem 2. Let M = {U : U ∈ SN , I � U � 0, tr(U) = K}, then ∀A ∈ SN :∑N
N−K+1 λi(A) = minU∈M 〈A, U〉 , with an optimal value reached at U = VKV

>
K , where

VK represents the eigenvectors of the smallest K eigenvalues ofA.

The theorem slightly extends the results in [Overton and Womersley, 1992b], which considers top-K
eigenvalues. A proof for the theorem could be found in Appendix B.2. Back to our practical problem,
Thm.2 provides a regularizer as Ω(S‡) = inf

{〈
∆(S‡),U

〉
: U ∈M

}
. Denote J̃ =

∑T
i=1 J (i),

Ω1 = α1 · ||L||2F /2, Ω2 = α3 ·
〈
∆(S‡),U

〉
, we then reach an MTL model based on the latent task

framework:

min
L,S,S‡,U

J̃ + Ω1 + Ω2, s.t. S
‡ ∈ Π(a,b), U ∈M, S = TS‡. (Obj0)

This model exactly realizes GKBDP. However, this exact model is impractical in the following
sense. First, it is hard to solve (Obj0) directly since multiple constraints are wrapped together on S.
Moreover, it encourages a strict structural control of S, prohibiting overlapped subspaces even when
it benefits the performance. These problems lead us to a relaxed implementation of (Obj0) , bringing
us possibilities to embrace a practical and a more flexible solution.

To avoid directly controlling the structure of S, we relax the constraint S = TS‡ as a distance
penalty2 Ω3 = α2 · d(S, TS‡)/2. This brings us to the final optimization problem:

2Let us note that, in the rest of the paper, S = TS‡ no longer holds
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min
L,S,S‡,U

J = J̃ + Ω1 + Ω2 + Ω3, s.t. S
‡ ∈ Π(a,b), U ∈M. (Obj)

The relaxation scheme improves the flexibility of our model via leveraging a partial structural control,
which decomposes S into a structural component TS‡ and a dense component as the residual
S−TS‡. The new dense component allows S to slightly (controlled by the magnitude of α2) violate
the structural constraint, in search of a better performance.

Alternatively, we could also interpret (Obj) as a way to leverage hierarchical priors on the model.
This is specified by the generative model in the following:[

Y (i) |X(i),L,S(i)
]
∼ N

(
X(i)LS(i), I

)
,

[
vec(L) | α1

]
∼ N

(
0,

1

α1
I

)
,[

S(i) | TS‡(i), α2

]
∼ N

(
TS‡(i),

1

α2
I

)
,

[
S‡ | U , α3

]
∼ g, U ∼ h,

where

g ∝ exp
(
−α3 ·

〈
∆(S‡),U

〉)
· δ
(
S‡ ∈ Π(a,b)

)
, h ∝ δ

(
U ∈M

)
.

Here g specifies an exponential distribution restricted on the set Π(a,b), and h specifies a uniform
distribution on the setM. With this process, our objective function is equivalent to a Maximum A
Posterior (MAP) formulation in the following sense:

J = − log
(
P(L, S, S‡, U |X, Y , α1, α2, α3)

)
+ const.

This fact gives us an alternative perspective on the relationship between S and S‡. With the relaxation
scheme, the constraints are moved to the mean of the prior distribution of S. This provides S with a
possibility to activate the overlapping off-diagonal block elements with a moderate variance α2.

2.2 Optimization

It is easy to see that J in (Obj) is not a jointly convex function. But fortunately, it is easy to show
that the four subproblems with respective to L,S,S‡,U are all convex. Instead of directly solving
the overall non-convex problem, this fact motivates us to adopt an alternating optimization scheme
where only one of the four parameters is updated each time and the others are fixed as constants. Now
we elaborate the four subproblems, respectively.

L andS subroutine: Theoretically, both subroutines solve a strongly convex unconstrained quadratic
programming and enjoy a closed-form solution. However, calculating the closed form of the L
subproblem suffers from a heavy computational complexity. Instead of adopting the closed form
directly for theL subproblem, we adopt a gradient-based optimizer in our paper. Please see Appendix
C for more details.

U subroutine: According to Thm.2, U could be solved from: U = VKV
>
K , where VK denotes

eigenvectors associated with the smallest K eigenvalues of ∆(S‡). Denote VK = [f1, · · · ,fk+T ]>,
according to Thm.1, when χS‡ = K, up to some orthogonal transformation, fi ∈ RK×1 becomes an
indicator vector with only one non-zero entry where [fi]j = 1 only if the corresponding latent/output
task i is in group ιA(j) . In this way, we see that fi is a strong group indicator. Consequently, we
name fi as the embedding vector for the latent (output) task.

S‡ subroutine: With U updated with U = VKV
>
K , the following proposition shows a way to solve

this subproblem:

Proposition 1. The S‡ subproblem could be reformulated as:

min
S‡∈Π(a,b)

ϑ

2
‖S‡ − S̄‖2F +

〈
D,S‡

〉
, (Primal)

where ϑ =
α2 · T 2

α3
, S̄ =

S

T
and Dij = ‖fi − fk+j‖2.
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The proof could be found in Appendix A.1. From Prop.1, we see that the subproblem recovers a
smoothed Optimal Transport (OT) [Peyré et al., 2019] problem. More specifically, the calculation of
the Wasserstein-2 distance between l and o, based on the spectral embedding.

Similar to the recent results [Blondel et al., 2018, Peyré et al., 2019], we can show that the regularized
OT problem has a close connection with the original OT problem.
Proposition 2. The following properties hold true:

(a) Denote S‡ϑ0 as the solution of problem (Primal) when ϑ = ϑ0. Then we have :

S‡ϑ0

ϑ0→0→ argmin
S‡

{
d(S‡, S̄) : S‡ ∈ argmin

S‡∈Π(a,b)

〈
D,S‡

〉}
.

(b) Denote

JOT = min
S‡∈Π(a,b)

〈
D,S‡

〉
, JREG = min

S‡∈Π(a,b)
(ϑ/2) · d(S, S̄) +

〈
D,S‡

〉
,

we have:

ϑ ·max
{
d(S̄1− a)/T, d(S̄>1,b)/k

}
≤ JREG − JOT ≤ ϑ · (min{‖a‖22, ‖b‖22}+ ‖S̄‖2F ).

The proof can be found in Appendix A.2. Prop.2-(a) shows that asymptotically, when ϑ → 0, the
solution of the regularized OT problem approaches a specific solution of the original OT problem.
More specifically, it will pick out an optimal coupling from the OT solution set with the smallest
regularization term d(S‡, S̄). From a non-asymptotic perspective, Prop.2-(b) shows how fast this
approximation will take place. Consequently, we will get a reasonable approximation of the original
OT problem with a small ϑ. Moreover, if the regularizer

〈
∆(S‡),U

〉
is sufficiently small, f

approaches the grouping indicator of a K-connected bipartite graph. At the same time, Dij , the
distance between the embedding vectors, approaches zero when li and oj belong to the same group
indicated by f . Under this circumstance, the transportation cost Di,j is small only if li and oj
belong to the same group. By contrast, the inter-group negative transfer is suppressed with a large
transportation cost. Moreover, with α2 → +∞, LS(i) → El|o=i(L). This indicates that the
conditional expectation also embraces the idea of barycenter projection mapping [Seguy et al., 2018]
in the sense El|o=i(L) = argminz El|o=i(d(L(i), z)). Under this condition, the task parameter of
oi becomes a barycenter of the latent task embeddings. Finally, we show that this subproblem could
be solved efficiently from the dual formulation.
Proposition 3. The dual problem of (Primal) could be solved from:

(h?, g?) = argmin
h, g

1

2ϑ
·
∥∥(h⊕ g −D + ϑS̄)+

∥∥2

F
− 〈h, a〉 − 〈g,b〉 , (Dual)

and the primal solution is given by S‡
?

=

[
h? ⊕ g? −D

ϑ
+ S̄

]
+

.

The proof can be found in Appendix A.3. From Prop.3, we can recover the primal solution from
(Dual), which only involves O(k + T ) parameters instead of O(kT ). In this spirit, we first solve
h?, g? from (Dual) with the L-BFGS [Zhu et al., 1997] method as the optimizer, and then recover
S‡

? from the dual parameters.

Summary Our optimization procedure then alternatively solves the four subproblems until a conver-
gence condition is reached, with irrelevant variables fixed as their latest version. Moreover, since
all the subproblems are convex, it is easy to see that the iteration over subproblems then keeps the
overall loss function non-increasing.

2.3 Theoretical Analysis

In this section, we present theoretical analysis shedding light on how the hyperparameters α1, α2, α3

affect our proposed model. Let us start with defining a proper hypothesis space H that covers the
solution returned by the optimization algorithm. Recall that (Obj) is non-increasing during the
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optimization procedure. This means that if we choose a feasible candidate L0,S0,S
‡
0,U0 as the

initialization of the algorithm, denote by J0 the corresponding objective function value, we will
have ‖L‖2F ≤ 2J0/α1, d(S, TS‡) ≤ 2J0/α2,

〈
∆(S‡),U

〉
≤ 2J0/α3, for all outputs from the

optimization algorithm. This naturally defines a hypothesis classH = H(L,S,S‡,U):

H(L,S,S‡,U) =

{{
Ŷ (i)(X

(t)
i ) = (LS(i))>X

(t)
i

}
ti

: ‖L‖2F ≤ ξ1,

d(S, TS‡) ≤ ξ2,
〈
∆(S‡),U

〉
≤ ξ3,S‡ ∈ Π(a,b),U ∈M

}
,

where ξ1 = 2J0/α1, ξ2 = 2J0/α2, ξ3 = 2J0/α3. Now we are ready to represent the theoretical
results based onH.

As the first step, we explore how well a model learned fromH generalizes to the overall population.
The empirical risk R̂(L,S) over the observed dataset and the task-averaged riskR(L,S) are given
as: R̂(L,S) =

∑T
i=1 J (i)/T,R(L,S) =

∑T
i=1 Eµi

[
J (i)

]
/T, where the training dataX(i)

j ,Y
(i)
j

are sampled from µi. We then bound the term ∆ = R(L,S) − R̂(L,S). Following the spirit of
[Maurer et al., 2016], we have the following bound for the hypothesis space:

Theorem 3. Suppose that n1 = n2 · · · = nT = n, the loss function `(y, ·) : ŷ 7→ [0,M ], `(y, ·) is
Mφ-Lipschitz continuous, and ∀(L,S) are chosen fromH, the following bound holds with possibility
at least 1− δ :

∆

M
≤ κ1φℵ

(
ξ1k
∣∣∣∣COV (X)

∣∣∣∣
1

nT

)1/2

+ 2κ2φℵ ·

(
ξ1
∣∣∣∣COV (X)

∣∣∣∣
∞

n

)1/2

+

(
9 ln (2/δ)

2nT

)1/2

,

where κ1 and κ2 are two universal constants, ℵ =
√
ξ2 + 1. COV (X) is the covariance operator

defined as 〈COV (X)u,v〉 = (1/nT ) ·
∑
ti

〈
u,X

(t)
i

〉〈
X

(t)
i ,v

〉
.

The proof can be found in Appendix B.3. With the sample complexity given, we narrow our focus to
the problem that how ξ2, ξ3 benefit the hypothesis space. The following theorem shows that ξ2, ξ3
control the spectral properties of S and S‡.

Theorem 4 (Spectral Properties of S). Let k ≤ T , define the SVD of S as S = PΛQ>, where P =
[p1, · · · ,pk],Q = [q1, · · · , qk] are left and right singular vectors respectively, Λ = diag(σi (S))
with σ1 (S) ≥ σ2 (S) · · · ≥ σk (S) ≥ 0. The following properties hold for all S ∈ H:

(a) The bottom K eigenvalues of the graph Laplacian induced by S is bounded by :∑N
i=N−K+1 λi(∆(S)) ≤ Tξ3 +

√
ξ2K(

√
2 +
√
k +
√
T ), where ∆(S) is obtained from

replacing S‡ in ∆(S‡) with S .

(b) Define M(P ) = Span{p1, · · ·pK} and M(Q) = Span{q1, · · · qK}, if ξ3 +
√
ξ2/T < 1/T

and rank(S) ≥ K, then we have:

σ1 (S)

σK (S)
= max

x,y∈M(P )
‖x‖2=1,‖y‖2=1

‖Sx‖2
‖Sy‖2

= max
x,y∈M(Q)

‖x‖2=1,‖y‖2=1

‖S>x‖2
‖S>y‖2

≤ 1

k
· T + k

√
ξ2

1− Tξ3 −
√
ξ2
.

The proof can be found in Appendix B.4. Thm.4.(a) implies that, with a small ξ2 and ξ3, the grouping
structure of S could also be controlled, even though the structural penalty is not directly exhibited
on S. More specifically, if we pick ξ3 = O(T−3/2) and ξ2 = O(1/T 2), we can reach a small∑N
i=N−K+1 λi(∆(S)) with O(T−1/2) if T >> k. Thm.4.(b) states that shrinking ξ2, ξ3 helps to

remain a smaller numerical perturbation of Sx (S>x) over the principle subspaces, i.e., the subspaces
spanned by principle left/right singular vectors. Besides numerical benefits, the following theorem
shows that ξ3 guarantees good structure recovery in a non-asymptotic manner.

Theorem 5. Assume that k ≤ T , and that the ground-truth grouping is indicated by G = {(i, j) :
1 ≤ i ≤ k, 1 ≤ j ≤ T, li and oi are in the same group} with K disjoint groups. Moreover, for a
matrix W , denote supp(W ) as {(i, j) : Wi,j 6= 0}. For all S‡ obtained from the space H such
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that λK+1(∆(S‡)) > λK(∆(S‡)) > 0 and infS?∈Π(a,b),Supp(S?)=G ||∆(S‡)−∆(S?)||F ≤ ε, we
have:

‖S‡supp
c

‖1 ≤
1

2
·
(
ξ3 +

√
2
k + 6

T · ε
λK+1(∆(S‡))

)
≤ 1

2
· ξ3 +

4√
kTλK+1(∆(S‡))

S‡
suppc

denotes the projection of S‡ onto the complement of the support set of the expected block-
diagonal structure in the sense that S‡

suppc

i,j = 0 if i and j belong to the same group, S‡
suppc

i,j = S‡i,j
otherwise.

The proof can be found in Appendix B.5. Under the assumptions of Thm.5, a smaller ξ3 embraces a
better recovery of the true block-diagonal structure. More specifically, it shrinks ‖S‡supp

c

‖1, i.e., the
overall magnitude of the elements that violate the true grouping structure. Picking ξ3 = O(T−1/4) and
k = O(

√
T ), if λK+1(∆(S‡)) = O(1/k), under the worst case, we have ‖S‡supp

c

‖1 = O(T−1/4).

3 Empirical Study

3.1 Experiment Settings

For all the experiments, hyper-parameters are tuned based on the training and validation set, and the
results on the test set are recorded. The experiments are done with 5 repetitions for each involved
algorithm. Except for the Simulated Dataset, the train/valid/test ratio is fixed as 70%/15%/15%.
For regression datasets (Simulated dataset and School), we adopt the overall rmse on all samples
as the evaluation metric. For classification datasets, we adopt the average of task-wise AUC as
the evaluation metric. For regression problem, J (·) in GBDSP is chosen as the square-loss. For
classification problem, J (·) in GBDSP is chosen as the squared surrogate loss for AUC [Gao et al.,
2016]. All the experiments are run with MATLAB 2016b and a Ubuntu 16.04 system. In the
next subsection, we show our experimental results on a simulated dataset. More experiments for
real-world datasets could be found in Appendix D.

3.2 Simulated Dataset

To test the effectiveness of GBDSP we generate a simple simulated annotation dataset with T = 150
simulated tasks, where the dataset is produced according to the assumption in our model. For
each task, 500 samples are generated with d = 300 features such that X(i) ∈ R500×300 and
x

(i)
k ∼ N (0, I80). Specifically, we generate latent task representations with k = 100 basis. This

yields an L ∈ R300×100 and an S ∈ R100×150. To leverage the group structure, we split the
latent tasks and output tasks into 5 groups, in a way that L = [L1, · · · ,L5], where L1 ∈ R300×20,
L2 ∈ R300×20, L3 ∈ R300×10, L4 ∈ R300×30, L5 ∈ R300×20, and that S =

⊕5
i=1 Si where

S1 ∈ R20×30, S2 ∈ R20×30, S3 ∈ R10×15, S4 ∈ R30×45, S5 ∈ R20×30. For the i-th group, the
elements in Li is sampled i.i.d from N (mi, 0.01), where mi = 5i. Si is generated as Si = si1,
i.e., every element in Si shares the same value. Moreover, si is calculated from the constraint that
S ∈ Π(a,b). Then the task parameter is generated as W = LS. For each task, the outputs are
generated as Y (i) = X(i)(W (i) + ε(i)), where ε(i) ∈ R200×1, and ε(i) ∼ N (0, 0.12I500). Based on
this setting, we compare GBDSP with GOMTL in the simulation dataset to see how the block-diagonal
structure benefits the latent task representation based MTL.

First, we show how well could GOMTL and GBDSP recover the block-diagonal structure. We
compare S obtained from GOMTL and S‡ obtained from GBDSP, with the initial value of L̂ set as
L̂ = L+N (0, 0.05I). As shown in Fig.1(a)- Fig.1(c), GBDSP recovers a much clearer structure
than GOMTL. Moreover, we provide a closer look at the embedding vectors in GBDSP. To do this,
we visualize the spectral embeddings f in a 3d space with t-SNE [Maaten and Hinton, 2008], which
is shown in Fig.2(c). In this figure, the points with different colors represent latent/output tasks in
different groups. Clearly, we see that the clusters are well-separated in the spectral embedding space,
which again verifies the grouping power of the proposed method.

Next, we check whether GBDSP could improve the performance with a structural LATM.
In Fig.2, we plot the performance of GOMTL and GBDSP with different training set ratio

8



(a) (b) (c)

Figure 1: Visualizations over the Simulated Dataset. (a)-(c) provide structural comparisons over the
LATM: (a) shows The true LATM; (b) shows the LATM recovered by GOMTL (c) shows the LATM
recovered by GBDSP.
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Figure 2: (a-b) Performance curve with different training data ratio: (a) GOMTL (b) GBDSP(c)
shows the spectral group embedding of o and l in GBDSP.

(0.35, 0.45, 0.55, 0.65, 0.75). The corresponding results show that GBDSP consistently provides
a better performance with a smaller variance, which supports the idea that learning a block-diagonal
LATM structure improves the performance.

4 Conclusion

To simultaneously leverage a latent task representation and alleviate the inter-group negative transfer
issue, we develop a novel MTL method GBDSP, which simultaneously separates the latent tasks and
out tasks into a given number of groups. Moreover, we adopt an optimization method to solve the
model parameters, which gives an alternative update scheme for our multi-convex objective function.
The solution produced by the optimization method shows a close connection between our method
and the optimal transport problem, which brings new insight into how negative transfer could be
prevented across latent tasks and output tasks. Furthermore, we provide theoretical analysis on the
spectral properties of the model parameters. Empirical results on the simulated dataset show that
GBDSP could roughly recover the correct grouping structure with good performance, and results
on the real-world datasets further verify the effectiveness of our proposed model on the problem of
personalized attribute prediction.
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Appendix

A Proofs of the Propositions

A.1 Proof of Proposition 1

Proof. Given the solution of the U subproblem, the S‡ subproblem could be formulated as:

min
S‡∈Π(a,b)

α2

2
||S − S‡c||2F + α3 ·

〈
diag(

[
0 S‡

S‡
>

0

]
1)−

[
0 S‡

S‡
>

0

]
, U

〉
.

With the fact that〈
diag(

[
0 S‡

S‡
>

0

]
1)−

[
0 S‡

S‡
>

0

]
,U

〉
=

〈
diag(U)1> −U ,

[
0 S‡

S‡
>

0

]〉
,

and simple scaling of the constants, we could reformulate the problem as:

min
S‡∈Π(a,b)

ϑ

2
||S̄ − S‡||2F +

〈
∆(1) + ∆(2)> ,S‡

〉
.

where ∆ = diag(U)1> −U , ∆(1) = ∆(1 : k, (k + 1) : end), ∆(2) = ∆((k + 1) : end, 1 : k).

Then the proof directly follows the fact that

∆
(1)
ij + ∆

(2)
ji = Uii + Uk+j,k+j − Ui,k+j − Uk+j,i = ‖fi − fk+j‖22.

A.2 Proof of Proposition 2

Proof. (a): Since Π(a,b) is bounded, the sequence {S‡ϑ}ϑ→0 must admit at least one con-
vergent subsequence. Pick any such subsequence with a limit point S‡∗, and pick any S‡ ∈
argminS‡∈Π(a,b)

〈
D,S‡

〉
, from the optimality of S‡ϑ in this subsequence and the optimality of S‡,

we have:
0 <

〈
D,S‡ϑ − S‡

〉
≤ ϑ ·

(
d(S‡, S̄)− d(S‡ϑ,Sc)

)
.

Now we prove that S‡∗ is a feasible solution. Obviously since Π(a,b) is closed, we have S‡∗ ∈
Π(a,b). Moreover, taking the limit ϑ → 0 in the inequality above, we have

〈
D,S‡∗ − S‡

〉
= 0.

This implies that S‡∗ ∈ argminS‡∈Π(a,b)

〈
D,S‡

〉
. Above all, we know S‡∗ is a feasible solution.

Now we continue to show its optimality. Again, by dividing ϑ on both sides of the inequality above
and taking the limit ϑ→ 0, we have: d(S‡, S̄)− d(S‡

∗
, S̄) ≥ 0. This implies that d(S‡, S̄) reaches

a minimal value in the feasible set at S‡ = S‡
∗. Moreover, since the optimization problem is

strongly convex, we know such S‡∗ must be unique. Since Π(a,b) is closed and every convergent
subsequence of {S‡ϑ} converges to the optimal solution of the problem, {S‡ϑ} converges to the
optimal solution of the problem. This ends our proof.

(b) Let S?1 and S?2 be the (an) optimal solution of JREG and JOT , respectively. From the optimality
of S?1 , we have:

〈D,S?1〉+
ϑ

2
‖S?1 − S̄‖2F ≤ 〈D,S?2〉+

ϑ

2
‖S?2 − S̄‖2F .

Furthermore, according to the optimality of S?2 , we have:

〈D,S?2〉+
ϑ

2
‖S?1 − S̄‖2F ≤ 〈D,S?1〉+

ϑ

2
‖S?1 − S̄‖2F .

Above all we have:
ϑ

2
‖S?1 − S̄‖2F ≤ JREG − JOT ≤

ϑ

2
‖S?2 − S̄‖2F .
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Since S?1 ∈ Π(a,b), we must have:

min
S∈Π(a,b)

‖S − S̄‖2F ≤
ϑ

2
‖S?1 − S̄‖2F .

Moreover, we have:

min
S1=a

‖S − S̄‖2F ≤ min
S∈Π(a,b)

‖S − S̄‖2F , min
S>1=b

‖S − S̄‖2F ≤ min
S∈Π(a,b)

‖S − S̄‖2F .

It is easy to see that

min
S1=a

1

2
‖S − S̄‖2F =

‖S̄1− a‖22
T

, min
S>1=b

1

2
‖S − S̄‖2F =

‖S̄>1− b‖22
k

.

All these lead to:

ϑ ·max

{
‖S̄1− a‖22

T
,
‖S̄>1− b‖22

k

}
≤ JREG − JOT .

Moreover, we have ‖S − S̄‖2F ≤ 2‖S‖2F + 2‖S̄‖2F . For all S ∈ Π(a,b), we have:

‖S‖2F =
∑
i,j

Si,j =
∑
i

a2
i

∑
j

(
Si,j
ai

)2

≤
∑
i

a2
i

∑
j

(
Si,j
ai

)
≤ ‖a‖22.

Similarly, we have ‖S‖2F ≤ ‖b‖22. These lead to :

JREG − JOT ≤ ϑ · (‖S̄‖2F + min{‖a‖22, ‖b‖22}).

A.3 Proof of Proposition 3

Proof. The lagrangian dual of the problem could be written as:

max
f ,g,Λ≥0

min
S‡

ϑ

2
‖S̄ − S‡‖2F +

〈
D,S‡

〉
−
〈
S‡1− a,f

〉
−
〈
S‡
>

1− b, g
〉
−
〈
Λ,S‡

〉
. (1)

Since (Primal) is strongly convex, the strong duality reduces to the Slater condition. It is easy to

see that (Primal) satisfies this condition, since S† =
1k×T
kT

∈ Π(a,b) and obviously S† > 0. The
primal problem could then be solved from its dual problem Eq.(1). Now we show that it is equivalent
to solving (Dual). Solving the inner minimization problem of Eq.(1), we have:

S‡ =
h⊕ g + Λ−D

ϑ
+ S̄. (2)

Note that since the inner minimization problem is strongly convex toward S‡, the solution is unique.
Plugging the solution into the outter maximization problem yields:

max
f ,g,Λ≥0

1

2ϑ
‖h⊕ g + Λ−D‖2F + 〈f , a〉+ 〈g,b〉+

〈
D − h⊕ g −Λ,

h⊕ g + Λ−D
ϑ

+ S̄

〉
.

Fixing f , g, we see the maximization problem is strongly concave toward Λ. This means that Λ can
be uniquely determined by f , g with the solution of the partial maximization problem:

max
Λ≥0
− 1

2ϑ
‖h⊕ g + Λ−D + ϑS̄‖2F + 〈f , a〉+ 〈g,b〉+ const. (3)

This yields:
Λ =

[
h⊕ g + Λ−D + S̄

]
− . (4)

Plugging Eq.(4) into Eq.(2) and (3) then complete the proof.
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B Proofs of the Theorems

B.1 Proof of Theorem 1

Proof. dsadsdsa

(a) We first show that if χS‡ = K then dim(Null(∆(S‡))) = K. Since χS‡ = K, ∃Pr ∈ Pk,
∃Pc ∈ PT , such that: PrS‡PC =

⊕K
i=1 Ŝ

(i), where Ŝ(i) ∈ Rki×Ti , Ŝ(i) 6= 0, ∀i = 1, 2, · · · ,K.

Let P̃0 =

[
Pr, 0
0,P>c

]
, we have P̃0 ∈ Pk+T and :

Ã = P̃0Al∪oP̃
>
0 =

[
0 K1

K2 0

]
,

whereK1 =
⊕K

i=1 Ŝ
(i),K2 =

⊕K
i=1 Ŝ

(i)> . In the following, we show that Ã could be rearranged
to a direct sum of K submatrices, following the same permutation on its rows and columns. We
denote ei = [ei,1 · · · ei,k+T ]>, where ei,j = 1, if i = j, otherwise we have ei,j = 0. Furthermore,
we define ea:b = [ea, ea+1, · · · eb]. Define a permutation matrix

P̃1 =
[
e1:k1 , e(k+1):(k+T1), e(k1+1):d2 , e(k+T1+1):(k+T2), · · · , e(d−kK+1):d, e(k+T−tK+1):(k+T )

]
Then we have:

Ã1 = P̃>1 ÃP̃1 =

K⊕
i=1

Ei, Ei =

[
0 Ŝ(i)

Ŝ(i)> 0

]
Since χS‡(Pr,Pc) reaches its maximum at K, the corresponding Graph G̃ with Ã1 being its affinity
matrix has K connected components. Meanwhile, Ã1 differs fromAl∪o only by row and column
permutations. This means that G̃ only rearranges the nodes in Gl∪o. Hence, Gl∪o also has K
connected bipartite components. From the spectral property of a graph Laplacian [Von Luxburg,
2007], we have dim(Null(∆(S))) = K. This ends the proof of (a).

(b) Next, we show that if dim(Null(∆(S))) = K then χS‡ = K. Since dim(Null(∆(S))) = K
, we know that Gl∪o has K connected components g1, · · · gk. Denote g(li) as the corresponding
group index that li belongs to and g(oj) be the group index that oj belongs to. Furthermore let Gl
be a rearrangement of the indexes of latent tasks such that if g(li1) < g(li2) then Gl(i1) < Gl(i2), if
g(li1) = g(li2), then Gl(i1) < Gl(i2) only if i1 < i2. Meanwhile, let Go be the same rearrangement
of the indexes of output tasks. Then define two permutation matrix Pr = [ek

>

Gl(1); e
k>

Gl(2); · · · ; ek
>

Gl(k)]

and Pc = [eTGo(1), e
T
Go(2), · · · , e

T
Go(k)], where eij ∈ Ri, eij,k = 0 if j 6= k, eij,j = 1. Then we

have PrS‡Pc =
⊕
Ŝ(i). Now we prove that Ŝ(i) 6= 0,∀ i by contradiction. Without loss of

generality, we assume that Ŝ(K) = 0, then all the elements in the last ki rows and the last Ti
columns of PrS‡PC must be 0. This contradicts with the fact that PrS‡Pc1 = PrS

‡1 > 0 and
P>c S

‡>P>r 1 = P>c S
‡>1 > 0. This implies that χS‡ ≥ K. Then we show that χS‡ could not

exceed K by contradiction. If χS‡ > K, then at least one Ŝ(i) could be written as a direct sum of

two nonzero sub-matrices. This contradicts with the fact that
[

0 Ŝ(i)

Ŝ(i)> 0

]
is a connected bipartite

component. This shows that χS‡ ≤ K. Above all, we must have χS‡ = K.

B.2 Proof of Theorem 2

We note that the proof is similar to the literature [Overton and Womersley, 1992a, Alizadeh, 1995],
where the largest K eigenvalues instead of the smallest eigenvalues are analyzed. We provide a proof
here to make our paper self-contained.

Proof. Denote the eigenvalue decomposition ofA as

A = QΛQ>, Λ = diag(λ1(A), · · · , λN (A)).
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For any element U in the feasible set Γ, we have: 〈A,U〉 =
∑
i Ciiλi(A), where C = Q>UQ.

Since C has the same eigenvalues as U , we have C ∈ Γ if and only if U ∈ Γ. Then we have:

min
U∈Γ
〈A,U〉 ⇐⇒ min

C∈Γ

∑
i

Ciiλi(A). (5)

Define ei ∈ RN×1, eii = 1 and eis = 0, if s 6= i, then we reach the fact that: Cii =
ei
>
Cei

ei>ei
. We

could then attain the following inequality based on the extremal property of the top/bottom eigenvalue
of C:

0 ≤ λN (C) = minx
x>Cx

x>x
≤ Cii ≤ maxx

x>Cx

x>x
= λ1(C) ≤ 1.

Since λ1(A) ≥ λ2(A) · · · ≥ λN (A), the minimum of (5) is reached at
∑N
i=N−K+1 λ1(A) when

Cii = 0, i ≤ N − K, Cii = 1, i ≥ N − k + 1. This directly shows that
∑N
N−K+1 λi(A) =

minU∈Γ 〈A, U〉.

Now it only remains to prove that U = VKV
>
K is an optimal solution. Since VK is the eigenvectors

associated with the smallest K eigenvalues of A, we have Q = [V ⊥K ,VK ], where V ⊥K denotes
the eigenvectors associated with the largest N − K eigenvalues, and we have V >K V

⊥
K = 0 and

V ⊥
>

K VK = 0. In this sense, we obtain:

Q>UQ =

[
V ⊥

>

K

V >K

]
VKV

>
K [V ⊥K ,VK ] =

[
0
IK

]
[0, IK ] =

[
0 0
0 IK

]
.

Then the proof follows that C = Q>UQ satisfies the optimal condition analysed above.

B.3 Proof of Theorem 3

In the proof of Thm.3, we adopt the Gaussian Average as the complexity measure of the hypothesis
space, which is defined as follows.
Definition 2 (Gaussian Average). Given a set C ⊂ Rn, the Gaussian Average is defined as

G(C) = E
[
sup
c∈C
〈γ, c〉

]
,

where γ = [γ1 · · · γn] and γ1 · · · γn
i.i.d∼ N (0, 1).

Define the multi-task dataset over T tasks X = {X(i)}Ti=1, whereX(i) = {X(i)
1 , · · · ,X(i)

n }. Given
an Mφ-Lipschitz continuous loss function ` with range [0,M ], we are interested in the following
classes.
1) Target hypothesis Space. Recall we define the target hypothesis space as H(L,S,S‡,U). For
the case of simplicity, we rename it here as F(X ).

F(X ) = H(L,S,S‡,U) =

{{
Ŷ (i)(X

(t)
i ) = (LS(i))>X

(t)
i

}
ti

:

‖L‖2F ≤ ξ1, d(S, TS‡) ≤ ξ2,
〈
∆(S‡),U

〉
≤ ξ3,S‡ ∈ Π(a,b),U ∈M

}
.

To bound ∆, we need to analysis ` ◦ F(X ), which is formed as the composition of the loss function
and the hypothesis space:

` ◦ F(X ) =
{
{{l(ft(X(t)

i ),Y
(t)
i )}ni=1}Tt=1 :

{
ft(X

(t)
i )
}
ti
∈ F(X )

}
2) Latent response space. Moreover, given the latent task embedding L = [L(1), · · ·L(k)], then
L(j)X

(t)
i gives a response forX(t)

i on the j-th latent task. With the choice of F(X ), one could only
choose latent responses from the following space.

Lc(X ) =
{
{L(k)>X

(t)
i }kti : L = [L(1), · · ·L(k)], ‖L‖F ≤ c

}
.
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3) Output response space. We define the output response class for a single task as :

Ic =

{
y ∈ Rk 7→

k∑
i=1

yi · si : s = [s1 · · · sk]>, ||s||2 ≤ c

}
.

For Ic, we define two quantities that are essential for the proof:

Q(Ic) = sup
y 6=y′∈Rkn

1

‖y − y′‖
E

[
sup
s∈Ic

n∑
i=1

γi (s(yi)− s(y′i))

]
where y concatenates all the k-dimensional latent responses for all samples (n) in a single task, i.e.,
y = [y1; · · · ;yn], y′ = [y′1; · · · ;y′n], yi,y′i ∈ Rk×1 are responses for the i-th instance. Moreover,
we define the supremum of the Lipschitz constants over Ic as

Lip(Ic) = sup {B : ||s(x)− s(x′)|| ≤ B||x− x′||, s ∈ Ic}

Given Ic, we define the representation space as:

Sc =
{
y ∈ RkTn 7→ {f (t)(yti)}ti : f (t)(·) ∈ Ic

}
Here y,y′ concatecate all latent responses for all tasks and all samples, i.e., y =
[y11; · · · ;y1n; · · · ;yT1; · · · ;yTn], where yti,y′ti could be regarded as latent responses for
the i-th instance of the t-th task.

The following Lemma shows that the generalization ability could be controlled by G(` ◦ F(X )).
Lemma 1. [Thm.9 of [Maurer et al., 2016]] Suppose that n1 = n2 · · · = nT = n, the loss function
l(y, ·) : ŷ 7→ [0,M ], ∀(L,S) chosen from F(X ) = H(L,S,S‡,U) the following bound holds with
possibility at least 1− δ :

∆

M
≤

√
2πG

(
` ◦ F(X )

M

)
nT

+

√
9ln(2/δ)

2nT
.

Then we proceed the derivation by providing an explicit bound for G(` ◦ F(X )). The following
Lemma shows that G(` ◦ F(X )) could be bounded above by the Gaussian Average of a simpler class.
Lemma 2. If `(·, y) is Mφ-Lipschitz continuous, we have:

G
(
` ◦ F(X )

M

)
≤ φ ·G(Sℵ ◦ Lξ11/2(X )),

where ℵ =
√
ξ2 + 1.

Proof. Since ` is φ-Lipschitz continuous, we have:

G
(
` ◦ F(X )

M

)
≤ φ ·G(F(X )).

For every
{
Ŷ (t)(x

(t)
i )
}
ti
∈ H(L,S,S‡,U), the corresponding L and S(i) satisfy :‖L‖F ≤

√
ξ1

and
||S(i)||2 ≤

√
ξ2 + ||TS‡(i)||2 ≤

√
ξ2 + ||TS‡(i)||2 ≤

√
ξ2 +

T

T
=
√
ξ2 + 1.

This implies that F(X ) ⊂ Sℵ ◦ Lξ11/2(X ). According to the definition of Gaussian Average, we
then reach:

G(F(X )) ≤ G(Sℵ ◦ Lξ11/2(X )).

Lemma 3.

G(Sℵ ◦ Lξ11/2(X )) ≤ κ1ℵ ·
(
ξ1nkT

∣∣∣∣COV (X)
∣∣∣∣

1

)1/2
+ 2κ2ℵ · T

(
ξ1nk

∣∣∣∣COV (X)
∣∣∣∣
∞

)1/2
.
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Proof. From the composition rule of Gaussian Average [Maurer et al., 2016], we have:

G(Sℵ ◦ Lξ11/2(X )) ≤ κ1 · Lip(Iℵ) ·G(L(X )) + κ2

√
T ·Diam[L(X )] ·Q(Iℵ),

where Diam[L(X )] = supy,y′∈L(X ) ||y−y′||. Then we bound Lip(Iℵ), G(L(X )), Diam(L(X )),
and Q(Iℵ), respectively.

• ∀f ∈ Ic, uniformly we have:

|f(x1)− f(x2)| ≤ ℵ‖x1 − x2‖, (6)

since f is a linear functional induced by a vector s with ||s|| ≤ ℵ. This suggests that
Lip(Iℵ) ≤ ℵ.

• For G(L(X )), we have:

G(L(X )) = E

 sup
L(X )

∑
jtn

γjtn ·
(
L(j)>X

(t)
i

)
= E

 sup
L(X )

∑
j

L(j)>
(∑

ti

γjtn ·X(t)
i

)
≤
√
ξ1E


∑

j

∣∣∣∣∣∣∑
ti

γjtix
(t)
i

∣∣∣∣∣∣2
1/2


≤
√
ξ1

∑
j

E

[∣∣∣∣∣∣∑
ti

γjtix
(t)
i

∣∣∣∣∣∣2]
1/2

≤

(
ξ1k

∑
ti

‖x(t)
i ‖

2

)1/2

≤
(
ξ1knT

∣∣∣∣COV (X)
∣∣∣∣

1

)1/2
.

• Since Diam((L(X ))) ≤ 2 supy∈L(X ) ||y||, we have:

Diam[L(X )] ≤ 2 sup
||L||F≤ξ11/2

∑
jti

(L(j)>x
(t)
i )2

1/2

≤ 2 sup
||L||F≤ξ11/2

∑
j

‖L(j)‖22 ·
∑
ti

((
L(j)

‖L(j)‖2

)>
x

(t)
i

)2
1/2

≤ 2ξ
1/2
1 ·

(
k ·
∑
ti

sup
‖y‖2=1

(
y>x

(t)
i

)2
)1/2

≤ 2
(
ξ1nkT ·

∣∣∣∣COV (X)
∣∣∣∣
∞

)1/2
.
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• For Q(Iℵ), we have:

E

[
sup
f∈Iℵ

n∑
i=1

γi (f(yi)− f(y′i))

]

= E

[
sup
||s||≤ℵ

n∑
i=1

γi
(
s>(yi − y′i)

)]

≤ ℵ · E

[∣∣∣∣∣∣∑
i

γi(yi − y′i)
∣∣∣∣∣∣]

≤ ℵ

(
E

[∣∣∣∣∣∣∑
i

γi(yi − y′i)
∣∣∣∣∣∣2])1/2

= ℵ

(∑
i

∣∣∣∣∣∣(yi − y′i)∣∣∣∣∣∣2
)1/2

= ℵ · ‖y − y′‖.
This suggests that Q(Iℵ) ≤ ℵ.

Proof of Theorem 3: Thm.3 directly follows Lem.1-Lem.3.

B.4 Proof of Theorem 4

Our proof requires the following three lemmas from [Golub and Van Loan, 2012].
Lemma 4. Let A ∈ Rm×n with m ≤ n. Moreover, denote the singular values of A as σ1(A) ≥

σ2(A) ≥ · · · ≥ σm(A). LetB =

[
0 A
A> 0

]
. The eigenvalues ofB are λ1(B) ≥ λ2(B) ≥ · · · ≥

λm+n(B). We have : λ1(B) = σ1(A), · · · , λm(B) = σm(A), λm+1(B) = λm+2(B) = · · · =
λn(B) = 0, λn+1(B) = −σm(A), λn+2(B) = −σm−1(A), · · · , λn+m(B) = −σ1(A).
Lemma 5. Let A,B ∈ SN , λ1(A) ≥ λ2(A) ≥ · · · ≥ λN (A); λ1(B) ≥ λ2(B) ≥ · · · ≥ λN (B).
Then:

λN (A) + λj(B) ≤ λj(A+B) ≤ λ1(A) + λj(B), for j = 1, 2, · · · , i.
Lemma 6 (Wielandt-Hoffman). ForA ∈ SN , and E ∈ SN , we have:

N∑
i=1

(λi (A+E)− λi (A))2 ≤ ‖E‖2F .

Moreover, for Ã ∈ Rm×n, and Ẽ ∈ Rm×n, we have:

N∑
i=1

(
σi

(
Ã+ Ẽ

)
− σi

(
Ã
))2

≤ ‖Ẽ‖2F .

Proof. dsadsads
proof of (a) According to the definition of ∆(S‡) and ∆(S), we have :∣∣∣∣∣∣T∆(S‡)−∆(S)

∣∣∣∣∣∣
F
≤
∥∥∥∥[ 0 TS‡

TS‡> 0

]
−
[

0 S
S> 0

]∥∥∥∥
F

+
∣∣∣∣∣∣TS‡1k − S1k

∣∣∣∣∣∣
2

+
∣∣∣∣∣∣TS‡>1T − S>1T

∣∣∣∣∣∣
2

=
√

2
∣∣∣∣∣∣TS‡ − S∣∣∣∣∣∣

F
+
∣∣∣∣∣∣TS‡1k − S1k

∣∣∣∣∣∣
2

+
∣∣∣∣∣∣TS‡>1T − S>1T

∣∣∣∣∣∣
2

≤
√

2ξ2 +
∣∣∣∣∣∣S − TS‡∣∣∣∣∣∣

F
· (‖1k‖2 + ‖1T ‖2)

≤
√

2ξ2 +
√
ξ2(
√
k +
√
T ).
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According to Lem.6, we have:

N∑
i=N−K+1

λi(∆(S)) ≤
N∑

i=N−K+1

Tλi(∆(S‡)) +
√

2ξ2K +
√
ξ2K(

√
k +
√
T )

= Tξ3 +
√

2ξ2K +
√
ξ2K(

√
k +
√
T ).

proof of (b) Let A = diag(S‡1),B = −∆(S‡), we have A +B = Al∪o. Applying Lem. 5 for
j = 1, 2, · · · ,K we have :

λN
(
diag(S‡1)

)
−λN−j+1

(
∆(S‡)

)
≤ λj (Al∪o)

(?)
= σj(S

‡) ≤ λ1

(
diag(S‡1)

)
−λN−j+1

(
∆(S‡)

)
,

(7)
where (?) is due to Lem.4. According to Thm.2 and the definition of ξ3, we have:

K∑
i=1

λN−i+1

(
∆(S‡)

)
≤
〈
∆(S‡),U

〉
≤ ξ3. (8)

With Lem.4 and Eq.(7)-(8), we have :

1

T
− ξ3 ≤ σi(S‡) ≤

1

k
, for i = 1, 2, · · ·K.

Since d(S, TS‡) ≤ ξ2, according to Lem.6, we have:

Tσi
(
S‡
)
−
√
ξ2 ≤ σi (S) ≤ Tσi

(
S‡
)

+
√
ξ2, i = 1, 2, · · ·K.

The theorem follows from Thm.4.2.3 in [Horn and Johnson, 2012] and the fact that σi(S) =√
λi(S>S).

B.5 Proof of Theorem 5

First, we need the following two lemmas about the sine Θ theorem, the proof of which could be
found in [Yin and Shen, 2018, Lem.1]and [Yu et al., 2014, Thm.1] respectively.

Lemma 7. LetX andY be two orthogonal matrices of Rn×n. LetX = [X0,X1] andY = [Y0,Y1],
whereX0 and Y0 are the first K columns ofX and Y , respectively. Then, we have:

‖X0X
>
0 − Y0Y

>
0 ‖F ≤

√
2‖X>0 Y1‖F .

Lemma 8 (sine Θ). Let Σ, Σ̂ be symmetric with eigenvalues λ1 ≥ · · · , λp and λ̂1 · · · λ̂p, respectively.
Fix 1 ≤ K ≤ p, and let X0 = [v1,v2, · · · ,vK ] ∈ Rp×K and Ŷ0 = [v̂1, v̂2, · · · , v̂K ] and let
X1 = [vK+1, · · · ,vp] and Y1 = [v̂K+1, · · · , v̂p]. For 1 ≤ j ≤ p, we have Σvj = λjvj and
Σ̂v̂j = λ̂j v̂j . If δ = |λ̂K+1 − λK | > 0, we have:

‖X>0 Y1‖F ≤
‖Σ− Σ̂‖F

δ
.

Now we are ready to prove the theorem.

Proof. For all S? ∈ Π(a,b), such that Supp(S?) = G, according to Thm.2, we have that V ?K =
[f?1 , · · · ,f?k+T ]> the eigenvectors associated with the bottom K eigenvalues of the Laplacian ∆(S?)
much satisfy that j ≤ k, [f?j ]g = 1 only if lj belongs to group g and that for j > k, [f?j ]g = 1 only
if oj belongs to group g. Moreover, we define VK = [f1, · · · ,fk+T ]> as the eigenvectors associated
with the bottom K eigenvalues of ∆(S‡) and define

D?i,j = ‖f?i − f?k+j‖22, Di,j = ‖fi − fk+j‖22.

20



Since S‡ is selected fromH, according to Thm.2, we have:〈
D,S‡

〉
=

N∑
i=N−K+1

λi
(
∆(S‡)

)
≤
〈
U ,∆(S‡)

〉
, ∀U ∈M.

This implies
〈
D,S‡

〉
≤ ξ3.

Since for all i, f∗i is a 0-1 group indicator, we have

D∗ij =

{
0, li and ojbelong to the same group
2, otherwise

and thus
〈
D∗,S‡

〉
= 2‖S‡supp

c

‖1. Then, we have :

‖S‡supp
c

‖1 ≤
1

2
·
(
ξ3 +

〈
D? −D,S‡

〉 )
.

It now only remains to give an upper bound for
〈
D∗ −D,S‡

〉
. In fact:

〈
D? −D,S‡

〉
=
〈
U? −U ,∆(S‡)

〉
≤ ‖∆(S‡)‖F · ‖U −U?‖F ≤

√
2
k + 6

T · ε
λK+1(∆(S‡))

,

where U? = V ?
KV

?
K
>, U = VKVK

>, and the last inequality follows from that

‖∆(S‡)‖F =

√∥∥∥∥diag(
1k
k

+
1T
T

)−
[

0 S‡

S‡> 0

]∥∥∥∥2

F

=

√∣∣∣∣∣∣1k
k

∣∣∣∣∣∣2
F

+
∣∣∣∣∣∣1T
T

∣∣∣∣∣∣2
F

+ 2
∣∣∣∣∣∣S‡∣∣∣∣∣∣2

F

≤
√

1

k
+

1

T
+

2

T 2
.

and Lem.7 and Lem.8, with Σ̂ = ∆(S‡), Σ = ∆S? , and |λ̂K+1−λK | = λK+1(∆(S‡)). This leads
to an upper bound of ‖S‡supp

c

‖1:

‖S‡supp
c

‖1 ≤
1

2
·
(
ξ3 +

√
2
k + 6

T · ε
λK+1(∆(S‡))

)
.

The final upper bound for ‖S‡supp
c

‖1 follows that:

ε ≤ sup
S,S′∈Π(a,b)

‖∆(S)−∆(S′)‖F ≤ 2
√

2 · sup
S∈Π(a,b)

‖S‖F ≤ 2

√
2

T
.

C Details of the Optimization Algorithm

Solving the L subproblem.

Recall the L subproblem of (Obj), where we fix all the other variable and solve L. This subproblem
could be formulated as:

argmin
L

T∑
i=1

nj∑
j=1

J (Y (i),X(i)LS(i)) +
α1

2
· ||L||2F .

Recall our setting in the experiments, we set J (Y (i),X(i)LS(i)) = 1
Ni
‖Y (i) −X(i)LS(i)‖2F for

regression problems, where Ni is the number of instances for the i-th task. And we adopt the squared
surrogate loss for AUC:

J (Y (i),X(i)LS(i))LS =
∑

xp∈S+,i

∑
xq∈S−,i

s
(
g(i)(xp)− g(i)(xq)

)
n+,in−,i
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for classification problem, where g(i)(x) =
〈
LS(i),x

〉
, S+,i is the set of positive instances for the

i-th task, S−,i is the set of negative instances for the i-th task. To simplify the squared surrogate
AUC loss, we build an AUC graph, where the vertexes are the instances and the edges are only
activated across different classes. Specifically, for each task i, we define the graph as G(i)

AUC =

(V(i), E(i),W(i)). The vertex set V(i) is the set of all the instances in (X(i),y(i)). There exists
an edge (k,m) ∈ E(i) with weight W(i)

km = 1
n+,in−,i

if and only if y(i)
k 6= y

(i)
m . Given W(i), the

Laplacian matrix ∆
(i)
AUC of G(i)

AUC could be expressed as: ∆
(i)
AUC = diag(W(i)1)−W(i). With the

definition of ∆
(i)
AUC , we could reformulate the empirical loss J (Y (i),X(i)LS(i))AUC as :

J (Y (i),X(i)LS(i))AUC = (Y (i) −X(i)LS(i))>∆
(i)
AUC(Y (i) −X(i)LS(i)).

The gradient of L with these two loss functions are then given as:

∇L(JLS) =

T∑
i=1

1

Ni

(
X(i)>X(i)LS(i)S(i)> −X(i)>Y (i)S(i)>

)
+ α1L,

∇L(JAUC) =

T∑
i=1

(
X(i)>∆

(i)
AUCX

(i)LS(i)S(i)> −X(i)>∆
(i)
AUCY

(i)S(i)>
)

+ α1L.

Though both losses enjoy a closed-form solution, it comes with an extremely high time complexity of
O(k6T 6). We adopt L-BFGS [Zhu et al., 1997] as our optimizer, which only requires loss and gradient
evaluations. IfX(i)>X(i),X(i)>Y (i),X(i)>∆

(i)
AUCX

(i) andX(i)>∆
(i)
AUCY

(i) are precomputed
and cached to the memory, we come to a complexity of O(d2T + kdT ) per gradient evaluation.
Solving the S subproblem With the other parameters fixed, S could be solved from the following
problem:

argmin
S

T∑
i=1

nj∑
j=1

J (Y (i),X(i)LS(i)) +
α2

2
‖S − TS‡‖2F .

With the squared loss for regression, the closed-form solution reads

S(i)? =

(
A>i Ai

Ni
+ α2I

)−1(
A>i Y

(i)

Ni
+ α2TS

‡
)
,

where Ai = X(i)L. Similarly, for the squared surrogate loss for AUC, the closed-form solution
becomes:

S(i)? =

(
A>i ∆

(i)
AUCAi

Ni
+ α2I

)−1(
A>i ∆

(i)
AUCY

(i)

Ni
+ α2TS

‡

)
.

D Experiments

D.1 Real-world Dataset

Competitors Now we briefly introduce competitors adopted in this paper. To show the improvement
toward different types of methods, our method is compared with the following methods:

• RAMUSA [Han and Zhang, 2016] adopts a capped trace norm regularizer to minimize only the
singular values smaller than an adaptively tuned threshold.

• GOMTL [Kumar and III, 2012] decomposes per-task parameters as linear combinations of latent task
basis, where Ω(S) is set to `1 penalty. In this way, it learns an arbitrary sparse LATM.

• CoCMTL [Xu et al., 2015] realizes the task-specific co-clustering via minimizing the truncated
sum-of-squares of the singular values of the task matrix.

• CMTL [Jacob et al., 2009] assumes that the per-tasks parameters are clustered into a given number
of groups. Specifically, it leverages a clustered model parameter via simultaneously encouraging a
large between-cluster variance and a small within-cluster variance.

• NC-CMTL [Nie et al., 2018] explores shared information among different tasks with a non-convex
low-rank spectral regularizer and a robust re-weighting scheme.
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Figure 3: (a) Performance Comparison Curve over the Simulation Dataset, with varying training data
ratio. (b) Performance Comparison over the Sun Dataset.

• VSTGMTL [Jeong and Jun, 2018] implements simultaneous variable selection and learning with a
low-rank decomposition.

• AMTL [Lee et al., 2016] assumes that each task parameter is a linear combination of other tasks and
leverages asymmetric transfer between tasks with a sparse selection on the asymmetric transfer
matrix.

• GAMTL [Liu and Pan, 2017] Similar to AMTL, GAMTL also assumes that each task parameter is a
linear combination of other tasks. Moreover, it also adopts the trace lasso penalty to maintain a
better grouping structure.

AWA2-Attribute: Based on the AWA-2 dataset [Xian et al., 2018], we construct an MTL dataset
containing 85 tasks. Each task in this dataset is a binary classification to recognize whether a given
attribute is presented in a given instance. To construct this dataset, for each attribute we sampled 50
positive instances and 150 negative instances. This yields to a total volume of 17,000 samples.
AWA2-Class: Similar to AWA2-Attribute, we perform another MTL dataset concerning the animal

class recognition. The i-th task in this dataset is a binary classification to recognize whether a given
sample belongs to the i-th class in AWA2. Similarly, we sampled 50 positive instances and 150
negative instances for each task. This yields to a total volume of 10,000 samples.
School Dataset : This dataset is collected from the Inner London Education Authority, which
consists of examination scores of 15362 students from 139 schools in London [Kumar and III, 2012].
Here, the score prediction for each school corresponds to a task, thus giving a total of 139 tasks.
Shoes Dataset. The Shoes Dataset [Kovashka and Grauman, 2015] is a popular attribute prediction
benchmark, which consists of 14,658 online shopping shoe images with 7 attributes (BR: brown,
CM: comfortable, FA: fashionable, FM: formal, OP: open, ON: ornate, PT: pointy). In this dataset,
annotators with various knowledge are invited to judge whether a specific attribute is present in an
image. Here, the tasks are then consisted of predicting the attribute annotations for different users.
Specifically, each user is randomly assigned with 50 images, and there are at least 190 users for each
attribute who take part in the process, which results in a total volume of 90,000 annotations.
Sun Dataset. The Sun Dataset [Kovashka and Grauman, 2015] contains 14,340 scene images from
SUN Attribute Database [andJames Hays, 2012], with personalized annotations over 5 attributes (CL:
Cluttered, MO: Modern, OP: Opening Area, RU: Rustic, SO: Soothe). With a similar annotating
procedure, 64,900 annotations are obtained in this dataset. The tasks are defined in the same way as
Shoes dataset.
Pre-processing. For AWA2-Attribute and AWA2-Attribute, we adopt the ILSVRC-pretrained
ResNet101 feature which is used in [Xian et al., 2018]. For School Dataset, we use the features
provided in the MALSAR package [Zhou et al., 2011b]. For Shoes dataset, we simply adopt the
GIST and color histogram provided in [Kovashka et al., 2012] as input features, whereas we deploy
the 2048-dim feature vectors extracted by the Inception-V3 [Szegedy et al., 2016] network for Sun’s
data. The reason leading us to two different feature extraction strategies lies in that the images in
Shoes dataset are photographed on a white background, while images in Sun dataset usually suffer
from much more complicated backgrounds. For the classification datasets, we perform PCA to
reduce the redundancy of these features before training. For sun and shoes dataset, we notice that
users who extremely prefer to provide merely one class of labels may lead to large biases. To e-
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Table 1: Performance Comparison over General MTL Datasets (mean ± std)
Algorithms AWA2-Attr(↑) AWA2-Cls (↑) School (↓)
RAMUSA [Han and Zhang, 2016] 88.60±0.66 93.06±0.53 10.52±0.09
GOMTL [Kumar and III, 2012] 89.56±0.33 88.22±1.18 10.26±0.11
CoCMTL [Xu et al., 2015] 92.29±0.35 94.69±0.73 12.06±0.09
CMTL [Zhong and Kwok, 2012] 92.95±0.35 94.81±0.70 12.06±0.09
VSTGMTL [Jeong and Jun, 2018] 89.31±0.39 92.03±0.94 10.17±0.08
GAMTL [Liu and Pan, 2017] 89.39±0.42 92.55±0.53 10.50±0.12
NC-CMTL [Nie et al., 2018] 92.99±0.32 95.10±0.60 10.53±0.12
AMTL [Lee et al., 2016] 92.15±0.34 95.76±0.44 12.15±0.09

GBDSP 92.73±0.29 97.86±0.22 10.10±0.08

liminate such effect, we manually remove users who give less than 8 annotations for the minority class.

Performance comparison The performance results over general MTL datasets are shown in Tab.1,
and the results for personalized attribute prediction datasets are shown in Fig. 3(a) and Fig. 3(b). Then
we could make the following observations: 1) Our proposed algorithm consistently outperforms all the
competitors in all datasets except AWA2-Attr. Moreover, on AWA2-Attr, GBDSP shows competitive
performance with CMTL and NC-CMTL. 2) Comparing with GOMTL, GBDSP always shows significant
performance improvements. This implies that leveraging a block-diagonal rather than arbitrarily
sparse LATM helps to improve the performance. 3) In most cases, we find AMTL outperforms
the other low-rank constrained methods on all the datasets, as it explicitly models and reduces the
influence of negative transfer via asymmetric learning. 4) Our proposed method outperforms AMTL on
most results. One possible reason is that AMTL avoids negative transfer via differentiates the hard tasks
with the easy tasks, while GBDSP provides a finer-grained against negative transfer via suppressing
inter-group transfer with the latent task representation.

Task Correlation study on AWA-Attr and AWA-Cls To see how learning a block-diagonal
S helps to recover a valuable task correlation matrix, we compare the predicted correla-
tion matrix with the semantic correlation matrix obtained from the class-attribute relation-
s. Here the predicted task correlation matrix is calculated from R̃ = |S|>|S|, with R̃ij
measures the similarity between the latent task assignment between oi and oj . The seman-
tic correlation is obtained based on the predicate-matrix P provided by the AW2 dataset

Figure 4: Task Correlation Comparison

3, where P ∈ {0, 1}50×85 and Pij = 1 only if attribute j
is relevant to class i. For AWA-Attr, we formulate the se-
mantic task correlation matrix R̄ as R̄ij =

∑50
k=1 δ(Pki =

Pkj). Here R̄ij counts how many times attribute i and j
are simultaneously relevant/irrelevant to the same class.
For AWA-Cls, we have a similar construction of R̄ as
R̄ij =

∑85
k=1 δ(Pik = Pjk), where R̄ij counts how many

times class i and j are simultaneously relevant/irrelevant to
the same attribute. Moreover, the matrices are normalized
such that maxj

{
R̃ij

}
= 1 and maxj

{
R̄ij
}

= 1, ∀i.

In Fig.5 and Fig.6 , we visualize R̃ generated by GOMTL

and GBDSP respectively together with R̄. Moreover, as
shown in Fig.4, we also calculate the cosine similarity
between the R̃ and R̄. The results indicate that learning
a block-diagonal instead of an arbitrary sparse S matrix
helps to preserve the semantic similarity among tasks.

Fine-grained Comparisons on Shoes and Sun Dataset Fig.7 shows attribute-wise comparison on
Shoes and Sun Dataset.

3https://cvml.ist.ac.at/AwA2/
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(a) (b) (c)

Figure 5: Comparison over the correlation structure for AWA2-Attribute: a) R̃ obtained from GOMTL,
(b) R̃ obtained from GBDSP (c) R̄

(a) (b) (c)

Figure 6: Comparison over the correlation structure for AWA2-Class: (a) R̃ obtained from GOMTL,
(b) R̃ obtained from GBDSP (c) R̄
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Figure 7: Attribute-wise Performance Comparisons on Shoes and Sun
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