
A Proofs for results in Section 3

Before proceeding to the proofs of the main results, we need some intermediate lemmas and prelimi-
nary definitions.
Definition A.1. [1] A function h(x) is said to satisfy the Quadratic Growth (QG) condition with
constant γ > 0 if

h(x)− h∗ ≥ γ

2
dist(x)2, ∀x,

where h∗ is the minimum value of the function, and dist(x) is the distance of the point x to the
optimal solution set.

The following lemma shows that PL implies QG [30].
Lemma A.2 (Corollary of Theorem 2 in [30]). If function f is PL with constant µ, then f satisfies
the quadratic growth condition with constant γ = 4µ.

The next Lemma shows the stability of arg maxα f(θ,α) with respect to θ under PL condition.
Lemma A.3. Assume that {hθ(α) = −f(θ,α) | θ} is a class of µ-PL functions in α. Define
A(θ) = arg maxα f(θ,α) and assume A(θ) is closed. Then for any θ1, θ2 and α1 ∈ A(θ1), there
exists an α2 ∈ A(θ2) such that

‖α1 −α2‖ ≤
L12

2µ
‖θ1 − θ2‖ (15)

Proof. Based on the Lipchitzness of the gradients, we have that ‖∇αf(θ2,α1)‖ ≤ L12‖θ1 − θ2‖.
Then using the PL condition, we know that

g(θ2) + hθ2
(α1) ≤ L2

12

2µ
‖θ1 − θ2‖2. (16)

Now we use the result of Lemma A.2 to show that there exists α2 = arg minα∈A(θ2) ‖α−α1‖2 ∈
A(θ2) such that

2µ‖α1 −α2‖2 ≤
L2

12

2µ
‖θ1 − θ2‖2 (17)

re-arranging the terms, we get the desired result that

‖α1 −α2‖ ≤
L12

2µ
‖θ1 − θ2‖.

Finally, the following lemma would be useful in the proof of Theorem 3.4.
Lemma A.4 (See Theorem 5 in [30]). Assume h(x) is µ-PL and L-smooth. Then, by applying
gradient descent with step-size 1/L from point x0 for K iterations we get an xK such that

h(x)− h∗ ≤
(

1− µ

L

)K
(h(x0)− h∗), (18)

where h∗ = minx h(x).

We are now ready to prove the results in Section 3.

A.1 Danskin-type Lemma for PL Functions

Lemma A.5. Under Assumption 2.5 and PL-game assumption,

∇θg(θ) = ∇θf(θ,α∗), where α∗ ∈ arg max
α∈A

f(θ,α).

Moreover, g is L-Lipschitz smooth with L = L11 +
L2

12

2µ
.
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Proof. Let α∗ ∈ arg maxα∈A f(θ,α). By Lemma A.3, for any scalar τ and direction d, there exists
α∗(τ) ∈ arg maxα f(θ + τd,α) such that

‖α∗(τ)−α∗‖ ≤ L12

2µ
τ‖d‖.

To find the directional derivative of g(·), we compute

g(θ + τd)− g(θ) = f(θ + τd,α∗(τ))− f(θ,α∗)
= τ∇θf(θ,α∗)T d+∇αf(θ,α∗)T︸ ︷︷ ︸

0

(α∗(τ)−α∗) +O(τ2),

where the second equality holds by writing the Taylor series expansion of f(·). Thus, by definition of
the directional derivative of g(·), we obtain

g′(θ; d) = lim
τ→0+

g(θ + τd)− g(θ)

τ
= ∇θf(θ,α∗)T d. (19)

Note that this relationship holds for any d. Thus, ∇g(θ) = ∇θf(θ,α∗) for any α∗ ∈
arg maxα∈A f(θ,α) = A(θ). Interestingly, the directional derivative does not depend on the choice
of α∗. This means that∇θf(θ,α1) = ∇θf(θ,α2) for any α1 and α2 in arg maxα∈A f(θ,α).

We finally show that function g is Lipschitz smooth. Let α∗1 ∈ A(θ1) and α∗2 =
arg minα∈A(θ2) ‖α−α∗1‖2 ∈ A(θ2), then

‖∇g(θ1)−∇g(θ2)‖= ‖∇θf(θ1,α
∗
1)−∇θf(θ2,α

∗
2)‖

= ‖∇θf(θ1,α
∗
1)−∇θf(θ2,α

∗
1) +∇θf(θ2,α

∗
1)−∇θf(θ2,α

∗
2)‖

≤ L11‖θ1 − θ2‖+ L12‖α∗1 −α∗2‖

≤
(
L11 +

L2
12

2µ

)
‖θ1 − θ2‖,

where the last inequality holds by Lemma A.3.

A.2 Proof of Theorem 3.4

Using Lemma A.5 and Assumption 3.3, we can define

gθ , maxθ∈Θ ‖∇g(θ)‖ and gmax , max{gθ, 1}. (20)

The next result shows that the inner loop in Algorithm 1 computes an approximate gradient of g(·).
In other words,∇θf(θt,αt+1) ≈ ∇g(θt).

Lemma A.6. Define κ = L22

µ ≥ 1 and ρ = 1 − 1
κ < 1 and assume g(θt) − f(θt,α0(θt)) < ∆,

then for any prescribed ε ∈ (0, 1) if we choose K large enough such that

K ≥ NK(ε) ,
1

log 1/ρ

(
4 log(1/ε) + log(215L̄6R̄6∆/L2µ)

)
, (21)

where L̄ = max{L12, L22, L, gmax, 1} and R̄ = max{R, 1}, then the error et ,
∇θf(θt,αK(θt))−∇g(θt) has a norm

‖et‖ ≤ δ ,
Lε2

26R(gmax + LR)2
and ‖∇αf(θt,αK(θt))‖ ≤ ε. (22)

Proof. First of all, Lemma A.4 implies that

g(θt)− f(θt,αK(θt)) ≤ ρK∆. (23)

Thus, using the QG result of Lemma A.2, we know that there exists an α∗ ∈ A(θt) such that

‖αK(θt)−α∗‖ ≤ ρK/2
√

∆

2µ
(24)
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Thus,

‖et‖ = ‖∇θf(θt,αK(θt))−∇g(θ)‖ ≤ L12‖αK(θt)−α∗‖

≤ L12ρ
K/2

√
∆

2µ

≤ Lε2

26R(gmax + LR)2
, (25)

where the last inequality holds by our choice of K which yields

log (1/ρ)
K ≥ log (1/ε)

4
+ log

(
215L̄6R̄6∆/L2µ

)
= log

(
215L̄6R̄6∆/L2µε4

)
which implies,

ρK ≤ 2L2ε4µ

212∆R̄2L̄2(2L̄R̄)4
≤ 2L2ε4µ

212∆R2L̄2(L̄+ L̄R)4
≤ 2L2ε4µ

212∆R2L̄2(gmax + LR)4
.

Here the second inequality holds since R̄ ≥ 1, and the third inequality holds since gmax ≤ L̄.

To prove the argument of the Lemma, note that

‖∇αf(θt,αK(θt))−∇αf(θt,α
∗)︸ ︷︷ ︸

0

‖ ≤ L22‖αK(θt)−α∗‖ ≤ L22ρ
K/2

√
∆

2µ
≤ ε, (26)

where the last inequality holds by our choice of K which yields

ρK ≤
( ε2µ

L̄2∆

)( ε2L2

215L̄4R̄4

)
︸ ︷︷ ︸

≤1

≤ ε2µ

L̄2∆
.

Here the second inequality holds since ε < 1, L̄, R̄ ≥ 1, and L ≤ L̄.

The above lemma implies that Algorithm 1 behaves similar to the simple vanilla gradient descent
method applied to problem (8).

Notice that the assumption g(θt)− f(θt,α0(θt)) ≤ ∆, ∀t could be justified by Lemma A.3. More
specifically, by Lemma A.3,

‖αt+1 −αt‖ ≤
L12

2µ
‖θt+1 − θt‖,

where αt+1 , arg maxα f(θt+1,α) and αt , arg maxα f(θt,α). Hence, the difference between
consecutive optimal solutions computed by the inner loop of the algorithm, are upper bounded by the
difference between corresponding θ’s. Since Θ is a compact set, we can find an upper bound ∆ such
that g(θt)− f(θt, α0(θt)) ≤ ∆, for all t. We are now ready to show Theorem 3.4

Proof. We start by defining
∆g = g(θ0)− g∗,

where g∗ , minθ g(θ) is the optimal value of g. Note that by the compactness assumption of the
set Θ, we have ∆g = g(θ0)− g∗ <∞.

Based on the projection property, we know that〈
θt −

1

L
∇θf(θt,αt+1)− θt+1,θ − θt+1

〉
≤ 0 ∀ θ ∈ Θ.

Therefore, by setting θ = θt, we get〈
∇θf(θt,αt+1),θt+1 − θt

〉
≤ −L‖θt − θt+1‖2,

15



which implies〈
∇θf

(
θt,α

∗(θt)
)
,θt+1 − θt

〉
≤ −L‖θt − θt+1‖2 +

〈
∇θf

(
θt,α

∗(θt)
)
−∇θf

(
θt,αt+1

)
,θt+1 − θt

〉
= −L‖θt − θt+1‖2 + 〈et, θt − θt+1〉

(27)
where α∗(θt) ∈ arg maxα∈A f(θt,α) and et , ∇θf

(
θt,αt+1

)
−∇θf

(
θt,α

∗(θt)
)
. By Taylor

expansion, we have

g(θt+1)≤ g(θt) +
〈
∇θf

(
θt,α

∗(θt)
)
,θt+1 − θt

〉
+
L

2
‖θt+1 − θt‖2

≤ g(θt)−
L

2
‖θt+1 − θt‖2 + 〈et,θt − θt+1〉.

(28)

where the last inequality holds by (27). Moreover, by the projection property, we know that〈
∇θf(θt,αt+1),θ − θt+1

〉
≥ L

〈
θt − θt+1,θ − θt+1

〉
∀ θ ∈ Θ,

which implies〈
∇θf(θt,αt+1),θ − θt

〉
≥
〈
∇θf(θt,αt+1),θt+1 − θt

〉
+ L

〈
θt − θt+1,θ − θt+1

〉
≥ −(gmax + 2LR+ ‖et‖)‖θt+1 − θt‖

≥ −2(gmax + LR)‖θt+1 − θt‖.

(29)

Here the second inequality holds by Cauchy-Schwartz, the definition of et and our assumption that
Θ ⊆ BR. Moreover, the last inequality holds by our choice of K in Lemma A.6 which yields

‖et‖ = ‖∇θf(θt,αK(θt))−∇g(θ)‖ (30)
≤ L12‖αK(θt)−α∗‖

≤ L12ρ
K/2

√
∆

2µ

≤ 1 (31)
≤ gmax. (32)

Hence,
−Xt ≥ −2(gmax + LR)‖θt+1 − θt‖,

or equivalently

‖θt+1 − θt‖ ≥
Xt

2(gmax + LR)
. (33)

Combined with (28), we get

g(θt+1)− g(θt) ≤ −L
8

X 2
t(

gmax + LR
)2 + 2‖et‖R,

where the inequality holds by using Cauchy Schwartz and our assumption that Θ is in a ball of radius
R. Hence,

1

T

∑T−1
t=0 X 2

t ≤
8∆g(gmax + LR)2

LT
+

16δR(gmax + LR)2

L

≤ ε2

2
,

where the last inequality holds by using Lemma A.6 and choosing K and T :

T ≥ NT ,
32∆g(gmax + LR)2

Lε2
, K ≥ NK(ε) ,

1

log 1/ρ

(
4 log(1/ε) + log(215L̄6R̄6∆/L2µ)

)
.
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Therefore, using Lemma A.6, there exists at least one index t̂ for which

Xt̂ ≤ ε and ‖∇αf(θt̂,αt̂+1)‖ ≤ ε. (34)
This completes the proof of the theorem.

B Algorithmic details and proofs for the results in Section 4

B.1 Accelerated Projected Gradient Ascent Subroutine Used in Algorithm 2

Algorithm 3 APGA: Accelerated Projected Gradient Ascent with Restart
Require: Constants αt, θt, η, K, and N .

1: for k = 0, . . . , bK/Nc do
2: Set γ1 = 1
3: if k = 0 then y1 = αt else y1 = xN
4: for i = 1, 2, . . . , N do
5: Set xi = projA

(
yi + η∇yfλ(θt,yi)

)
6: Set γi+1 =

1 +
√

1 + 4γ2
i

2

7: yi+1 = xi +
(γi − 1

γi+1

)
(xi − xi−1)

8: end for
9: end for

10: Return xN

B.2 Frank–Wolfe update rule for Step 3 in Algorithm 2

In Step 3 of Algorithm 2, instead of projected gradient descent discussed in the main body, we can
also run one step of Frank–Wolfe method. More precisely, we can set

θt+1 = θt +
Xt
L̃
ŝt,

where
Xt , −mins 〈∇θfλ(θt,αt+1), s〉

s.t. θt + s ∈ Θ, ‖s‖ ≤ 1,
(35)

and
ŝt , arg mins 〈∇θfλ(θt,αK(θt)), s〉

s.t. θt + s ∈ Θ, ‖s‖ ≤ 1.
(36)

is the first order descent direction. In the unconstrained case, the descent direction is ŝt =
−∇θfλ(θt,αt+1), which becomes the same as the gradient descent step.

B.3 Smoothness of function gλ(·)

Lemma B.1. Under Assumption 2.5 and Assumption 4.1, the function gλ is L-Lipschitz smooth with

L = L11 +
L2

12

λ
.

Proof. First notice that the differentiability of the function gλ(·) follows directly from Danskin’s
Theorem [4]. It remains to show that gλ is a Lipschitz smooth function. Let

α∗1 , arg max
α∈A

fλ(θ1,α) and α∗2 , arg max
α∈A

fλ(θ2,α).
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Then by strong convexity of −fλ(θ, ·), we have

fλ(θ2,α
∗
2) ≤ fλ(θ2,α

∗
1) + 〈∇αfλ(θ2,α

∗
1),α∗2 −α∗1〉 −

λ

2
‖α∗2 −α∗1‖2,

and
fλ(θ2,α

∗
1) ≤ fλ(θ2,α

∗
2) + 〈∇αfλ(θ2,α

∗
2),α∗1 −α∗2〉︸ ︷︷ ︸

≤0, by optimality of α∗2

−λ
2
‖α∗2 −α∗1‖2.

Adding the two inequalities, we get

〈∇αfλ(θ2,α
∗
1),α∗2 −α∗1〉 ≥ λ‖α∗2 −α∗1‖2. (37)

Moreover, due to optimality of α∗1, we have

〈∇αfλ(θ1,α
∗
1),α∗2 −α∗1〉 ≤ 0. (38)

Combining (37) and (38) we obtain

λ‖α∗2 −α∗1‖2 ≤ 〈∇αfλ(θ2,α
∗
1)−∇αfλ(θ1,α

∗
1),α∗2 −α∗1〉

≤ L12‖θ1 − θ2‖‖α∗2 −α∗1‖,
(39)

where the last inequality holds by Cauchy-Schwartz and the Lipschtizness assumption. We finally
show that gλ is Lipschitz smooth.

‖∇gλ(θ1)−∇gλ(θ2)‖= ‖∇θfλ(θ1,α
∗
1)−∇θfλ(θ2,α

∗
2)‖

= ‖∇θfλ(θ1,α
∗
1)−∇θfλ(θ2,α

∗
1) +∇θfλ(θ2,α

∗
1)−∇θfλ(θ2,α

∗
2)‖

≤ L11‖θ1 − θ2‖+ L12‖α∗1 −α∗2‖

≤
(
L11 +

L2
12

λ

)
‖θ1 − θ2‖,

where the last inequality holds by (39).

Algorithm 2 solves the inner maximization problem using accelerated projected gradient descent
(outlined in Algorithm 3). The next lemma is known for accelerated projected gradient descent when
applied to strongly convex functions.
Lemma B.2. Assume h(x) is λ-strongly convex and L-smooth. Then, applying accelerated projected
gradient descent algorithm [3] with step-size 1/L and restart parameter N ,

√
8L/λ− 1 for K

iterations, we get xK such that

h(xK)− h(x∗) ≤
(

1

2

)K/N
(h(x0)− h(x∗)), (40)

where x∗ , arg minx∈F h(x).

Proof. According to [3, Theorem 4.4], we have

h(xiN )− h(x∗) ≤ 2L

(N + 1)2
‖x(i−1)N − x∗‖2

≤ 4L

λ(N + 1)2

(
h(x(i−1)N )− h(x∗)

)
≤ 1

2

(
h(x(i−1)N )− h(x∗)

)
,

(41)

where the second inequality holds by strong convexity of h and the optimality condition of x∗, and
the last inequality holds by our choice of N . This yields,

h(xK)− h(x∗) ≤ (
1

2
)K/N

(
h(x0)− h(x∗)

)
, (42)

which completes our proof.
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B.4 Proof of Theorem 4.2

We first show that the inner loop in Algorithm 2 computes an approximate gradient of gλ(·). In other
words, ∇θfλ(θt,αt+1) ≈ ∇gλ(θt).

Lemma B.3. Define κ =
L22

λ
≥ 1 and assume gλ(θt) − fλ(θt,α0(θt)) < ∆, then for any

prescribed ε ∈ (0, 1) if we choose K large enough such that

K ≥ NK(ε) ,

√
8κ

log 2

(
4 log(1/ε) + log(217L̄6R̄6∆/L2λ)

)
, (43)

where L̄ , max{L12, L22, L, gmax, 1} and R̄ = max{R, 1}, then the error et ,
∇θfλ(θt,αK(θt))−∇gλ(θ) has a norm

‖et‖ ≤ δ ,
Lε2

26R(gmax + LR)2
(44)

and
ε

2
≥ Yt,K ,max

s

〈
∇αfλ(θt,αK(θt)), s

〉
s.t. αK(θt) + s ∈ A, ‖s‖ ≤ 1

. (45)

Proof. Starting from Lemma B.2, we have that

gλ(θt)− fλ(θt,αK(θt)) ≤
1

2
K√
8κ

∆. (46)

Let α∗(θt) , arg maxα∈A fλ(θt,α). Then by strong convexity of −f(θt, ·), we get

λ

2
‖αK(θt)−α∗(θt)‖2 ≤ gλ(θt)− fλ(θt,αK(θt)) ≤

1

2
K√
8κ

∆. (47)

Combined with the Lipschitz smoothness property of the objective, we obtain

‖et‖= ‖∇θfλ(θt,αK(θt))−∇gλ(θt)‖

= ‖∇θfλ(θt,αK(θt))−∇θfλ(θt,α
∗(θt))‖

≤ L12‖αK(θt)−α∗(θt)‖

≤ L12

2K/2
√

8κ

√
2∆

λ

≤ Lε2

26R(gmax + LR)2

(48)

where the second inequality uses (47), and the third inequality uses the choice of K in (43) which
yields yields

log
(

2K/
√

8κ
)
≥ log (1/ε)

4
+ log

(
217L̄6R̄6∆/L2λ

)
= log

(
217L̄6R̄6∆/L2λε4

)
which implies,(1

2

)K/2√8κ

≤ Lε2
√
λ

26
√

2∆R̄L̄(2L̄R̄)2
≤ Lε2

√
λ

26
√

2∆RL̄(L̄+ L̄R)2
≤ Lε2

√
λ

26
√

2∆RL̄(gmax + LR)2
.

Here the second inequality holds since R̄ ≥ 1, and the third inequality holds since gmax ≤ L̄. To
prove the second argument of the lemma, we also use the Lipschitz smoothness property of the
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objective to get〈
∇αfλ(θt,αK(θt)), s

〉
=
〈
∇αfλ(θt,αK(θt))−∇αfλ(θt,α

∗(θt)), s
〉

+
〈
∇αfλ(θt,α

∗(θt)), s
〉

≤ ‖∇αfλ(θt,αK(θt))−∇αfλ(θt,α
∗(θt))‖‖s‖+

〈
∇αfλ(θt,α

∗(θt)), s
〉

≤ (L22 + λ)‖α∗(θt)−αK(θt))‖‖s‖+
〈
∇αfλ(θt,α

∗(θt)), s
〉
.

≤ 2L22‖α∗(θt)−αK(θt))‖‖s‖+
〈
∇αfλ(θt,α

∗(θt)), s
〉
,

(49)
where the second inequality holds by our Lipschitzness assumption and the last inequality holds by
our assumption that L22/λ ≥ 1. Moreover,

mins −
〈
∇αfλ(θt,α

∗(θt)), s
〉

s.t. αK(θt) + s ∈ A, ‖s‖ ≤ 1
=

minα −
〈
∇αfλ(θt,α

∗(θt)),α−αK(θt)
〉

s.t. α ∈ A, ‖α−αK(θt)‖ ≤ 1

= −
〈
∇αfλ(θt,α

∗(θt)),α
∗(θt)−αK(θt)

〉
− maxα

〈
∇αfλ(θt,α

∗(θt)),α−α∗(θt)
〉

s.t. α ∈ A, ‖α−αK(θt)‖ ≤ 1︸ ︷︷ ︸
0

= −
〈
∇αfλ(θt,α

∗(θt)),α
∗(θt)−αK(θt)

〉

,

(50)
where the last equality holds since α∗(θt) is optimal and ‖α∗(θt)−αK(θt)‖ ≤ 1. Combining (49)
and (50), we get

mins −
〈
∇αfλ(θt,αK(θt)), s

〉
s.t. αK(θt) + s ∈ A, ‖s‖ ≤ 1

≥ −
(
‖∇αfλ(θt,α

∗(θt))‖+ 2L22

)
‖αK(θt)−α∗‖.

(51)
Hence, using (11), we get

Yt,K ≤
(
2L22 + gmax

)
‖αK(θt)−α∗‖

≤ 3L̄

2K/2
√

8κ

√
2∆

λ

≤ ε

2
,

(52)

where the second inequality uses (47), and the last inequality holds by our choice of K in (43) and
since ε ∈ (0, 1).

The above lemma implies that ‖∇θfλ(θt,αK(θt)) − ∇gλ(θt)‖ ≤ δ ,
Lε2

64R̄3L̄2
. We now show

that our assumption g(θt)− f(θt,α0(θt)) ≤ ∆ for all t in the above Lemma holds. Let

α∗t+1 , arg max
α∈A

fλ(θt+1,α) and α∗t , arg max
α∈A

fλ(θt,α).

Then by strong convexity of −fλ(θ, ·), we have

fλ(θt+1,α
∗
t+1) ≤ fλ(θt+1,α

∗
t ) + 〈∇αfλ(θt+1,α

∗
t ),α

∗
t+1 −α∗t 〉 −

λ

2
‖α∗t+1 −α∗t ‖2,

and

fλ(θt+1,α
∗
t ) ≤ fλ(θt+1,α

∗
t+1) + 〈∇αfλ(θt+1,α

∗
t+1),α∗t −α∗t+1〉︸ ︷︷ ︸

≤0, by optimality of α∗t+1

−λ
2
‖α∗t+1 −α∗t ‖2.

Adding the two inequalities, we get

〈∇αfλ(θt+1,α
∗
t ),α

∗
t+1 −α∗t 〉 ≥ λ‖α∗t+1 −α∗t ‖2. (53)
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Moreover, due to optimality of α∗t , we have

〈∇αfλ(θt,α
∗
t ),α

∗
t+1 −α∗t 〉 ≤ 0. (54)

Combining (53) and (54) we obtain

λ‖α∗t+1 −α∗t ‖2 ≤ 〈∇αfλ(θt+1,α
∗
t )−∇αfλ(θt,α

∗
t ),α

∗
t+1 −α∗t 〉

≤ L12‖θt − θt+1‖‖α∗t+1 −α∗t ‖,
(55)

Thus,

‖αt+1 −αt‖ ≤
L12

λ
‖θt+1 − θt‖.

Hence, the difference between consecutive optimal solutions computed by the inner loop of the
algorithm, are upper bounded by the difference between corresponding θ’s. Since Θ is a compact set,
we can find an upper bound ∆ such that g(θt)− f(θt, α0(θt)) ≤ ∆, for all t.

We are now ready to show the main theorem that implies convergence of our proposed algorithm to an
ε–first-order stationary solution of problem (2). In particular, we show that using∇θfλ(θt,αK(θt))
instead of∇gλ(θt) for a small enough λ in the Frank-Wolfe or projected descent algorithms applied
to gλ, finds an ε–FNE. We are now ready to show Theorem 4.2.

Proof. Frank-Wolfe Steps: We now show the result when Step 7 of Algorithm 2 sets

θt+1 = θt +
Xt
L̃
ŝt.

Using descent lemma on gλ and the definition of L̃ in Algorithm 2, we have

gλ(θt+1) ≤ gλ(θt) +
〈
∇gλ(θt),θt+1 − θt

〉
+
L̃

2
‖θt+1 − θt‖2

= gλ(θt) +
Xt
L̃

〈
∇gλ(θt), ŝt

〉
+
X 2
t

2L̃
‖ŝt‖2

≤ gλ(θt) +
Xt
L̃

〈
∇gλ(θt), ŝt

〉
+
X 2
t

2L̃

= gλ(θt)−
Xt
L̃

〈
∇θfλ

(
θt,αK(θt)

)
−∇gλ(θt)︸ ︷︷ ︸

et

, ŝt
〉
− X

2
t

2L̃

≤ gλ(θt) +
Xt
L̃
‖et‖ −

X 2
t

2L̃

(56)

where ŝt and Xt are defined in equations (35) and (36) of the manuscript, and the second and last
inequalities use the fact that ‖ŝt‖ ≤ 1.

Summing up these inequalities for all values of t leads to

1

T

T−1∑
t=0

X 2
t ≤

2L̃∆

T
+ 4‖et‖gmax ≤

2L̃∆

T
+
ε2

4
≤ ε2

2
, (57)

where the first inequality holds since

Xt =
〈
∇θfλ

(
θt,αK(θt)

)
−∇θfλ

(
θt,α

∗(θt)
)

+∇θfλ
(
θt,α

∗(θt)
)
, ŝt
〉

≤ gmax + ‖et‖

≤ 2gmax.
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Here the first inequality in (57) holds by (11), Cauchy-Schwartz, and the fact that ‖ŝt‖ ≤ 1. The last
inequality holds by our choice of K in Lemma B.3

K ≥ NK(ε) ,

√
8κ

log 2

(
4 log(1/ε) + log(217L̄6R̄6∆/L2λ)

)
,

which yields ‖et‖ ≤ 1 ≤ gmax and by choosing T such that

T ≥ NT (ε) ,
8L̃∆

ε2
.

Therefore, using Lemma B.3, there exists at least one index t̂ for which

Xt̂ ≤ ε and Yt̂,K ≤
ε

2
. (58)

Hence,

Y(θt̂,αK(θt̂)) =
maxs 〈∇αf(θt̂,αK(θt̂)), s〉

s.t. αK(θt̂) + s ∈ A, ‖s‖ ≤ 1

=
maxs 〈∇αfλ(θt̂,αK(θt̂)), s〉+ λ(αK(θt̂)− ᾱ)T s

s.t. αK(θt̂) + s ∈ A, ‖s‖ ≤ 1

≤ Yt̂,K + λ‖αK(θt̂)− ᾱ‖

≤ ε

, (59)

where the first inequality uses Cauchy Shwartz and the fact that ‖s‖ ≤ 1, and the last inequality
holds due to (58), the choice of λ in the theorem and our assumption that ‖αK(θt̂)− ᾱ‖ ≤ 2R.

Projected Gradient Descent:
We start by defining

∆g = gλ(θ0)− g∗,
where g∗λ , minθ gλ(θ) is the optimal value of gλ. Note that by the compactness assumption of the
set Θ, we have ∆g = gλ(θ0)− g∗λ <∞.

We now show the result when Step 7 of Algorithm 2 sets

θt+1 = projΘ
(
θt −

1

L
∇θfλ(θt,αK(t))

)
,

Based on the projection property, we know that〈
θt −

1

L
∇θf(θt,αt+1)− θt+1,θ − θt+1

〉
≤ 0 ∀ θ ∈ Θ.

Therefore, by setting θ = θt, we get〈
∇θf(θt,αt+1),θt+1 − θt

〉
≤ −L‖θt − θt+1‖2,

which implies

〈
∇θf

(
θt,α

∗(θt)
)
,θt+1 − θt

〉
≤ −L‖θt − θt+1‖2 +

〈
∇θf

(
θt,α

∗(θt)
)
−∇θf

(
θt,αt+1

)
,θt+1 − θt

〉
= −L‖θt − θt+1‖2 + 〈et, θt − θt+1〉

(60)
where α∗(θt) , arg maxα∈A fλ(θt,α) and et , ∇θf

(
θt,αt+1

)
−∇θf

(
θt,α

∗(θt)
)
.
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By Taylor expansion, we have

gλ(θt+1)≤ gλ(θt) +
〈
∇θf

(
θt,α

∗(θt)
)
,θt+1 − θt

〉
+
L

2
‖θt+1 − θt‖2

≤ gλ(θt)−
L

2
‖θt+1 − θt‖2 + 〈et,θt − θt+1〉.

(61)

Moreover, by the projection property, we know that〈
∇θf(θt,αt+1),θ − θt+1

〉
≥ L

〈
θt − θt+1,θ − θt+1

〉
,

which implies〈
∇θf(θt,αt+1),θ − θt

〉
≥
〈
∇θf(θt,αt+1),θt+1 − θt

〉
+ L

〈
θt − θt+1,θ − θt+1

〉
≥ −(gmax + 2LR+ ‖et‖)‖θt+1 − θt‖

≥ −2(gmax + LR)‖θt+1 − θt‖.

(62)

Here the second inequality holds by Cauchy-Schwartz, the definition of et and our assumption that
Θ ⊆ BR. Moreover, the last inequality holds by our choice of K in Lemma A.6 which yields

‖et‖ = ‖∇θf(θt,αK(θt))−∇g(θ)‖ (63)
≤ L12‖αK(θt)−α∗‖

≤ L12ρ
K/2

√
∆

2µ

≤ 1 (64)
≤ gmax. (65)

Hence,
−Xt ≥ −2(gmax + LR)‖θt+1 − θt‖,

or equivalently

‖θt+1 − θt‖ ≥
Xt

2(gmax + LR)
. (66)

Combined with (61), we get

gλ(θt+1)− gλ(θt) ≤ −L
8

X 2
t(

gmax + LR
)2 + 2‖et‖R,

where the inequality holds by using Cauchy Schwartz and our assumption that Θ is in a ball of radius
R. Hence,

1

T

∑T−1
t=0 X 2

t ≤
8∆g(gmax + LR)2

LT
+

16δR(gmax + LR)2

L

≤ ε2

2
,

where the last inequality holds by using Lemma B.3 and choosing K and T :

T ≥ NT (ε) ,
32∆g(gmax + LR)2

Lε2
, and K ≥ NK(ε) ,

√
8κ

log 2

(
4 log(1/ε)+log(217L̄6R̄6∆/L2λ)

)
,

Therefore, using Lemma B.3, there exists at least one index t̂ for which

Xt̂ ≤ ε and Yt̂,K ≤
ε

2
. (67)
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Hence,

Y(θt̂,αK(θt̂)) =
maxs 〈∇αf(θt̂,αK(θt̂)), s〉

s.t. αK(θt̂) + s ∈ A, ‖s‖ ≤ 1

=
maxs 〈∇αfλ(θt̂,αK(θt̂)), s〉+ λ(αK(θt̂)− ᾱ)T s

s.t. αK(θt̂) + s ∈ A, ‖s‖ ≤ 1

≤ Yt̂,K + λ‖αK(θt̂)− ᾱ‖

≤ ε

, (68)

where the first inequality uses Cauchy Shwartz and the fact that ‖s‖ ≤ 1, and the last inequality holds
due to (67), the choice of λ in the theorem and our assumption that ‖αK(θt̂)− ᾱ‖ ≤ 2R.

C Numerical Results on Fashion MNIST with SGD

The results of using SGD optimizer are summarized in Table 4 and Table 5. Note SGD optimizer
requires more tuning and therefore the results when batch-size = 3000 is also included here.

T-shirt/top Coat Shirt Worst
mean std mean std mean std mean std

Normal 850.26 8.59 806.78 18.92 558.72 30.99 558.72 30.99

MinMax 754.68 12.03 699.04 28.76 724.86 18.00 696.60 25.93

MinMax with Regularization 756.16 13.60 701.02 30.07 723.14 18.52 698.16 26.96

Table 4: The mean and standard deviation of the number of correctly classified samples when SGD
(mini-batch) is used in training, λ = 0.05, batch-size = 3000.

T-shirt/top Coat Shirt Worst
mean std mean std mean std mean std

Normal 849.76 8.20 807.60 19.19 563.90 29.64 563.90 29.64

MinMax 755.34 13.72 702.60 26.11 723.70 18.92 700.46 24.02

MinMax with Regularization 754.78 14.92 703.70 24.80 723.44 19.29 701.78 23.13

Table 5: The mean and standard deviation of the number of correctly classified samples when SGD
(mini-batch) is used in training, λ = 0.0005, batch-size = 600.

D Numerical Results on Fashion MNIST with Logistic Rgression Model

Table 6 shows that the proposed formulation gives better accuracies under the worst category (Shirts),
and the accuracies over three categories are more balanced. Note that this model is trained by gradient
descent. The standard derivations not equal to 0 is due to the early termination of the simulation.
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T-shirt/top Pullover Shirt
mean std mean std mean std

[42] 849.00 44.00 876.00 45.00 745.00 60.00

Proposed 778.48 8.78 773.46 8.76 740.60 9.26

Table 6: The mean and standard deviation of the number of correctly classified samples when gradient
descent is used in training, λ = 0.1.

E Numerical Results on Robust Neural Network Training

Neural networks have been widely used in various applications, especially in the field of image
recognition. However, these neural networks are vulnerable to adversarial attacks, such as Fast
Gradient Sign Method (FGSM) [25] and Projected Gradient Descent (PGD) attack [31]. These
adversarial attacks show that a small perturbation in the data input can significantly change the
output of a neural network. To train a robust neural network against adversarial attacks, researchers
reformulate the training procedure into a robust min-max optimization formulation [38], such as

min
w

N∑
i=1

max
δi, s.t. |δi|∞≤ε

`(f(xi + δi;w), yi).

Here w is the parameter of the neural network, the pair (xi, yi) denotes the i-th data point, and δi
is the perturbation added to data point i. As discussed in this paper, solving such a non-convex
non-concave min-max optimization problem is computationally challenging. Motivated by the theory
developed in this work, we approximate the above optimization problem with a novel min-max
objective function which has concave inner optimization problem. To do so, we first approximate the
inner maximization problem with a finite max problem

min
w

N∑
i=1

max {`(f(x̂i0(w);w), yi), . . . , `(f(x̂i9(w);w), yi)} , (69)

where each x̂ij(w) is the result of a targeted attack on sample xi aiming at changing the output of
the network to label j. More specifically, x̂ij(w) is obtained through the following procedure:

In the one but last layer of the neural network architecture for learning classification on MNIST
we have 10 different neurons, each corresponding with one category of classification. For any
sample (xi, yi) in the dataset and any j = 0, · · · , 9, starting from x0

ij = xi, we run gradient ascent to
obtain the following chain of points:

xk+1
ij = ProjB(x,ε)

[
xkij + α∇x(Zj(x

k
ij ,w)− Zyi(xkij ,w))

]
, k = 0, · · · ,K − 1,

where Zj is the network logit before softmax corresponding to label j; α > 0 is the step-size;
and ProjB(x,ε)[·] is the projection to the infinity ball with radius ε centered at x. Finally, we set
x̂ij(w) = xKij in (69).

Clearly, we can replace the finite max problem (69) with a concave problem over a probability
simplex, i.e.,

min
w

N∑
i=1

max
t∈T

9∑
j=0

tj`
(
f
(
xKij ;w

)
, yi
)
, T = {t ∈ R10 | t ≥ 0, ||t||1 = 1}, (70)

which is non-convex inw, but concave in t. Hence we can apply Algorithm 2 to solve this opimization
problem. We test (70) on MNIST dataset with a Convolutional Neural Network(CNN) with the
architecture detailed in Table 7. The result of our experiment is presented in Table 8.
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Layer Type Shape

Convolution + ReLU 5× 5× 20
Max Pooling 2× 2
Convolution + ReLU 5× 5× 50
Max Pooling 2× 2
Fully Connected + ReLU 800
Fully Connected + ReLU 500
Softmax 10

Table 7: Model Architecture for the MNIST dataset.

Natural FGSM L∞ [25] PGD40 L∞ [31]

ε = 0.2 ε = 0.3 ε = 0.4 ε = 0.2 ε = 0.3 ε = 0.4

[38] with ε = 0.35 98.58% 96.09% 94.82% 89.84% 94.64% 91.41% 78.67%
[57] with ε = 0.35 97.37% 95.47% 94.86% 79.04% 94.41% 92.69% 85.74%
[57] with ε = 0.40 97.21% 96.19% 96.17% 96.14% 95.01% 94.36% 94.11%

Proposed with ε = 0.40 98.20% 97.04% 96.66% 96.23% 96.00% 95.17% 94.22%

Table 8: Test accuracies under FGSM and PGD attacks. We set K = 10 to train our model, and we
take step-size 0.01 when generating PGD attacks. All adversarial images are quantified to 256 levels
(0− 255 integer).

Remark E.1. We would like to note that there is a mismatch between our theory and this numerical
experiment. In particular, we assume smoothness of the objective function in our theory. However,
in this experiment, the ReLu activation functions and the projection operator make the objective
function non-smooth. We also did not include regularizer (strongly concave term) while solving (70)
as the optimal regularizer was very small (and almost zero).

Remark E.2. The main take away from this experiment is to demonstrate the practicality of the
following idea: when solving general challenging non-convex min-max problems, it might be possible
to approximate it with one-sided non-convex min-max problems where the objective function is
solvable with respect to one of the player’s variable. Such a reformulation leads to computationally
tractable problems and (possibly) no loss in the performance.

F Experimental Setup of Fair Classifier

Layer Type Shape

Convolution + tanh 3× 3× 5
Max Pooling 2× 2
Convolution + tanh 3× 3× 10
Max Pooling 2× 2
Fully Connected + tanh 250
Fully Connected + tanh 100
Softmax 3

Table 9: Model Architecture for the Fashion MNIST dataset. [55]
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Parameter

Learning Rate 0.1 0.05 0.01
Epochs 4000 1000 500

Table 10: Training Parameters for the Fashion MNIST dataset with gradient descent. [55]

Parameter

Learning Rate 10−4 10−5 10−6

Iterations 4000 4000 4000
Batch-size 600

Table 11: Training Parameters for the Fashion MNIST dataset with Adam. [55]

Parameter

Learning Rate 10−3 10−4 10−5

Iterations 8000 8000 8000

Table 12: Training Parameters for the Fashion MNIST dataset with SGD. [55]

G Links

Robust NN Training: https://github.com/optimization-for-data-driven-science/
Robust-NN-Training

Fair Classifier: https://github.com/optimization-for-data-driven-science/
FairFashionMNIST
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