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Abstract

In many sensory systems, information transmission is constrained by a bottleneck,
where the number of output neurons is vastly smaller than the number of input
neurons. Efficient coding theory predicts that in these scenarios the brain should
allocate its limited resources by removing redundant information. Previous work
has typically assumed that receptors are uniformly distributed across the sensory
sheet, when in reality these vary in density, often by an order of magnitude. How,
then, should the brain efficiently allocate output neurons when the density of input
neurons is nonuniform? Here, we show analytically and numerically that resource
allocation scales nonlinearly in efficient coding models that maximize information
transfer, when inputs arise from separate regions with different receptor densities.
Importantly, the proportion of output neurons allocated to a given input region
changes depending on the width of the bottleneck, and thus cannot be predicted
from input density or region size alone. Narrow bottlenecks favor magnification of
high density input regions, while wider bottlenecks often cause contraction. Our
results demonstrate that both expansion and contraction of sensory input regions
can arise in efficient coding models and that the final allocation crucially depends
on the neural resources made available.

1 Introduction

In biological sensory systems, information transmission is often constrained by a neural bottleneck,
where the number of output neurons is vastly smaller than the number of input neurons. For example,
there are many more photoreceptors in the retina than there are retinal ganglion cells in the optic
nerve. Sensory bottlenecks force compression of information [20], and their presence and narrowness
affects the layout of receptive fields [17]. Efficient coding theory has been used to predict how the
brain should allocate its limited resources in these scenarios by removing redundant information
[1–4].

Prior work has typically assumed that the density of input receptors is constant [1, 6]. However, in
biological sensory systems, receptors are often not distributed uniformly across the sensory sheet, but
vary in their density. In vision, the density of cones in the retina differs by an order of magnitude
between the fovea and the periphery [9, 22]. In touch, mechanoreceptors are much more densely
packed in the fingertips than they are in the palm [14].

How, then, should the brain efficiently allocate output neurons when the density of input neurons is
nonuniform and a sensory bottleneck constrains the total number of output neurons (see Fig. 1A for an
illustration)? A plausible solution might simply prescribe a constant ratio of input to output neurons,
and therefore preserve proportional allocation, independent of the width of the bottleneck. However,
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Figure 1: A. Illustration of the resource allocation problem. Sensory inputs from two regions with
different receptor densities (H and L) pass through a neural bottleneck. At a given bottleneck size,
how many output neurons should be dedicated to inputs from each of the two input regions? The
optimal allocation might depend on the width of the bottleneck. B. Sensory inputs are correlated
according to a covariance function (here, negative exponential) that decays with distance between
receptors on the sensory sheet. Note that this function is evaluated at different distances |xi − xj |
depending on the density of sensory receptors. Two potential receptor densities are indicated at the
bottom of the panel in blue (H) and orange (L). The covariance function is plotted with different
decay constants σ. C. In efficient coding models that maximize decorrelation of sensory inputs, the
resource allocation problem can be solved by principal component analysis on the sensory inputs of
each region individually and then sorting the combined set of eigenvalues; the region each successive
eigenvalue in the combined set originated from determines where each additional output neuron’s
receptive field will fall (see main text for details).

sensory signals arising from densely packed receptors are more correlated than those from sparsely
distributed receptors, suggesting diminishing information gain from allocating outputs neurons to
high density over low density input regions. Hence, denser regions should be under-represented in
the bottleneck, relative to their input density. Finally, a case can also be made for expansion of denser
input regions, as this ensures the increased spatial resolution afforded by densely packed receptors
can be fully taken advantage of in subsequent processing stages.

Which of these three ideas is correct? Here, we answer this question analytically and in numerical
simulations, and demonstrate that both expansion and contraction of sensory input regions can be
optimal in efficient coding models. We show that the final allocation depends on the width of the
bottleneck and the precise nature of spatial correlations in the sensory inputs.

2 Background: Decorrelation/Whitening

We focus on linear second-order models that maximize information through decorrelation of sensory
inputs. Decorrelation has been proposed as an important principle at lower levels of sensory processing
[10], where sensory bottlenecks appear most prevalent. This approach is equivalent to minimizing
the mean-squared reconstruction error in the noiseless case. We will argue that our results extend to
(some) more complex models in section 6.1.

Mathematically, our goal is to determine the m× n-dimensional weight matrix W that decorrelates
the n-dimensional sensory inputs. Correlations in the inputs arise because nearby receptors respond
similarly to sensory stimuli; this relationship weakens as the distance between receptors increases
(Fig. 1B). A sensory bottleneck is introduced by restricting ourselves to m < n outputs. Sensory
inputs are represented by the zero-mean n× z matrix X , containing z n-dimensional sensory inputs.
The whitened data WX should be uncorrelated, such that

XTW TWX = I. (1)

This can be achieved by setting W = Σ−
1
2 , where Σ = XTX . Solutions are in the form

W = PΛ−
1
2UT , (2)
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where Λ is a diagonal matrix containing the eigenvalues of Σ and U contains its eigenvectors.
Whitening filters are not unique [15], and any orthogonal matrix P will yield equally valid whitening
filters. A popular solution in cases without a bottleneck (m = n) that yields localized filters (receptive
fields) is known as ZCA (Zero-Phase Component Analysis) [5] and sets P = U .

In cases with a sensory bottleneck (m < n), a solution can be found by solving an orthogonal
procrustes problem [6, 7]:

P ∗ = min
P

∥∥∥Wopt − PΛ−
1
2UT

∥∥∥2
F
, (3)

where ‖·‖F denotes the Frobenius norm. Here, Wopt is an m× n matrix containing idealized local
receptive fields [see 6, for strategies to set its values]. Setting Wopt to the identity matrix in the
no-bottleneck case will recover the ZCA solution described earlier. Λ (m ×m) and U (n ×m)
are as above, but retain only the m components with the highest associated eigenvalues, thereby
projecting the sensory data X onto the space spanned by its principal components (PCA). P is an
m×m orthogonal matrix.

3 Derivation

3.1 Whitening of two input regions

We assume that input regions with different densities are not bordering each other, such that the
covariance between any pair of receptors from different regions will be zero. We have tested
numerically that this provides a valid approximation in the case of two regions directly bordering
each other and only introduces marginal error (see Supplemental Materials). Under this assumption,
the covariance matrix will be a block diagonal matrix. In the specific case of two regions H (high
receptor density) and L (low receptor density), Σ therefore breaks down as follows:

Σ =

[
ΣH 0
0 ΣL

]
(4)

It can be shown by application of the Cauchy Interlacing Theorem that the block diagonal matrix
structure of Σ implies that its eigenvalues are identical to the combined set of the eigenvalues of ΣH

and ΣL [16]; similarly, U is a block matrix that can be reconstructed from UH and UL:

Λ =

[
ΛH 0
0 ΛL

]
and U =

[
UH 0
0 UL

]
(5)

For a sensory bottleneck with m output neurons, we retain only the m largest eigenvalues from Λ
along with their associated components in U . We can now see that this is equivalent to sorting the
eigenvalues from both regions and finding the m largest ones in the combined set (see Figure 1C for a
visual example). Eigenvalues chosen from region H imply that the receptive field of the added output
neuron also falls onto region H1. Thus, the problem of how output neurons are allocated to either
input region is solved by calculating and sorting the eigenvalues associated with each individual
input region. In the following, we will show how these calculations can be solved analytically for
exponential covariance functions. In section 5, we will discuss an example where the eigenvalues are
calculated and sorted numerically for an empirically determined covariance function.

3.2 Calculation of eigenvalues

In the following, we will restrict ourselves to one-dimensional inputs only (see section 6 for a
discussion of the 2D case). We assume that the covariance decays exponentially with receptor
distance. The elements of the covariance matrix are then calculated as follows (see Fig. 1B):

Σij = exp(−σ|xi − xj |), (6)
1Localized receptive fields in W can only be obtained if P is a block matrix and Wopt places output

units according to the breakdown of the eigenvalues. A shortcut to calculate localized receptive fields with
minimal extent is to set P = U and the calculate W using QR decomposition. Note that our method can also
accommodate non-localized receptive fields, if we take the accuracy with which inputs on the sensory sheet can
be resolved as a proxy for resource allocation (see further discussion in section 4): retaining additional principal
components from U will increase spatial resolution selectively for the region the eigenvector originated from.

3



where xi is the location of the ith receptor and σ is the decay constant. For exponential covariance
functions, it is convenient to express the eigenvalue-eigenvector problem in a continuous domain. In
this case, the eigenvalues can be calculated analytically using the following integral homogeneous
equation:

λkφk(x) =

∫ b

a

exp (−γ(x)|x− y|)φk(y)dy, (7)

where φk(x) is the kth eigenfunction and λk its corresponding eigenvalue. The domain length (region
size) is set as S = b − a. When seen as a discretization of the continuous version, the PCA of
the sampled data amounts to a expansion/compression of one of the regions in the spatial domain.
As a consequence, the rate of decay becomes γ(x) = σ when x is on the low density region, and
γ(x) = rσ otherwise, with r denoting the ratio of high versus low density.

By using the Fourier transform, it can be shown that equation 7 is equivalent to the law for the
classical harmonic oscillator in each region (see Supplemental Materials for proof):

− d2

dx2
φk(x) =

(
γ

λk
− γ2

)
φk(x) = µkφk(x). (8)

Equation 8 denotes the Laplacian eigenvalue problem which, for a finite spatial domain of length S
has the following known solution:

φk(x) =


√

2
S cos(

√
µkx), k odd√

2
S sin(

√
µkx), k even

(9)

In the case where spatial correlations don’t extend over the full sensory sheet, i.e. when the region
size is big relative to the spatial extent of the correlations, as is usually the case in the sensory
systems, it can be shown that the Dirichlet initial conditions φ(a) = φ(b) = 0 hold, yielding the the
corresponding eigenvalues µk = k2π2

S2 (see Supplemental Materials for proof and full derivation of
the exact boundary conditions). Finally, the PCA and the Laplacian eigenvalue problems share the
same eigenfunctions and their eigenvalues are related by the equation λk = 2σ

µk+σ2 .

For two regions H and L, we can therefore calculate their eigenvalues as:

Region H: λh =
2σ

h2π2S−2 + σ2
, and Region L: λl =

2σ

l2π2S−2r + σ2r
, (10)

where r > 1 is the ratio of higher and lower densities, and h, l ∈ N denote successive eigenvalues for
regions H and L, respectively.

3.3 Allocation in the bottleneck

To calculate how many output neurons are allocated to region H as a function of the number of
neurons allocated to region L, we set λh = λl and substitute equation 10. This yields

h =

√
l2π2r + S2σ2r − S2σ2

π
. (11)

It becomes apparent that for l = 1, i.e. the first neuron allocated to region L, we have already assigned

h =

√
(r−1)S2σ2+rπ2

π >
√
r neurons to region H . As we allocate more neurons to region L, the

ratio h
l simplifies to: liml→∞

h
l =
√
r. The fraction of neurons allocated to each region therefore

depends on the size of the bottleneck and converges to
√
r

1+
√
r

and 1
1+
√
r

for H and L respectively.
Note that this result is independent of the region size S.

Extending our results to more than two regions is straightforward, but requires substituting equation
10 by an analogous system of equations, whose solutions define the relationships between eigenvalues
from all regions.

4 Results

We calculated the predicted allocation of output neurons for different decay constants σ and density
ratios r over all possible bottlenecks widths. An illustrative example is shown in Fig. 2A and B: the
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Figure 2: A. Allocation of output neurons to the high density (blue) or low density (orange) input
regions for different bottleneck widths for an example with density ratio r = 5, a decay constant
σ = 0.6, and a region size S = 300. Vertical slices through the expanding triangle denote different
bottleneck widths. Dashed lines indicate allocation according to region size (black, kept the same
for both regions in our analysis), receptor density (purple) and a mathematically derived asymptote
(yellow, see main text for details). The inset depicts a zoomed-in version of the allocation for
extremely narrow bottlenecks. B. Allocation for same parameters as in A, but normalized to the
number of output neurons for each bottleneck width. Different proportional allocations are obtained
for narrow, intermediate, and wide bottlenecks, leading to expansion or contraction of input regions in
the bottleneck relative to their receptor density. C. Allocation boundaries for different decay constants
σ as function of bottleneck width for a density ratio r = 5. More spatially restricted (faster decaying)
covariance functions lead to a contraction of low-density input regions. Dashed lines as in A. Note
that the plot cuts off before the allocation boundary decays back to the density ratio shown in B. D.
Allocation boundaries for different input density ratios at σ = 0.6. For intermediate bottlenecks,
all curves tend towards a limit determined by the ratio. Higher ratios cause the low-density region
to saturate at narrower bottlenecks (one-to-one mapping of receptors to outputs), after which the
allocation decays back to the density ratio.

allocation of output neurons is a nonlinear function of the bottleneck width, both in absolute (Fig. 2A)
and relative number of units (Fig. 2B). Specifically, different allocation strategies are apparent for
narrow, intermediate, and wide bottlenecks as follows:

1. For narrow bottlenecks, all or most of the output neurons are allocated to the high density
input region, leading to an expansion of this region in the bottleneck relative to its share
of receptors. Conversely, the low density input region is contracted and might not even be
represented at all in extremely narrow bottlenecks. Both the extent of expansion/contraction
and the range of bottleneck widths over which it occurs is affected by the decay constant
σ: larger decay constants, i.e. more spatially localized correlations, increase the amount of
expansion of the high density input region, which is represented exclusively for extremely
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narrow bottlenecks (see Fig. 2C). The density ratio r also affects the initial expansion, but to
a lesser extent (Fig. 2D).

2. For intermediate bottlenecks, output neurons are allocated at a ratio of
√
r to the high density

over the low density region. In this regime, the high density region will contract relative
to its receptor input density (cf. yellow dashed lines in Figs. 2A,B, and C). We note that
this asymptote does not depend on the decay constant σ, but the decay affects how fast
the allocation converges to this ratio. While the allocation is driven towards the limit as
the bottleneck widens, it might not be reached in practice, if the spatial extent of the input
correlations is low (see dark green line in Fig. 2C).

3. Finally, for wide bottlenecks the low density region will reach the point where each receptor
is assigned an individual output neuron, and therefore all information from this region is
captured in the bottleneck. In our method, this corresponds to exhausting the number of
eigenvalues arising from this input region (see Fig. 1C for a visual example). All additional
outputs neurons will therefore be allocated to the high density region. This is apparent in
the figures as a slow decay of the allocation boundary to the input density ratio. In the full
case (no bottleneck), input and output densities are matched.

The allocation of output neurons in the bottleneck directly affects the spatial resolution with which
stimuli can be resolved on the sensory sheet. Adding neurons increases the spatial frequency of the
associated eigenvectors (cf. eq. 9): higher frequencies support smaller receptive fields and therefore
increased spatial resolution. Dedicating output neurons to a given input region will therefore trade
off accuracy increases in this region at the expense of the other region. Our results suggest that
narrow bottlenecks favor increased spatial resolution mainly in high density regions to the detriment
of the lower density region; at wider bottlenecks the differences in spatial resolution between the two
regions even out, and are indeed smaller than the difference in input densities alone would predict.

In summary, efficient coding schemes support both expansion and contraction of receptor inputs in
the bottleneck; a crucial factor in the resulting allocation is the overall width of the bottleneck itself.

5 Empirical example: natural image statistics

So far, we restricted ourselves to exponential covariance functions. How do our results translate to
other spatial relationships? Natural images induce spatial correlation that follow a different decay
function: the power spectral density (and therefore the distribution of eigenvalues) of natural scenes
follows a well-known power law, where power decreases with 1/f2 for increasing spatial frequencies
f [11]. We tested numerically how neurons in a visual bottleneck should be allocated to different
input regions, reflecting the fact that the density of cone photoreceptors is not constant across the
retina.

5.1 Methods

We calculated the covariance between pairs of pixels from a set of natural images. As in our previous
analysis, we restricted ourselves to the 1D case. We included 2,000 randomly sampled images from
the SALICON image data set2 [13], converted the images to 8-bit grayscale, and then extracted
luminance values along horizontal lines extending 160 pixels each. Images were 480× 640 pixels in
size yielding 1,920 samples per image, and therefore 3.8m samples in total. The resulting covariance
function decays smoothly with pixel distance, as expected, but induces more far-ranging correlations
that an exponential decay (see inset in Fig. 3A). We again restricted our analysis to comparing
two input regions, testing out different receptor density ratios. For the high density region we
directly assigned neighboring image pixels to receptors. For the low density regions, we calculated
covariances at larger pixel distances as specified by the respective density ratios, r = 2, 5, 10. Next,
we calculated the eigenvalues of the covariance matrices for the high density and the three low density
regions. As expected, the eigenvalue spectrum followed a power law (linear relationship on a log-log
plot, see Fig. 3B). Finally, we sorted the empirical eigenvalues from high and low density regions to
determine the proportion of output neurons with receptive fields falling onto the high and low density
input regions, respectively, as described in section 3.

2The full data set can be downloaded from http://salicon.net.
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Figure 3: Empirical results on natural image data set. A. Covariance between pairs of pixels as a
function of distance. The covariance decays fast initially, but wide-ranging dependencies can be
observed. B. Eigenvalue spectrum for different receptor densities. For the high density region (blue),
we included every pixel in the original images. For low density regions, we sampled every 2nd, 5th,
and 10th pixel, respectively (orange-shaded lines). As expected, the eigenvalues follow a power
law. C. Allocation boundaries for different density ratios. The area below the boundary denotes
allocation to the low density input region, while the area above is allocated to the high density region.
Dashed lines show allocation proportional to receptor density. Both expansion and contraction of the
high-density region can be observed.

5.2 Results

We found that the covariance structure imposed by natural images resulted in expansion of high
density inputs for narrow bottleneck widths (Fig. 3C). Indeed, extremely narrow bottlenecks lead
to an exclusive representation of the high density region, ignoring inputs from the low density
region entirely. Conversely, wider bottlenecks lead to a contraction of the high-density region. The
bottleneck imposed by the optic nerve is very narrow and inputs from the fovea are over-represented
in the optic nerve; as such, our findings are at least qualitatively in line with these experimental
findings. Still, our results in this section are not intended to make precise predictions about the
allocation of fibers in the optic nerve: we did not model the filtering properties of the lens, which
blurs visual inputs in the peripheral retina, and we did not calculate our results in 2D (see section
6 for further discussion) or take the difference in size between the fovea and the retinal periphery
into account. Instead, our results are meant to highlight that resource allocation under an efficient
coding model is shaped not just by the width of the bottleneck, but also by the precise nature of the
correlations between individual receptors.

6 Discussion

We have shown that efficient coding models nonlinearly scale their resource allocation in sensory
bottlenecks under nonuniform input densities. That is, the limited number of outputs neurons is not
simply allocated proportional to receptor density. Rather, input regions might expand or contract
in the bottleneck and the main driver behind this effect is the width of the bottleneck itself: narrow
bottlenecks cause over-representation, while wider bottlenecks favor under-representation of high-
density inputs. The extent of spatial correlations across the sensory sheet also influences the results,
as does the range of receptor densities in the different regions.

6.1 Implications for efficient coding models

Our results emphasize that the presence of sensory bottlenecks can have important consequences for
the resulting neural representations. Many standard efficient coding models assume that the number
of input and output neurons is matched, or that the pool of output neurons is virtually unlimited,
though recent work has started to explore the effect of bottlenecks on neural coding in more detail
[17].

Nonuniform allocation of output neurons is a hallmark of efficient coding models: neurons should be
allocated proportional to the probability of each stimulus, such that more likely stimuli are encoded
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with higher accuracy [see e.g. 8, for a recent model]. While this principle appears straightforward, in
practice it can lead to complex and sometimes counter-intuitive effects on neural allocation [19] and
its perceptual consequences [21]. In contrast to prior work, here we focused on resource allocation in
the presence of nonuniform receptor density, while assuming a spatially uniform stimulus probability
distribution with respect to where on the sensory sheet a stimulus might fall. While such an assumption
might be warranted for the visual system, in other sensory systems the spatial distribution of stimuli
can be highly non-uniform. For example in the tactile system, we are much more likely to come
into contact with an object on our fingertips than on any other region of our hand. Interestingly, the
density of mechanoreceptors is also much higher on the fingertips than anywhere else on the hand.
Indeed, nonuniform receptor placement might be a way for evolution to bias the resulting neural
representations towards ecological or behaviourally relevant priors.

Our results demonstrate that even the simplest and most commonly employed efficient coding model
(linear, noiseless, second-order) yields an interesting and surprising relationship between the resulting
allocation and the bottleneck width. The presence of this relationship is therefore not dependent
on noise or nonlinearities. While our results were derived with classical ZCA-style whitening [5]
in mind, they are also valid for other variants, as long as these project the sensory inputs into the
lower-dimensional space spanned by the principal components of the sensory inputs. This includes
models that optimize for stimulus reconstruction accuracy and take into account sensory noise [6],
alongside decorrelation. Indeed, higher-order models such as independent component analysis (ICA)
also include this step in the undercomplete case, i.e. when a bottleneck is present [12]. Our results
therefore hold for this class of models as well. Furthermore, employing a simple model means that
resource allocation can be solved analytically under our cost function. This paves the way for future
analyses of more complex models, for example introducing nonlinearities by means of kernel PCA.

6.2 Resource allocation in biological sensory systems

Based on our findings, we make two specific predictions for resource allocation in biological sensory
systems. First, the width of the bottleneck determines which input regions will expand or contract
their representation in the bottleneck. This could be tested by comparing sensory systems, for example
the visual pathway, across a number of species with different bottlenecks. Second, the precise nature
of the correlation function determines whether the resulting representation favors contraction or
expansion of high-density input regions. For example, the covariance function induced by visual
stimuli (cf. section 5) caused different levels of expansion and contraction than the exponential
covariance function. This suggests observable differences in the resulting representations across
different senses, even in cases when their bottleneck widths might be similar.

Here, our results were limited to one-dimensional receptor surfaces. We expect similar principles to
apply for two-dimensional sensory sheets, such as the retina in vision, and the skin in touch. However,
two-dimensional surfaces that are tiled by receptive fields of different sizes scale differently than
one-dimensional ones [18], and this aspect would need to be taken into account.

6.3 Applications and future work

Bottlenecks are common in machine learning models to help with generalization and have recently
attracted renewed interest in the field of deep neural networks [17]. Non-uniform inputs have not
been studied in detail, however appear useful for robotics applications, particularly where power
and size constraints are important. In both cases, our work suggests that the size of the bottleneck is
critically important in shaping the resulting representations.

Future work might extend our approach to multiple receptor populations: both touch and vision rely
on multiple receptor classes that occur at different absolute densities, but also exhibit different density
gradients across the sensory sheet. Vision relies on three different types of cones as well as rods,
while tactile feedback includes responses from at least four classes of mechanoreceptors in non-hairy
skin. In both systems individual receptor classes exhibit different but overlapping tuning functions,
implying that the responses from different receptor classes will be correlated. Our results suggest that
these correlations should impact resource allocation.

8



Acknowledgements

We would like to thank Mark Humphries for comments on an earlier version of this manuscript. This
work was supported by the Wellcome Trust [209998/Z/17/Z] and by the EU Horizon 2020 program
as part of the Human Brain Project [HBP-SGA2, 785907].

References
[1] Joseph J Atick. Could information theory provide an ecological theory of sensory processing? Network:

Computation in neural systems, 3(2):213–251, 1992.

[2] Joseph J Atick and A Norman Redlich. Towards a theory of early visual processing. Neural Computation,
2(3):308–320, 1990.

[3] Fred Attneave. Some informational aspects of visual perception. Psychological review, 61(3):183, 1954.

[4] Horace B Barlow. Possible principles underlying the transformation of sensory messages. Sensory
communication, 1:217–234, 1961.

[5] Anthony J Bell and Terrence J Sejnowski. The “independent components” of natural scenes are edge filters.
Vision Research, 37(23):3327–3338, 1997.

[6] Eizaburo Doi, Jeffrey L Gauthier, Greg D Field, Jonathon Shlens, Alexander Sher, Martin Greschner,
Timothy A Machado, Lauren H Jepson, Keith Mathieson, Deborah E Gunning, et al. Efficient coding of
spatial information in the primate retina. Journal of Neuroscience, 32(46):16256–16264, 2012.

[7] Eizaburo Doi and Michael S Lewicki. A simple model of optimal population coding for sensory systems.
PLoS computational biology, 10(8):e1003761, 2014.

[8] Deep Ganguli and Eero P Simoncelli. Efficient sensory encoding and bayesian inference with heterogeneous
neural populations. Neural computation, 26(10):2103–2134, 2014.

[9] Ann K Goodchild, Krishna K Ghosh, and Paul R Martin. Comparison of photoreceptor spatial density
and ganglion cell morphology in the retina of human, macaque monkey, cat, and the marmoset callithrix
jacchus. Journal of Comparative Neurology, 366(1):55–75, 1996.

[10] Daniel J Graham, Damon M Chandler, and David J Field. Can the theory of “whitening” explain the
center-surround properties of retinal ganglion cell receptive fields? Vision Research., 46(18):2901–2913,
2006.

[11] Aapo Hyvärinen, Jarmo Hurri, and Patrick O Hoyer. Natural image statistics: A probabilistic approach to
early computational vision, volume 39. Springer Science & Business Media, 2009.

[12] Aapo Hyvärinen and Erkki Oja. Independent component analysis: algorithms and applications. Neural
networks, 13(4-5):411–430, 2000.

[13] Ming Jiang, Shengsheng Huang, Juanyong Duan, and Qi Zhao. Salicon: Saliency in context. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 1072–1080, 2015.

[14] Roland S Johansson and AB Vallbo. Tactile sensibility in the human hand: relative and absolute densities
of four types of mechanoreceptive units in glabrous skin. The Journal of physiology, 286(1):283–300,
1979.

[15] Agnan Kessy, Alex Lewin, and Korbinian Strimmer. Optimal whitening and decorrelation. The American
Statistician, 72(4):309–314, 2018.
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