
Supplementary Material: Sample Complexity of Learning Mixtures
of Sparse Linear Regressions

A Proof of Theorem 2

It is known that for any particular vector �, at least 2k queries to the oracle are necessary in order to
recover the vector exactly. Suppose the random variable X denotes the number of queries until the
oracle has sampled the vector � at least 2k times. Notice that X =

P

2k

i=1

X
i

can be written as a sum
of independent and identical random variables X

i

distributed according to the geometric distribution
with parameter 1/L where X

i

denotes the number of attempts required to obtain the ith sample after
the (i� 1)

th sample has been made by the oracle. Since X is a sum of independent random variables,
we must have

EX = 2Lk and Var(X) = 2k(L2 � L)

Therefore by using Chebychev’s inequality [5], we must have

Pr

⇣

X  2Lk � k
1
4

p

2k(L2 � L)
⌘

 1p
k

and therefore X > 2Lk(1� o(1)) with high probability which proves the statement of the theorem.

B Description of Algorithm 2 and Proof of Theorem 4

Algorithm 2 (Design of queries and denoising): Let m be the total number of queries that we will
make. In the first step of the algorithm, for a particular query vector v 2 Rn, our objective is to
recover hv,�1i and hv,�2i which we will denote as the denoised query responses corresponding to
the vector v. It is intuitive, that in order to do this, we need to use the same query vector v repeatedly
a number of times and aggregate the noisy query responses to recover the denoised counterparts.

Therefore, at every iteration in Step 1 of Algorithm 2, we sample a vector v uniformly at random
from {+1,�1}n. Once the vector v is sampled, we use v as query vector repeatedly for T times. We
will say that the query responses to the same vector as query to be a batch of size T . It can be seen
that since v is fixed, the query responses in a batch is sampled from a Gaussian mixture distribution
M with means hv,�1i and hv,�2i and variance �2, in short,

M =

1

2

N (hv,�1i,�2

) +

1

2

N (hv,�2i,�2

).

Therefore the problem reduces to recovering the mean parameters from a mixture of Gaussian
distribution with at most two mixture constituents (since the means can be same) and having the same
variance. We will use the following important lemma for this problem.

Lemma (Lemma 2: Learning Gaussian mixtures). Let M =

1

L

P

L

i=1

N (µ
i

,�2

) be a uniform

mixture of L univariate Gaussians, with known shared variance �2

and with means µ
i

2 ✏Z. Then, for

some constant c > 0 and some t = !(L), there exists an algorithm that requires ctL2

exp((�/✏)2/3)
samples from M and exactly identifies the parameters {µ

i

}L
i=1

with probability at least 1� 2e�2t

.

The proof of this lemma can be found in Appendix C. We now have the following lemma to
characterize the size of each batch T .
Lemma 4. For any query vector v 2 {+1, 0,�1}n, a batchsize of T = c

1

log n exp((�/✏)2/3), for

a constant c
1

> 0, is sufficient to recover the denoised query responses hv,�1i and hv,�2i with

probability at least 1� 1/poly(n).

Proof. Since v 2 {+1, 0,�1}n, hv,�1i, hv,�2i 2 ✏Z. Using Lemma 2, the claim follows.

Corollary 5. For any O
⇣

k log n log(n/k)
⌘

query vectors sampled uniformly at random from

{+1,�1}n, a batch size of T > c
2

log n exp((

�

✏

)

2/3

), for some constant c
2

> 0, is sufficient

to recover the denoised query responses corresponding to every query vector with probability at least

1� 1/poly(n).

11

Proof. This statement is proved by taking a union bound over O
⇣

k log n log(n/k)
⌘

batches corre-
sponding to that many query vectors.

Algorithm 2 (Alignment step): Notice from the previous discussion, for each batch corresponding
to a query vector v, we obtain the pair of values (hv,�1i, hv,�2i). However, we still need to cluster
these values (by taking one value from each pair and assigning it to one of the clusters) into two
clusters corresponding to �

1

and �
2

. We will first explain the clustering process for two particular
query vectors v

1

and v

2

for which we have already obtained the pairs (hv
1

,�1i, hv
1

,�2i) and
(hv

2

,�1i, hv
2

,�2i). The objective is to cluster the four samples into two groups of two samples each
so that the samples in each cluster correspond to the same unknown sensed vector. Now, we have two
cases to consider:
Case 1: (hv

1

,�1i = hv
1

,�2i or hv
2

,�1i = hv
2

,�2i) In this scenario, the values in at least one of
the pairs are same and any grouping works.

Case 2: (hv
1

,�1i 6= hv
1

�2i and hv
2

,�1i 6= hv
2

,�2i). We use two more batches corresponding
to the vectors v1+v2

2

and v1�v2
2

which belong to {�1, 0,+1}n. We will call the vector v1+v2
2

the sum query and the vector v1�v2
2

the difference query corresponding to v

1

,v
2

respectively.
Hence using Lemma 4 again, we will be able to obtain the pairs (hv1+v2

2

,�1i, hv1+v2
2

,�2i) and
(hv1�v2

2

,�1i, hv1�v2
2

,�2i). Now, we will choose two elements from the pairs (hv
1

,�1i, hv
1

�2i)
and (hv

2

,�1i, hv
2

�2i) (one element from each pair) such that their sum belongs to the pair
2hv1+v2

2

,�1i, 2hv1+v2
2

,�2i and their difference belongs to the pair 2hv1�v2
2

,�1i, 2hv1�v2
2

,�2i. In
our algorithm, we will put these two elements into one cluster and the other two elements into the other
cluster. From construction, we must put (hv

1

,�1i, hv
2

,�1i) in one cluster and (hv
1

,�2i, hv
2

,�2i)
in other.

Putting it all together, in Algorithm 2, we uniformly and randomly choose c
s

k log n

k

query vectors

from {+1,�1}n and for each of them, we use it repeatedly for c
2

log n exp

⇣

�

✏

⌘

2/3

times. From
each batch, we recover the denoised query responses for the query vector associated with that batch.
For a particular query vector v, we call the query vector good if hv,�1i 6= hv,�2i. For a v chosen
uniformly at randomly from {+1,�1}n, the probability that hv,�1��2i = 0 is at most 1

2

. Therefore,
if one chooses log n query vectors uniformly and independently at random from {+1,�1}n, at least
one is good with probability 1� 1

n

. We are now ready to prove the main theorem.

Proof of Theorem 4. For each vector v belonging to the set of first log n query vectors and for each
query vector b (b is among the initial c

s

k log n

k

query vectors) different from v, we make two
additional batches of queries corresponding to query vectors v+b

2

and v�b

2

. Consider the first log n
query vectors. We know that one of them, say g, is a good query vector. Let us denote the denoised
means obtained from the batch of queries corresponding to g to be (x, y). We can think of x and
y as labels for the clustering of the denoised means from the other query vectors. Now, from the
alignment step, we know that for every query vector b different from g and the denoised query
responses (p, q) corresponding to b, by using the additional sum and difference queries, we can
label one of the element in (p, q) as x and the other one as y. Since the vector g is good, therefore
x 6= y and hence we will be able to aggregate the denoised query responses corresponding to �1

and the denoised query responses corresponding to �2 separately. Since we have c
s

k log n query
responses for each of �1 and �2, we can scale the query responses by a factor of 1/

p
c
s

k log n and
subsequently, we can run basis pursuit [6] to recover the best k-sparse approximations of both �1 and
�2. Notice that the total number of queries in this scheme is O(k log2 n) and since the size of each
batch corresponding to each query is O(log n exp((

�

✏

)

2/3

)), the total sample complexity required is

O
⇣

k(log n)3 exp
⇣

�

✏

⌘

2/3

⌘

.

C Proof of Lemma 2

Note that Lemma 2 is not a claimed contribution of this paper. Rather, it appears as one of the results
in another submission (to a different conference). Since we can’t cite this other paper yet we include
the details here for completeness.

12

Lemma 6. For any two distributions f, f 0
defined over the same sample space ⌦ ✓ R, we have

kf � f 0k
TV

� 1

2

sup

t2IR

|C
f

(t)� C 0
f

(t)|.

More generally, for any G : ⌦ ! C and ⌦

0 ⇢ ⌦ we have

kf � f 0k
TV

�
✓

2 sup

x2⌦

0
|G(x)|

◆�1

⇣

|E
X⇠f

G(X)� E
X⇠f

0G(X 0
)|

�
Z

x2⌦\⌦0
|G(x)| · |df(x)� df 0

(x)|
⌘

.

Proof. We prove the latter statement, which implies the former since for the function G(x) = eitx

we have sup

x

|G(x)| = 1. By the triangle inequality we have

|E
X⇠f

G(X)� E
X⇠f

0G(X)| 
Z

x2⌦

|G(x)| · |df(x)� df 0
(x)|

 2 sup

x2⌦

0
|G(x)| · kf � f 0kTV +

Z

x2⌦\⌦0
|G(x)| · |df(x)� df 0

(x)|.

Lemma 7. Let z = exp(it) where t 2 [�⇡/L,⇡/L]. If the random variable X ⇠ N (µ,�) and

G
t

(x) = eitx then

E[G
t

(X)] = exp(��2t2/2)zµ and kG
t

k1 = 1 .

Proof. Observe that E[G
t

(X)] is precisely the characteristic function. Clearly we have kG
t

k1 = 1

and further
E[G

t

(X)] = exp(itµ� �2t2/2) = exp(��2t2/2)zµ.

We crucially use the following lemma.
Lemma 8 ([4]). Let a

0

, a
1

, a
2

, · · · 2 {�L,�(L� 1), . . . , L� 1, L} be such that not all of them are

zero. For any complex number z, let A(z) ⌘ P

`

a
`

z`. Then, for some absolute constant c,

max

�⇡/St⇡/S

|A(eit)| � e�cS .

Lemma 9 (TV Lower Bounds). Consider two mixtures of Gaussian distributions such that M =

1

L

P

L

i=1

N (µ
i

,�) and M0
=

1

L

P

L

i=1

N (µ0
i

,�) where µ
i

, µ0
i

2 ✏Z. Then

kM0 �Mk
TV

� L�1

exp(�⌦((�/✏)2/3)).

Proof. The characteristic function of a Gaussian X ⇠ N (µ,�2

) is

CN (t) = EeitX = eitµ�
t2�2

2 .

Therefore we have that

CM(t)� CM0
(t) � e�

t2�2

2

L

L

X

i=1

(eitµi � eitµ
0
i
).

Now, using Lemma 8, there exist an absolute constant c such that,

max

� ⇡
✏St ⇡

✏S

�

�

L

X

i=1

(eitµi � eitµ
0
i
)

�

� � e�cS .

Also, for t 2 (� ⇡

✏S

, ⇡

✏S

), e�
t2�2

2 � e�
�2⇡2

2✏2S2 . And therefore,
�

�

�

CM(t)� CM0
(t)

�

�

�

� 1

L
e�

�2⇡2

2✏2S2 �cS .

13

By substituting S =

(⇡�)

2/3

(✏

2
c)

1/3 above we conclude that there exists t such that
�

�

�

CM(t)� CM0
(t)

�

�

�

� 1

L
e�

3
2 (c⇡�/✏)

2/3

.

Now using Lemma 6, we have kM0 �MkTV � L�1

exp(�⌦((�/✏)2/3)).

To learn the parameters of a Gaussian mixture

M =

1

L

L

X

i=1

N (µ
i

,�) where µ
i

2 {. . . ,�2✏,�✏, 0, ✏, 2✏ . . .}

we use the minimum distance estimator precisely defined in [12, Section 6.8]. Let A ⌘ {{x :

M(x) � M0
(x)} : for any two mixtures M 6= M0} be a collection of subsets. Let P

m

denote the
empirical probability measure induced by the m samples. Then, choose a mixture ˆM for which the
quantity sup

A2A |Pr⇠ ˆM(A) � P
m

(A)| is minimum (or within 1/m of the infimum). This is the
minimum distance estimator, whose performance is guaranteed by the following proposition [12,
Thm. 6.4].
Lemma 10. Given m samples from M and with � = sup

A2A |Pr⇠M(A)� P
m

(A)|, we have

�

�

�

ˆM�M
�

�

�

TV

 4�+

3

m
.

We now upper bound the right-hand side of the above inequality. It is known that the mean of � is
bounded from above by a function of V C(A), the VC dimension of the class A, see [12, Section 4.3]
and is given by

E�  c
2

r

V C(A)

m
for some universal constant c

2

> 0

Now, via McDiarmid’s inequality and a standard symmetrization argument, � is concentrated around
its mean, see [12, Section 2.4]: and therefore, for some t > 0

�  E�+

r

t

m

with probability at least 1� 2e�2t. Therefore, we must have
�

�

�

ˆM�M
�

�

�

TV
 4�+O(1/m)  4E⇠M�+

r

t

m
+ o(1/

p
m)  4

r

V C(A)

m
+

r

t

m
,

with probability at least 1� 2e�2t. This first term is bounded by the following:
Lemma 11. For the class A defined above, the VC dimension is given by V C(A) = O(L).

Proof. First of all we show that any element of the set A can be written as union of at most
4L � 1 intervals in R. For this we use the fact that a linear combination of L Gaussian pdfs
f(x) =

P

L

i=1

↵
i

f
i

(x) where f
i

s normal pdf N (µ
i

,�2

i

) and ↵
i

2 IR, 1  i  L has at most 2L� 2

zero-crossings [17]. Therefore, for any two mixtures of interest M(x)�M0
(x) has at most 4L� 2

zero-crossings. Therefore any A 2 A must be a union of at most 4L� 1 contiguous regions in R. It
is now an easy exercise to see that the VC dimension of such a class is ⇥(L).

As a result, when t = !(L) the error of the minimum distance estimator is less 2
q

t

m

with probability
at least 1� 2e�2t. But from lemma 9, notice that for any other mixture M0 we must have,

kM�M0kTV � L�1

exp(�⌦((�/✏)2/3)).

As long as
�

�

�

ˆM�M
�

�

�

TV
 1

2

kM�M0kTV we will exactly identify the parameters. Therefore,

for some universal constant c0 > 0, m = c0tL2

exp((�/✏)2/3) samples suffice to exactly learn the
parameters with probability at least 1� 2e�2t.

14

D Analysis of Algorithm 3 for General L and Proof of Theorem 3 and
Theorem 5

Algorithm 3 (Design of queries): In every iteration in Step 1 of Algorithm 3, we will sample a
vector v uniformly at random from {+1,�1}n, another vector r uniformly at random from G ⌘
{�2z?,�2z?+1, . . . , 2z?�1, 2z?}n and a number q uniformly at random from {1, 2, . . . , 4z?+1}.
Now, we will use a batch of queries corresponding to the vectors v + r, (q � 1)r and v + qr. We
have the following lemmas describing several necessary properties of such queries.
We will define a triplet of query vectors (v

1

,v
2

,v
3

) to be good if for all triplets of indices i, j, k 2 [L]
such that i, j, k are not identical, it must happen that

hv
1

,�ii+ hv
2

,�ji 6= hv
3

,�ki
Lemma 12. The query vector triplet (v + r, (q� 1)r,v+ qr) is good with probability at least

1p
↵

? .

Proof. Notice that for a fixed triplet i, j, k 2 [L] such that i, j, k are not identical, we must have

Pr(hv + r,�ii+ h(q � 1)r,�ji = hv + qr,�ki)
= Pr(hr,�i

+ (q � 1)�j � q�ki = hv,�k � �ii)
 Pr(�i

+ (q � 1)�j � q�k

= 0) + Pr(�i

+ (q � 1)�j � q�k 6= 0)

· Pr(hr,�i

+ (q � 1)�j � q�ki = hv,�k � �ii | �i

+ (q � 1)�j � q�k 6= 0)


⇣

1� 1

4z? + 1

⌘

1

4z? + 1

+

1

4z? + 1

=

2

4z? + 1

� 1

(4z? + 1)

2

.

Notice that �i

+(q�1)�j�q�k

= 0 cannot hold for two values of q : q
1

and q
2

. We will show this fact
by contradiction. Suppose it happens that �i

+(q
1

�1)�j�q
1

�k

= 0 and �i

+(q
2

�1)�j�q
2

�k

= 0

in which case we must have �j

= �k which is a contradiction to the fact that all the unknown vectors
are distinct. We can take a union over all possible triplets (at most L3 of them) and therefore we must
have that

Pr(The vector triplet (v + r, (q � 1)r,v + qr) is good) � 1� L3

⇣

2

4z? + 1

� 1

(4z? + 1)

2

⌘

� 1p
↵?

.

We will now generalize Lemma 4 in order to characterize the batch size required to recover the
denoised query responses when there are L unknown vectors that the oracle can sample from.
Lemma 13 (Generalization of Lemma 4). For a particular query vector v such that each entry of v is

integral, a batch size of T > c
3

log n exp((�/✏)2/3), for some constant c
3

> 0, is sufficient to recover

the denoised query responses hv,�1i, hv,�2i, . . . , hv,�Li with probability at least 1� 1/poly(n).

Proof. The proof follows in exactly the same manner as the proof in Lemma 4 but in this case, we
invoke Lemma 2 with any general value of L. Since we have assumed that L is a constant, the term
L2 is subsumed within the constant c

3

.

Corollary 14. For O
⇣

k log2 n
⌘

query vectors such that every entry of every query vector is integral,

a batch size of T > c
4

log n exp((�/✏)2/3), for some constant c
4

> 0, is sufficient to recover the

denoised query responses corresponding to every query vector with probability at least 1�1/poly(n).

Proof. Again, we can take a union bound over all O
⇣

k log2 n
⌘

query vectors to obtain the result.

Lemma 15. If we draw

p
↵?

log n triplets of query vectors (v + r, (q � 1)r,v + qr) randomly as

described, then at least one of the triplets is good with probability at least 1� 1/n.

15

Proof. Now, the probability of a triplet of vectors (v + r, (q � 1)r, r) being not good is less than
1� 1p

↵

? and therefore the probability of all the
p
↵?

log n triplets being not good is less than

⇣

1� 1p
↵?

⌘

logn

p
↵

?

 e� logn  n�1

which proves the statement of the lemma.

Lemma 16. For a good triplet of vectors (v + r, (q � 1)r,v + qr), we can obtain hv,�ii for all

i 2 [L].

Proof. Recall that since we queried the vector v + qr, we can simply check which element (say x)
from the set {hv + r,�ii}L

i=1

and which element (say y) from the set {h(q � 1)r,�ii}L
i=1

adds up
to an element in {hv + qr,�ii}L

i=1

. It must happen that the elements x and y must correspond to
the same unknown vector �i for some i 2 [L] because the triplet of vectors (v + r, (q � 1)r, qr) is
good. Hence computing x� (y/(q � 1)) allows us to obtain hv,�ii and this step can be done for all
i 2 [L].

Algorithm 3 (Alignment step): Let a particular good query vector triplet be (v

?

+ r

?, (q? �
1)r

?,v?

+ q?r?). From now, we will consider the L elements {hr?,�ii}L
i=1

(necessarily distinct)
to be labels and for a vector u, we will associate a label with every element in {hu,�ii}L

i=1

. The
labelling is correct if, for all i 2 [L], the element labelled as hr?,�ii also corresponds to the same
unknown vector �i. Notice that we can label the elements {hv?,�ii}L

i=1

correctly because the triplet
(v

?

+ r

?, (q? � 1)r?,v?

+ q?r?) is good and by applying the reasoning in Lemma 16. Consider
another good query vector triplet (v0

+ r

0, (q0 � 1)r

0,v0
+ q0r0) which we will call matching good

with respect to (v

?

+ r

?, (q? � 1)r?,v?

+ q?r?) if it is good and additionally, the vector triplet
(r

0, r?, r0 + r

?

) is also good.
Lemma 17. For a fixed known good query vector triplet (v

?

+ r

?, (q? � 1)r?,v?

+ q?r?), the

probability that any randomly drawn query vector triplet (v

0
+ r

0, (q � 1)r

0,v0
+ q0r0) is matching

good with respect to (v

?

+ r

?, (q? � 1)r?,v?

+ q?r?) is at least

1p
↵

? .

Proof. From Lemma 12, we know that the probability that a randomly drawn query vector triplet
(v

0
+ r

0, (q � 1)r

0,v0
+ q0r0) is not good is at most L3

⇣

2

4z

?
+1

� 1

(4z

?
+1)

2

⌘

. Again, we must have
for a fixed triplet of indices i, j, k 2 [L] such that they are not identical

Pr(hr0,�ii+ hr?,�ji = hr0 + r

?,�ki)
= Pr(hr0,�i � �ki = hr?,�k � �ji)  1

4z? + 1

Taking a union bound over all non-identical triplets (at most L3 of them), we get that

Pr((r

0, r?, r0 + r

? is not good)  L3

4z? + 1

Taking a union bound over both the failure events, we get that

Pr((v

0
+ r

0, (q � 1)r

0,v0
+ q0r0) is not matching good)

 L3

⇣

3

4z? + 1

� 1

(4z? + 1)

2

⌘

 1� 1p
↵?

which proves the lemma.

Lemma 18. For a matching good query vector triplet (v

0
+ r

0, (q � 1)r

0,v0
+ qr0), we can label

the elements in {hv0,�ii}L
i=1

correctly by querying the vector r

0
+ r

?

.

16

Proof. Since (v0
+ r

0, (q�1)r

0,v0
+qr0) is good and we have also queried v

0
+qr0, we can partition

the set of elements {hv0
+ r

0,�ii}L
i=1

[{h(q � 1)r

0,�ii}L
i=1

into groups of two elements each such
that the elements in each group correspond to the same unknown vector �i as in the reasoning
presented in proof of Lemma 16. Again, since (r

0, r?, r0 + r

?

) is good and we have queried r

0
+ r

?,
we can create a similar partition of the set of elements {hr0,�ii}L

i=1

[{hr?,�ii}L
i=1

and multiply
every element by a factor of q � 1. For each of the two partitions described above we can align two
groups together (one from each partition) if both groups contain h(q � 1)r

0,�ii for the same i 2 L
(the values hr0,�ii are necessarily distinct and therefore this is possible). Hence, for every i 2 [L],
we can compute hv0,�ii correctly and also label it correctly because of the alignment.

Algorithm 3 (Putting it all together) First, we condition on the event that for all batches of queries
(number of batches will be polynomial in k and log n) we make, the denoised means are extracted
correctly which happens with probability at least 1� 1

n

by Corollary 14. As described in Algorithm 3,
in the first step we sample a pair of vectors (v, r) such that v is uniformly drawn from {�1,+1}n and
r is uniformly drawn from {�2z?,�2z? +1, . . . , 2z? � 1, 2z?}n. We also sample a random number
q uniformly and independently from the set {1, 2, . . . , 4z? + 1} and subsequently, we use batches
of queries of size c

4

L2

log n exp((�/✏)2/3) corresponding to the three vectors v + r, (q � 1)r and
v+ qr respectively. We will repeat this step for

p
↵?

log n+ c0↵?k log(n/k) iterations. Additionally,
for each query vector pair ((v

1

, r
1

) among the first
p
↵?

log n iterations and for each vector pair
((v

2

, r
2

) among the latter c0↵?k log(n/k) iterations, we also make the batch of queries corresponding
to the vector r

1

+ r

2

. From Lemma 15, we know that with probability at least 1 � 1

n

, one of the
query vector triplets among the first

p
↵?

log n triplets is good. Moreover, it is also easy to check if a
query vector triplet is good or not and therefore it is easy to identify one. Once a good query vector
triplet (v?

+ r

?, (q? � 1)r

?,v?

+ q?r?) is identified, it is also possible to correctly identify matching
good query vectors among the latter c0↵?k log(n/k) query vector triplets with respect to the good
vector triplet. We now have the following lemma characterizing the number of matching good query
vector triplets:
Lemma 19. The number of matching good query vector triplets from ↵?c0k log(n/k) randomly

chosen triplets is at least c0k log(n/k) with probability at least 1�
⇣

k

n

⌘

c̃k

for some constant c̃ > 0.

Proof. For a randomly drawn query vector triplet, we know that it is matching good with probability
at least 1p

↵

? from Lemma 17. Since there are ↵?c0k log(n/k) query vector triplets drawn at random
independently, the expected number of matching-good triplets is at least

p
↵?c0k log(n/k). Further,

by using Chernoff bound [5], we can show that

Pr(Number of matching good triplets < c0k log(n/k))

= Pr(Number of matching good triplets <
p
↵?c0k log(n/k)

✓

1�
p
↵? � 1p
↵?

◆

 exp

✓

� (

p
↵? � 1)

2c0k log(n/k)

2

p
↵?

◆

.

From Lemma 18, we know that for every matching good query vector triplet (v0
+ r

0, (q � 1)r

0,v0
+

qr0), we can label the elements in {hv0,�ii}L
i=1

correctly and from Lemma 19, we know that we
have aggregated de-noised query measurements corresponding to c0k log(n/k) vectors randomly
sampled from {+1,�1}n. However, since we have specifically picked c0k log(n/k) matching good
vectors after the entire scheme, we do not know which query vectors will be matching good apriori
and therefore we need to have the following guarantee:
Lemma 20. From ↵?c0k log(n/k) vectors randomly chosen from {+1,�1}n, any c0k log(n/k)

vectors scaled by a factor of 1/
p

c0k log(n/k) will satisfy the ��RIP property with high probability.

The proof of this lemma is delegated to the appendix. Now we are ready to proof the main theorem in
this setting.

17

Proof of Theorem 5. The total number of batches of queries made is at most 3c0↵?k log(n/k) log n.
Further, recall that size of each batch that is sufficient to recover the denoised means accurately is
c
4

log n log(�/✏)2/3. Hence the total number of queries is O
⇣

k(log n)3 exp(�/✏)2/3
⌘

as mentioned

in the theorem statement. From Lemma 18 and Lemma 20, we know that for every vector {�i}L
i=1

,
we have c0k log(n/k) linear query measurements such that the measurement matrix scaled by
1/
p

c0k log(n/k) has the � � RIP property. Therefore, it is possible to obtain the best k-sparse
approximation of all the vectors �1,�2, . . . ,�L by using efficient algorithms such as Basis Pursuit.

Now Theorem 3 follows as a corollary.

Proof of Theorem 3 for general L. Notice that the query with the largest magnitude of query response
that we will make is v + (4z? + 1)r where v is sampled from {+1,�1}n and r is sampled from
{�2z?,�2z? + 1, . . . , 2z? � 1, 2z?}. Therefore, we must have

E|hv + (4z? + 1)r,�ii|2
= E|hv,�ii|2 + (4z? + 1)

2E|hr,�ii|2

= 1 + (4z? + 1)

2z

?
X

i=1

i2

= 1 +

z?(2z? + 1)(4z? + 1)

2

3

.

since ||�i||
2

= 1. Since the variance of the noise E⌘2 is �2, we must have that

SNR =

1

�2

⇣

1 +

z?(2z? + 1)(4z? + 1)

2

3

⌘

.

Substituting the above expression in the statement of Theorem 5 and using the fact that z? is a
constant, we get the statement of the corollary.

E Proof of Lemma 20

First, let us introduce a few notations. For a given any set of indices T ⇢ [n], denote by X

T

the set
of all vectors in Rn that are zero outside of T . We start by stating the Johnson-Linderstrauss Lemma
proved in [2].
Lemma 21. [Lemma 5.1 in [2]] Let A be a m⇥ n matrix such that every element in A is sampled

independently and uniformly at random from {1/pm,�1/
p
m}. For any set T ⇢ [n] such that

|T | = k and any 0 < � < 1, we have

(1� �)||x||
2

 ||Ax||
2

 (1 + �)||x||
2

for all x 2 X

T

with probability at least 1� 2(12/�)ke�
m
2 (�

2
/8��

3
/24)

.

We are now ready to prove Lemma 20. Since there are
�

n

k

�

distinct subsets of [n] that are of size k,
we take a union bound over all the subsets and therefore the failure probability of Lemma 21 for all
sets of indices of size k (definition of �-RIP) is at most

2(12/�)k
✓

n

k

◆

e�
m
2 (�

2
/8��

3
/24).

We need that from ↵m(↵ > 1) vectors randomly sampled from { 1p
m

, �1p
m

}n any m vectors satisfy
the �-RIP property for some value of m. Therefore, the probability of failure is at most

2

✓

12

�

◆

k

✓

n

k

◆✓

↵m

m

◆

e�
m
2 (�

2
/8��

3
/24).

18

By Stirling’s approximation and the fact that both ↵m and m is large, we get that
✓

↵m

m

◆

⇡
r

↵

2⇡m(↵� 1)

⇣ ↵↵

(↵� 1)

↵�1

⌘

m

Further we can also upper bound the binomial coefficients
�

n

k

�

by
⇣

en

k

⌘

k

. Hence we can upper bound
the failure probability as

exp

⇣

�m(�2/16� �3/48) +m log

⇣ ↵↵

(↵� 1)

↵�1

⌘

+ k log(en/k) + log(12/�) + log 2

⌘

Therefore, if we substitute m = c0k log(en/k) for some constant c0 > 0, we must have the failure
probability to be upper bounded as e�c

00
m(1+o(1)) for some c00 > 0 as long as we have

c0(
�2

16

� �3

48

) > c0 log
⇣ ↵↵

(↵� 1)

↵�1

⌘

+ 1

implying that

↵↵

(↵� 1)

↵�1

< exp

⇣ �2

16

� �3

48

� 1

c0

⌘

.

Hence, by choosing the constant c0 appropriately large, the term in the exponent on the right hand
side can be made positive. Since the left hand side of the equation is always greater than 1, there will
exist an ↵ satisfying the equation.

19

